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Intrinsically disordered proteins that populate the so-called “Dark Proteome” offer

challenging benchmarks of atomistic simulation methods to accurately model

conformational transitions on a multidimensional energy landscape. This work explores

the application of parallel tempering with implicit solvent models as a computational

framework to capture the conformational ensemble of an intrinsically disordered peptide

derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported

a protein-peptide interface where the VP35 peptide underwent a folding transition from

a disordered form to a helix-β-turn-helix topological fold upon molecular association with

the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born

solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with

temperature-based replica exchange dynamics to calculate the disorder propensity of the

peptide and its probability density of states in a continuum solvent. A further comparison

is presented of applying an explicit/implicit solvent hybrid replica exchange simulation

of the peptide to determine the effect of modeling water interactions at the all-atom

resolution.

Keywords: molecular dynamics, free-energy landscape, intrinsically disordered proteins, explicit/implicit solvent

model replica-exchange simulation

INTRODUCTION

The large conformational heterogeneity and rapid dynamic transitions of intrinsically disordered
peptides and proteins (IDPs) present a challenge to experimental boundaries in characterizing
their functional form on rugged energy landscapes (Wright and Dyson, 1999, 2005). From a
biological perspective, the broad interest in IDPs draws principally from their fundamental role in
the regulation and function of cellular protein networks. Recent experimental studies have begun to
unravel the interplay between “ordered chaos” of IDPs and their kinetic transition to a topological
funnel of folded states (Arai et al., 2015). The contemporary view of this dynamic process is one
that occurs by either an “induced-fit” of the IDP upon molecular association with a protein target
or by target “fly casting” of a prefolded state in the disordered conformational ensemble of the IDP
(see, e.g., Shoemaker et al., 2000; Arai et al., 2015).

Complementary to experimental studies are computer simulations which offer a powerful set of
tools to understand IDPs at the all-atom level and their inherent plasticity to navigate a disordered
network of microstates (see, e.g., Zhang and Chen, 2014; Chebaro et al., 2015; Bhowmick et al.,
2016; Lee and Chen, 2016). Among the simulation methods, the generalized ensemble sampling

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
https://doi.org/10.3389/fmolb.2017.00003
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2017.00003&domain=pdf&date_stamp=2017-01-31
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive
https://creativecommons.org/licenses/by/4.0/
mailto:molson@compbiophys.org
https://doi.org/10.3389/fmolb.2017.00003
http://journal.frontiersin.org/article/10.3389/fmolb.2017.00003/abstract
http://loop.frontiersin.org/people/395454/overview


Olson Modeling the Dark Proteome

technique of temperature-based replica exchange (T-ReX;
Sugitaa and Okamoto, 1999; Ishikawa et al., 2001), also
known as parallel tempering, has become an increasingly
popular approach for exploring the energy landscape of
proteins. Algorithms combined with T-ReX to generate protein
configurations vary in their theoretical formulations and
range from canonical molecular dynamics (MD) simulations
to nontraditional methods that accelerate conformational
sampling. Of the latter, examples includes coarse replica-
exchange molecular dynamics (Peter et al., 2016), accelerated
molecular dynamics (see, e.g., Miao et al., 2015), Hamiltonian
switch Metropolis Monte Carlo (Mittal et al., 2014), all-atom
multicanonical molecular dynamics (Higo et al., 2011) and self-
guided Langevin dynamics (SGLD; Wu and Brooks, 2003),
among others.

A computational strategy of reducing the complexity of all-
atom simulations of proteins is the replacement of explicit
water interactions with a continuum description of treating
implicitly the bulk physical properties of solvation effects. The
most common implicit solvent method for protein dynamics
simulations is the generalized Born (GB) approximation.
GB models are computationally faster than explicit solvent
calculations and differ in their accuracy of reproducing Poisson-
Boltzmann solvation energies for single protein conformations
(see, e.g., Feig et al., 2004b). Application of GB solvent models
to studies of IDPs has been reported by several laboratories
(see, e.g., Ganguly and Chen, 2009; Click et al., 2010; Chebaro
et al., 2015; Ganguly and Chen, 2015). To date the simulation
results lack consensus on the accuracy of GB solvent models as
a computational framework to capture the fold propensities of
IDPs and their probability density of states on a conformational
landscape. Particularly missing among the reported studies
are comparative assessments of GB models of IDPs with
those modeled by explicit all-atom solvent replica exchange
simulations.

Given the current interests in characterizing the “Dark
Proteome” which consists of “invisible” conformational states
within the human, viral and microbial protein fold universe
(Perdigão et al., 2015; Bhowmick et al., 2016), this work
presents temperature-based replica exchange simulations of
modeling an IDP derived from an Ebola virus protein. Ebola
viruses are nonsegmented negative sense RNA viruses that
cause severe hemorrhagic fever (Sanchez et al., 2006). An X-
ray crystallographic structure was reported by Amarasinghe and
coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in
complex with a 28-residue peptide extracted from Ebola VP35
(peptide designated as NPBP). The NP-VP35 viral assembly is
essential for virus replication and offers a protein target for
therapeutic development. Experimental data reveals the NPBP
peptide binds NP with high affinity and specificity, and acts by
blocking NP oligomerization. The peptide undergoes a folding
transition from a disordered form free in solution to a helix-β-
turn-helix fold upon molecular association with NP (Leung et al.,
2015).

Two different generalized ensemble sampling methods are
applied based on combining T-ReX with the SGLD simulation
method (Lee and Olson, 2010) and two different GB solvent

models are examined to assess their accuracy in modeling the
probability density of states of the NPBP peptide. One of the
sampling methods is the conventional application of T-ReX
with a static set of temperatures to explore the conformational
landscape. The other technique is an adaptive T-ReX where the
replica clients dynamically walk in temperature space in search
of the optimal population density on a modeled energy function
(Katzgraber et al., 2006; Trebst et al., 2006; Lee and Olson, 2011;
Olson and Lee, 2014; Olson et al., 2016). The GBmodels analyzed
are GBMV2 (generalized Bornmolecular volume; Lee et al., 2002,
2003) and the GBSW2 (generalized Born smoothing window;
Im et al., 2003). The models differ in their dielectric-boundary
descriptions with one of them constructed from an analytical
formulation of the molecular volume (Lee et al., 2003).

The final simulation model applied to the NPBP peptide is an
explicit/implicit solvent hybrid T-ReX/MD method (Chaudhury
et al., 2012). The application of this simulation model is to
investigate the effect of solvent resolution on the helix propensity
and the search of conformational transitions. The idea behind the
hybrid model is reducing the number of replica clients needed
in explicit solvent simulations by replacing the contribution of
explicit solvent energies in the Metropolis exchanges (Metropolis
et al., 1953) with those of the GBMV2 solvent approximation.
The hybrid model allows the same number of replica clients
to be applied as in the GB solvent T-ReX/SGLD simulations
of the NPBP peptide while retaining a higher resolution
in conformational sampling on an explicit solvent landscape
(Chaudhury et al., 2012; Olson and Lee, 2013).

COMPUTATIONAL METHODS

This section provides a brief outline of the computational
methods applied in this work of modeling the NPBP peptide
taken from the PDB 4YPI (Figure 1). Summarized are the
sampling techniques and protocols as well as metrics to evaluate
the simulation trajectories.

Replica Exchange Schemes
A general approach for conformational sampling is the
application of T-ReX (see, e.g., Ishikawa et al., 2001). Unlike
the well-established method of MD simulations at a single
sampling temperature, T-ReX is a generalized ensemble method
of applying multiple parallel simulations in which each replica is
executed at a different temperature. In traditional applications of
T-ReX, the temperatures T1, T2, ..., Tn, where n is the number
of replica clients, are predetermined by a static (fixed) set of
values that span a desired range. It is common to model the set
of temperatures by a geometrically spaced sequence (Predescu
et al., 2004) using n− 1 intervals from theminimum temperature
denoted as T1 = Tmin to the maximum Tn = Tmax

Ti + 1 = Ti(Tmax/Tmin )

[

1
n−1

]

, (1)

where Ti is the temperature of the ith replica client illustrated in
Figure 1.

An alternative to Equation (1) is an adaptive replica
exchange method of allowing the clients to dynamically walk in
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FIGURE 1 | Computational strategies of modeling the Ebola virus VP35 peptide (PDB: 4YPI) in its unbound form using temperature-based replica

exchange (T-ReX) simulation methods. The methods include: (1) GBMV2 solvent model applied with a traditional (static) set of temperatures spanning a range

from a minimum temperature (T1) to the upper extreme (Tn), where n is the number thermal windows (ensemble computing clients); (2) GBMV2 using an adaptive

(dynamically walking) set of temperatures between T1and Tn; (3) GBSW2 solvent model applied by adaptive sampling; and (4) TIP3P/GBMV2 hybrid replica exchange

method. Energies (Ei ) used in the replica exchanges are described in the text. Molecular figures were drawn with PyMOL (www.pymol.org).

temperature space (Katzgraber et al., 2006; Trebst et al., 2006;
Lee and Olson, 2011; Olson and Lee, 2014; Olson et al., 2016).
In implementing the adaptive algorithm, each client is tagged as
either “cold” or “hot” depending on the last temperature extreme
it visited (Lee and Olson, 2011). Tracing of the clients is made
by constructing histograms over temperature space, ncold (T) and
nhot (T), where each bin accumulates the number of cold and
hot clients visiting each temperature window. The fraction cold,
fcold (T), of a client window at temperature T is the number of
cold clients visiting that temperature divided by the total number
of cold and hot client visits:

fcold (T) =
ncold (T)

ncold (T) + nhot (T)
. (2)

Using the fcold (T) term, a thermal current is defined (Lee and
Olson, 2011)

j = D (T) η (T)
dfcold (T)

dT
, (3)

where D (T) is the diffusivity and η (T) is the probability that
any client will reside at temperature T. The current j can be
maximized by adjusting the temperatures such that fcold (Ti)

increases linearly as a function of temperature index, i. Here
in this work, a continuous function is constructed from the

computed values of fcold (Ti) at the current set of temperatures,
Ti, and new temperatures are searched for where fcold (Ti) =

i/(N−1). To prevent all of the windows from clustering around
the same temperature and depleting exchanges at the extremes, a
constraint is applied where no neighboring temperatures can be
more than two geometric spacing units apart,

Ti + 1

T
≤

(

Tmax

Tmin

)

[

2
N−1

]

(4)

with the lower and upper values of Ti set to Tmin and Tmax,
respectively.

The exchange of temperatures between neighboring replica
clients, a and b, is determined by the Metropolis energy criteria
(Metropolis et al., 1953)

p
(

a ↔ b
)

= min
[

1, e(βa−βb)(Eb−Ea)
]

, (5)

where βa = 1/kBTa, kB is Boltzmann’s constant,Ta is the
temperature of replica client a, and Ea is the potential energy of
client a.

SGLD Simulation Models
For generating trajectories of the NPBP peptide, two methods
were combined with T-ReX. The first is based on the SGLD
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simulation method developed by Wu and Brooks (2003). The
SGLD equation of motion is given by

ṗi = fi − γipi + Ri + λgi, (6)

where ṗi defines the rate of change of the momentum of particle
i, fi is the force acting on the particle, γi is the friction constant,
Ri defines the random force and gi is a memory function, which
is scaled by an ad hoc guiding factor λ. The memory function gi
is defined by the moving average of momentum over an interval
of time, L:

gi =
〈

pi
〉

L
, (7)

where 〈. . .〉L denotes a local average. The time interval is further
defined as L = tL/δt, where tL is the local averaging time and δt
the time step along the simulation trajectory. It should be noted
that because of the ad hoc force in Equation (6), the sampling
algorithm deviates from a canonical ensemble (Lee and Olson,
2010; Wu and Brooks, 2011; Wu et al., 2012, 2016). For this
work, the deviation is anticipated to be small for modeling a
mini-protein (Lee and Olson, 2010), nevertheless the population
distributions can be reweighted to remove the applied bias (Wu
and Brooks, 2011).

In the SGLD simulations, solvent was represented by either
the implicit solvent model GBMV2 (Lee et al., 2002, 2003) or
GBSW2 (Im et al., 2003). The most noted difference between the
two models is representation of the solvent excluded volume and
the treatment of the dielectric interface. The GBMV2 parameters
were selected to smooth the molecular volume by setting βs

= −12 and P3 = 0.65 (Yeh et al., 2008). The hydrophobic
cavitation term was modeled by applying a phenomenological
surface tension coefficient set to a value of 0.015 kcal/mol/Å2.
For applying GBSW2, themodel was parameterized to fit the Lee-
Richards molecular-surface Poisson results and required w= 0.2
Å, a0 = 1.2045, and a1 = 0.1866. The hydrophobic cavitation-
energy tension term was set to 0.030 kcal/(molÅ2).

The utilities and programming libraries of the Multiscale
Modeling Tools for Structural Biology (MMTSB; Feig et al.,
2004a) were used to carry out the T-ReX/SGLD simulations. The
CHARMM simulation program (version c35b2) was applied as a
modeling platform (Brooks et al., 2009). Simulations were carried
out using 24 replica clients and the frequency of exchanges was
set to every 1 ps of simulation. Temperatures were set at Tmin =

300K and Tmax = 475 K. Because the implicit solvent models
GBMV2 and GBSW2 were originally developed for and have
been extensively benchmarked with the CHARMM22 force field,
this force field was applied with the CMAP backbone dihedral
cross-term extension (Mackerell et al., 2004). An integration time
step of 2 fs was used and parameters for SGLD consisted of the
friction constant set to γ of 1 ps−1 for all heavy atoms, the guiding
factor λ to a value of 1, and the averaging time tL was set to 1
ps. These values were taken from previous studies of the SGLD
model (Lee and Olson, 2010, 2011; Olson and Lee, 2014). Non-
bonded interaction cutoff parameters for electrostatics and vdW
terms were set at a radius of 22 Å with a 2-Å potential switching
function. Covalent bonds between the heavy atoms and hydrogen

atoms were constrained by the SHAKE algorithm (Ryckaert et al.,
1977). The NPBP peptide was modeled for 200 ns of simulation
time per thermal window, generating an ensemble of 4.8 µs.

Hybrid Simulation Model
The alternative method applied for generating trajectories of the
NPBP peptide is an explicit/implicit solvent hybrid T-ReX/MD
simulation (Chaudhury et al., 2012). In a typical explicit solvent
T-ReX simulation the energies are given by

Eexplicit = U
prot
all-atom + U

prot−solv
all-atom + Usolv−solv

all-atom , (8)

where the first term describes the protein potential energy for
a CHARMM-based molecular mechanics force field, the second
term is the explicit protein-solvent interactions followed by
the explicit solvent-solvent interactions. The all-atom solvent-
solvent energy term requires significant number of replica-
exchange clients to achieve adequate Metropolis updates
(Chaudhury et al., 2012). In the hybrid T-ReX method, the
dynamics of each replica moves on an explicit solvent landscape.
During a Metropolis update, all waters are removed from a
replica and the solvent energy term of the replica is calculated
using the grid-based GBMV2 solvent model

Eimplicit = U
prot
all-atom + 1G

prot−solv
GBMV2 , (9)

where 1G
prot−solv
GBMV2 is the free-energy term due to the implicit

solvent contribution. After completion of the Metropolis
exchanges, the explicit waters in each replica are replaced to their
configurations prior to removal and the simulation continues
according to Equation (8).

The NAMD code (Phillips et al., 2005) was applied for the
200-ns T-ReX/MD simulation with the CHARMM22+CMAP
force field. The simulation cubic box size was set to 53.19 Å3

and the number of waters was 4796. For modeling the waters
the TIP3P potential was applied (Jorgensen et al., 1983). Nose’-
Hoover thermostat was applied with a temperature coupling
constant of 50 kcal/s2. Given that the computational expense
of the hybrid model relative to implicit solvent calculations is
greater, the NAMD simulation parameters differ slightly from
the T-ReX/SGLD simulations in that a smaller cutoff distance
of 12 Å was applied with a switching distance of 8 Å. The
integration time step remained identical to that used with the
SGLD simulations and the SHAKE algorithm was similarly
applied. Particle mesh Ewald was applied and combined with
periodic boundary conditions.

Evaluation Metrics
To examine the trajectories generated by the simulations, the
weighted histogram analysis method (WHAM; Ferrenberg and
Swendsen, 1989; Kumar et al., 1992; Gallicchio et al., 2005) was
applied to the data sets. The 2D density of states, � (q1, q2),
for a molecular system, where q1 and q2 are a set of reaction
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coordinates of interest, is given by

�
(

q1, q2
)

=

R
∑

i = 1
Ni

(

q1, q2
)

R
∑

j = 1
ni exp

(

fi − βiE
)

, (10)

where nj is the number of data points in the jth simulation and
βj and Tj are Boltzmann’s constant and temperature of the jth
simulation, respectively. The function Ni(q1, q2) is the histogram
of (q1, q2) calculated from the ith simulation, and fj is the
scaled free energy obtained by solving the following equations
self-consistently,

Pβ

(

q1, q2
)

=

R
∑

i = 1
Ni

(

q1, q2
)

exp (−βE)

R
∑

j = 1
ni exp

(

fi − βiE
)

(11)

and

exp
(

−fi
)

=
∑

q1 ,q2

�
(

q1, q2
)

exp (−βE), (12)

where Pβ(q1, q2) is the probability density at the inverse
temperature β. From a density profile, a potential of mean
force is determined from the relationship WT

(

q1, q2
)

=

−RT log Pβ

(

q1, q2
)

, where R is the universal gas constant. For
calculations presented here, q1 = fractional helicity (fH) of the
peptide determined from DSSP (Kabsch and Sander, 1983) and
q2 = radius of gyration (Rg).

The trajectories were further analyzed by a Q score for the
peptide. Q is the number of side-chain contacts in a generated
conformation divided by the total number equivalent contacts in
the X-ray crystal structure of NPBP. Values were computed for
side-chain center-of-mass pairs (i,j), such that j > i and whose
distances are less than a cutoff of 4.2 Å. A sigmoidal function was
applied (implemented in MMTSB) to effectively include residue
pairs that are slightly further apart with a reduced weight. In
addition to a Q score, pairwise Cα root-mean-square-deviation
(RMSD) from the starting X-ray structure was computed for each
peptide conformation in a generated ensemble of structures.

RESULTS AND DISCUSSION

Bound and Free NPBP
Figure 2 illustrates the X-ray crystallographic structure of the
NPBP peptide extracted from the Ebola virus VP35 in association
with the Ebola NP protein (Leung et al., 2015). The binding
of NPBP occupies a functionally critical site on NP required
for RNA synthesis. The peptide conformation is stabilized
by a network of electrostatic interactions dominated by NP
residues Arg240, Lys248, and Asp252. Using the DSSP secondary
structure algorithm, NPBP (annotated as residues 20–47) shows
segments Trp28 to Thr35 and Val40 to Asp42 as distinct helical

conformations. The overall fH is 0.4 and the bound form exhibits
an Rg of 10.5 Å.

Experimental characterization of the secondary structure of
the NPBP peptide free in solution by circular dichroism (CD)
spectroscopy is reported to show the peptide as intrinsically
disordered (Leung et al., 2015). When added to a solution of
50% trifluoroethanol (TFE), the NPBP peptide transitions from
a coil to helical structures of ∼30–40% helicity, thus suggesting
a strong underlying secondary-structure propensity. Predictions
of secondary-structure without bias of the crystallographic
structure estimate the NPBP peptide to encompass a consensus
fH ∼0.3 with probabilities >0.9 for helical formation in the
sequence segment of Gly27 to Met34 (see, e.g., Kieslich et al.,
2016).

Implicit Solvent T-ReX Simulations
To examine the accuracy of implicit solvent models to
counterbalance the network of electrostatic interactions of the
viral assembly interface that contribute to the stabilization of
the NPBP helical fold and produce a conformational landscape
with a predisposed helix propensity in bulk water, replica-
exchange simulations were performed using different simulation
strategies. The conformational sampling approach of SGLD
was explored with two different GB solvent models and two
different temperature-based replica-exchange methods. The first
simulation model result shown in Figure 2B is the SGLD-
GBMV2 with a static (fixed) set of temperatures in defining the
replica-exchange protocol. The 2D profileWT

(

fH, Rg
)

computed
at T = 300K using WHAM of the full ensemble shows a large
manifold of conformational substates with a helix distribution of
fH ∼0–0.5. Several representative structures extracted from the
basins are illustrated in Figure 2E. The conformational density
takes place in Rg space of ∼8–11 Å and at the lower end of
the population distribution non-structured states are observed to
occupy a large range of Rg values and show the canonical feature
of disorder.

Given the broad population distribution produced by a static
set of temperatures in the T-ReX simulations, it is important to
test whether the simulation model provided optimal sampling of
the basins. To address this issue, an adaptive replica-exchange
SGLD-GBMV2 simulation model was applied whereby allowing
the clients to walk in temperature space to optimize the efficiency
of exchanges between nearest-neighbor thermal windows at
potential energy barriers separating conformational basins (Lee
and Olson, 2011; Olson and Lee, 2014; Olson et al., 2016). The
2D profile from the adaptive T-ReX is illustrated in Figure 2C

for T = 300K and the result is shown to retain the manifold
of transient states similar to those sampled by the static T-ReX
method, yet a population shift is observed toward an fH ∼0.5 at
the cost of reducing the density of unstructured conformations.
The theoretical goal of the adaptive method is to enhance
sampling of conformational transitions for a modeled potential
energy surface. Early success of the method applied to a sharp
phase transition of unfolding-folding of the protein SH3 showed
better agreement with the experimental melting temperature
than the traditional static approach (Lee and Olson, 2011). In
addition, the adaptive method captured with greater accuracy the
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FIGURE 2 | Simulation results of sampling the Ebola virus VP35 NPBP peptide using GB-based solvent models combined with replica exchange

methods. (A) X-ray crystallographic structure of the NPBP peptide bound to the Ebola NP (displayed as a molecular surface). (B) Probability density profile

WT

(

fH, Rg
)

computed at T = 300K and taken from the conformational ensemble modeled by the GBMV2 static T-ReX simulation method. The order parameters are

fractional helicity and radius of gyration. (C) Probability density profile at T = 300K from the adaptive T-ReX method with the GBMV2 solvent model. (D) Adaptive

T-ReX with GBSW2 solvent model at the identical temperature. (E) Representative conformations extracted at T = 300K from the simulations and are annotated at

the indicated basins.

native state of SH3 extracted from the conformational ensemble.
Given these earlier outcomes, and while the NPBP certainly
lacks the folding cooperativity of SH3, the result suggests for
the CHARMM22+CMAP/GBMV2 potential energy surface a
NPBP “native” state of helix propensity near the value observed
experimentally for the crystallographic bound conformation.
Although the simulation shows a high rate of transitions among
different basins, the overall population weight is inconsistent
with the CD analysis in free solution. Because the potential
energy surface is identical between the static and adaptive T-ReX
methods, the less-efficient sampling approach will eventually
converge to find a comparableWT

(

fH, Rg
)

.
To determine the bias of the GBMV2 solvent approximation

on WT

(

fH, Rg
)

, adaptive T-ReX simulations were performed
with a different implicit solvent model based on the GBSW2
approximation. Of the GB-based solvent models developed for
protein dynamics, GBMV2 is one of the most accurate models
in reproducing Poisson-Boltzmann theory with a Lee-Richards
molecular surface (Feig et al., 2004b). The basis of GBMV2 is an
analytical formulation of the molecular volume (Lee et al., 2003),
while the less accurate but computationally much faster GBSW2
model is based on a smooth dielectric-boundary formulation
constructed by applying a superposition of atomic-centered
polynomials (Im et al., 2003). The dissimilarities between the

two models in conformational sampling are clearly illustrated
in Figure 2D. Application of GBSW2 significantly reduces the
number of high-probability conformational excursions and leads
to a folding funnel at fH ∼0.5. While the “optimized” fH from
the two different implicit solvent models is surprisingly similar,
the limited disorder from the GBSW2 model in its current
parameterization makes this solvent approximation less suitable
for modeling IDPs (for an alternative parameterization of GBSW,
see, e.g., Chen, 2010).

Figure 3 shows the probabilities of observing Rg as a function
of three sampling temperatures taken from the ensemble. The
GBMV2 model produced more compact states of NPBP than
the crystallographic bound form, while GBSW2 yielded Rg
values near the bound conformation. The observed difference
between the solvent models can be partly attributed to the
distinction in molecular surface representations, where different
weights are applied to the surface-tension term that describes the
hydrophobic free energy. In general, MD simulations of unfolded
states are more compact and tend to favor helical structures than
those found experimentally (Piana et al., 2014). By example, an
experimental Rg for a unfolded 28 amino acids is estimated to be
13 Å (Kohn et al., 2004).

Also shown in Figure 3 are the probability profiles of Cα-
RMSD and the fraction of side-chain contacts similar to the
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FIGURE 3 | Calculated probability profiles for sampling values of radius of gyration and Cα-RMSD from the starting bound conformation of the NPBP

peptide. Plot lines colored blue represent quantities extracted at T = 300K from the generated conformational ensembles, red represent values at 390K and green at

475 K. From the top figure to bottom, simulation results are static T-ReX/GBMV2, adaptive T-ReX/GBMV2, and adaptive T-ReX/GBSW2.

starting conformation of NPBP. The ensemble average over
contacts is denoted as <Q> and values <0.6 are considered
unrelated to the starting structure. When combined with the
analysis of the 2D profiles, the probabilities provide an interesting
picture of the rare event of recognizing (via fly casting) a peptide
conformation in the ensemble that is similar to the NPBP bound
form. For the GBMV2 model and considering only the last 50
ns of simulation time, the lowest RMSD is 2.9 Å with Q = 0.6,
and is clustered in the outer periphery of the highly-populated
basin labeled as III in Figure 2C. This sparse cluster of low-
RMSD states emerges with an fH of 0.5 and Rg approaching
10 Å.

It is also important to understand the configurational stability
of IDPs from the simulations and their fold propensities. The
thermal unfolding profiles for NPBP are shown in Figure 4A.
Consistent with the reduced number of transient states and

their populations among the GB models, GBSW2 retains
helicity over a greater thermal range. The aggregation of
replica clients in the range of 360 K–425K for the adaptive
method (GBMV2 and GBSW2) is the effect of enhanced
sampling of unfolding-folding transition points that stabilize
helix formation. The statistical errors in the histograms
for all model simulations are approximately fH ±0.1 along
the temperature profiles. Simulation convergence and the
dominance of helix formation in NPBP can be further tested
by conducting T-ReX simulations starting from a random
coil state rather than the folded conformation. Although
these additional simulations were executed only to 100 ns
using the adaptive method, Figure 4B shows convergence to
a folded state of helical conformations and establishes the
strong helix propensity of applying CHARMM22+CMAP/GB
descriptions.
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FIGURE 4 | Thermal unfolding profiles computed from the simulations

of the Ebola VP35 NPBP peptide. (A) Profiles calculated from the starting

folded conformation using the three simulation models of the static

T-ReX/GBMV2 (blue colored line), adaptive T-ReX/GBMV2 (red colored line),

and adaptive T-ReX/GBSW2 (green colored line). (B) Profiles calculated from

the adaptive T-ReX simulations of starting from an unstructured (coil) peptide

fold.

Explicit/Implicit Solvent Hybrid T-ReX/MD
Simulation
The overweighting of secondary structure biases from the
GBMV2 and GBSW2 solvent models is comparable to
other studies of using different GB solvent models and
parameterizations (Ganguly and Chen, 2009; Click et al., 2010;
Chebaro et al., 2015). As a further test of the impact of the
GBMV2 solvent model and its mean-field resolution of smearing
out the details of the solvent on sampling conformational
transitions of NPBP, the final simulation model tested is the
explicit/implicit solvent hybrid T-ReX/MD method. This model
generates peptide configurations on an explicit solvent (TIP3P)
landscape while using the same number of replica clients as in
the implicit solvent calculations. The latter is achieved by using
the GBMV2 model in the Metropolis exchanges rather than
explicit solvent. While the goal is to evaluate the simulation
model in terms of a conformational landscape rather than
unconstrained folding free energies to high accuracy, it is worth
noting that replacement of energies in the Metropolis updates

from an all-atom representation to a mean-field approximation
can produce errors in the detailed balance required of a canonical
ensemble (Chaudhury et al., 2012).

Figure 5 shows WT

(

fH, Rg
)

at T = 300K from the WHAM
calculation of the hybrid simulation model ensemble and
the thermal unfolding profile. Several important observations
can be made in comparison to the static GBMV2 model
which best corresponds to the non-adaptive hybrid model. The
most important distinction between the results is the striking
difference in the favorable free energies and the network that
shuttles conformations among the helical basins. While both
sampling methods show sufficient plasticity among the states, the
hybrid model shows a more quantifiable free-energy minimum
at fH = 0.26 vs. 0.37 for the static GBMV2, and yields good
agreement with secondary-structure predictions. The distinction
in the potentials of mean force among the models is illustrated
by considering a transition between an unstructured state and
the free-energy minimum. For the static GBMV2, the transition
(fH = 0; Rg = 11 Å) → (fH = 0.37; Rg = 8 Å) yields 1G =

−0.1 kcal/mol, whereas for the adaptive model the transition
from the same disordered state → (fH = 0.47; Rg = 9 Å) 1G =

−1.0 kcal/mol, and for the hybrid model the transition → (fH
= 0.26; Rg = 9 Å) yields 1G = −1.7 kcal/mol. Even though
the static model exhibits a low-energy reversible transition to
unstructured states and would appear to be in better agreement
with the CD experiments (Leung et al., 2015), enhanced sampling
of Pβ

(

fH, Rg
)

by the adaptive method for this solvent description
revealed a more costly transition to the densely populated fH ∼

0.5.
The lowest RMSD conformer for the hybrid model via the last

50 ns is 3.3 Å with Q = 0.6 and Rg = 9.4 Å. This conformer
is illustrated in Figure 5B as the first structure depicted for the
basin labeled III. The conformation is formed from a helical
hairpin of residues Ser26-Met34 and Val40-Phe44. The top-
rank conformer based on potential energies for the free-energy
minimum at fH = 0.26 is illustrated as the first structure for basin
I. This structure shows a 5-residue helix of Trp28-Met34. Among
the highly populated basins, a distinction between the simulation
models is the cluster at fH =∼0.6, where the hybrid model shows
an improved free energy of population. Unlike the other basins,
this basin lacks a direct low-energy pathway along the manifold
of clusters.

A statistical average of the ensemble for the hybrid model
computed from the multiple temperatures of the T-ReX
simulation is illustrated in Figure 5C along with a comparison
with the static GBMV2 model. Despite the differences in the
potentials of mean force between the models, a simple statistical
average without reweighting based on free energies shows
remarkably similar fH values at 300 K. Because of the lack of
instantaneous relaxation of the explicit waters in contrast to
GB approximations, the hybrid model shows a reduction in
excursions of unfolded states at the upper Rg boundaries. Like
many MD simulations of unfolded states with explicit solvent
(Piana et al., 2014), a residual secondary-structure propensity is
observed at 475 K.

The more compact favorable states observed in the
explicit/implicit solvent hybrid model than that corresponding
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FIGURE 5 | Simulation results of sampling the Ebola virus VP35 NPBP peptide using the explicit/implicit solvent hybrid T-ReX/MD method. (A)

Probability density profile WT

(

fH, Rg
)

computed at T = 300K from sampling fractional helicity and radius of gyration. (B) Representative conformations extracted

from the simulations are illustrated for selected basins. (C) Thermal unfolding profiles of the peptide computed using the explicit/implicit solvent hybrid T-ReX/MD

method (light colored symbols) compared to the static T-ReX/SGLD method using GBMV2 (blue colored symbols). A representative structure is shown from the

explicit solvent calculation.

to the bound NPBP conformation is unlikely due entirely to
the GB model, but rather the additive force field (Piana et al.,
2014). As noted above, the CHARMM22+CMAP force field
was selected because of extensive benchmarks in reported
studies of the GBMV2 and GBSW2 solvent descriptions to
successfully model natively folded structures of proteins (see
e.g., Yeh et al., 2008; Lee and Olson, 2010). While there are no
reported studies of applying either GBMV2 or GBSW2 with the
more refined CHARMM36m force field and its parameterization
for TIP4P-based explicit solvent simulations (Huang et al.,
2017), switching to this description may help reconcile the
underestimated Rg values with those experimentally determined
for unfolded states and reduce the overall weight and stabilization
of secondary-structure propensities.

CONCLUSIONS

The current initiative to develop an atomistic understanding
of “invisible” conformational states of the human/viral/bacterial
proteomes requires an accurate computational framework
for modeling conformational transitions within a disordered
ensemble and their population density. The work presented
here examined the application of temperature-based replica
exchange simulations with different sampling methods and

solvent descriptions of modeling an intrinsically disorder 28-
residue peptide from the Ebola virus protein VP35. The X-
ray crystallographic determination of the VP35 peptide bound
to Ebola NP reports a helix-β-turn-helix fold of roughly 40%
helical structure, whereas from CD experiments in free solution
the peptide is unstructured. The simulations of the unbound
peptide showed the selection of a GB solvent model combined
with a replica-exchange sampling protocol can have a significant
effect on the distribution of sampled populations. Overall, the
tested GB models tend to favor a free-energy minimum of
roughly 50% helical content for the peptide. The effect of an
adaptive temperature-based replica exchange protocol compared
to a traditional approach of a static set of temperatures was
found to reduce the amount of unstructured states and shifted
the ensemble to helical conformations with an extended peptide
folding stabilization. A comparison with an explicit/implicit
solvent hybrid MD-based replica exchange simulation showed
that conformational sampling on an explicit solvent landscape
leads to a free-energy minimum of ∼20% helicity, yet the overall
conformational network underlying transient states resembles
more of a helix-fold propensity in a solvent mixture of TFE-water
rather than bulk water. The simulation results can be summarized
as a benchmark for the testing of more refined CHARMM-
based force fields and different GB model parameterizations.
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The ultimate goal is to capture greater heterogeneity in
conformational probabilities and reduce the over-stabilization of
helix propensities in modeling intrinsically disordered peptides.
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