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A B S T R A C T   

Quantifying the degree of spatial segregation of two bacterial strains in mixed biofilms is an important topic in microbiology. Spatial segregation is dependent on 
spatial scale as two strains may appear to be well mixed if observed from a distance, but a closer look can reveal strong separation. Typically, this information is 
encoded in a digital image that represents the binary system, e.g., a microscopy image of a two species biofilm. To decode spatial segregation information, we have 
developed quantitative measures for evaluating the degree of the spatial scale-dependent segregation of two bacterial strains in a digital image. The constructed 
algorithm is based on the new segregation measures and overcomes drawbacks of existing approaches for biofilm segregation analysis. The new approach is 
implemented in a freely available software and was successfully applied to biofilms of two strains and bacterial suspensions for detection of the different spatial scale- 
dependent segregation levels.   

1. Introduction 

Two bacterial strains that are sharing an area could adopt two 
different states: they can either mix or segregate. Quantifying the 
segregation of different genotypes is highly relevant in population 
ecology [1] as microbial interactions typically take place within 
microscale cell aggregates [2]. In particular, organisms that exploit 
interspecific interactions to gain ecological advantage often 
co-aggregate [3]. Conversely, organisms that antagonize each other will 
tend to segregate in space, creating distinct micro-communities and 
increased diversity at larger spatial scales [4]. How an observer per
ceives this, while looking at a digital image, depends on the scale of 
observation, i.e. the field of view, which is the extent of the observable 
space that is seen by the observer at any given moment. For example, 
two bacterial strains, forming a mixed biofilm, can be well separated in 
the small spatial scales (observed when zooming in to the image, to the 
small field of view of, e.g. 30 μm × 30 μm), forming small patches, but 
the patches themselves can appear well mixed (observed when zooming 
out, to the large field of view of, e.g. 300 μm × 300 μm). This opens a 
dilemma if such a biofilm is well mixed or rather segregated. It is 
therefore important to have an approach that can analyse, and consider 
spatial segregation at different spatial scales and calibrate calculated 
segregation values in relation to the positive and negative controls 
(minimum and maximum segregation extremes). Moreover, the 
species-specific labelling techniques, such as FISH, or fluorescence 
protein labelling coupled with fluorescence microscopy, which opened 

the doors into visualization of mixed microbial communities and con
sequences of their interactions [5–9] call for quantitative evaluation of 
genotype’s segregation levels. The digitalization of modern image 
acquisition equipment makes it possible to acquire large-field-of-view, 
high-resolution 3D images, underlining the need for data reduction 
and fast analysis [10]. Currently available biofilm analysis software, 
such as BiofilmQ [11] or COMSTAT [12] do not include biofilm segre
gation analysis. Therefore, it is not surprising that the segregation in 
biofilms is sometimes only qualitatively assessed [13]. To tackle this gap 
we developed new multiscale spatial segregation (MSSegregation) anal
ysis approach, which we applied to quantify the segregation and spatial 
mixing of genetically different or identical Bacillus subtilis strains in a 
floating biofilm [14]. In this article we provide the detailed explanation 
of the upgraded method, its validation, the publicly available free 
MSSegregation analysis software and additional examples of strains 
segregation analysis to make the novel method more accessible to the 
user. 

2. Results 

2.1. Existing methods for biofilm segregation analysis in digital images 

Before developing new segregation metrics, we reviewed the estab
lished ones and their potential to consider spatial scale dependant 
segregation. The first group of methods extracts the segregation infor
mation by scanning the 2D space in a digital image by 1D subunits. For 
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example, the intermixing index represents the average number of colour 
changes along microbial community height [15] or along the perimeter 
of the circle of certain radius placed over the colony depicted in digital 
image [16]. The inability of 1D segregation analysis methods to capture 
the segregation information in the second dimension can be overcome 
by employing the methods that evaluate the strain composition in 2D 
subunits. By the method deployed by Mitri et al. [17] and Nadell et al. 
[18] the segregation index was computed as the mean value of the 
relative frequency of strain 1 across the population of focal cells of the 
strain 1 within 10 cell distances. The cells of strain 2 were treated as 
empty space. The method reveals accurately segregation level as long as 
there is no empty space in the biofilm image and the overall ratio of the 
cells of the two strains is 1:1. This is, however, often not true, for 
example, even the strains of the same species can form biofilms with 
profoundly different ratios [14]. Moreover, biofilms are spatially 
structured, often containing areas with no cells [19], forming channels 
visible on microscopy images [20]. Another segregation metric for 
digital image analysis that considers segregation of strain 1 and strain 2 
was published by van Gestel et al. [21], who addressed the above 
problems: 

SVG =

[
1
n
∑n

i=1

a
a + b

]

a

−

[
1
n
∑n

i=1

a
a + b

]

b

(eq 1) 

Here, a and b are areas covered by pixels corresponding to the strain 
1 and strain 2 frequencies within a chosen radius surrounding a focal 
cell. First term on the right-hand side corresponds to the average relative 
frequency of strain 1 around focal cell of strain 1 and second term is the 
average relative frequency of the strain 1 around focal cell of strain 2; n 
is the number of randomly sampled areas of chosen radius in the ana
lysed image. The equation addresses which scenario is more likely: the 
strain 1 gathers around strain 1 or the strain 1 gathers around strain 2. If 
the two likely-hoods are the same, the strain 1 equally prefers strain 1 
and 2. In this case the difference of the two terms in eq (1) is 0, i.e. SVG =

0, meaning no segregation. On the other hand, if strain 1 prefers strain 1 
to strain 2, SVG > 0 and in the fully segregated case, SVG = 1. By changing 
the radius around the focal cell, it is possible to obtain SVG at different 
spatial scales. Therefore, the eq (1) appears to be a good basis to 
construct a segregation measure that takes dependency of segregation 
on different spatial scales into account. However, it has few important 
drawbacks. The local cell densities in the native biofilms can vary, but 
the less dense regions in the same digital image contribute equally to the 
averages in eq (1) as high dense regions, although the biomass compared 

Fig. 1. The segregation analysis of pixel-sized black and white particles. In (A) half of the 246 × 246 pixel images are black pixel-sized particles and half are white 
pixel-sized particles; (a) and (b) show two types of minimal segregation i.e. the best possible mixing: in (b) pixel particles cannot overlap and in (a) overlapping is 
allowed; (c) and (d) correspond to two types of maximal segregation among black and white particles. In (c) they are maximally separated, but present in the space; in 
(d) black particles fully displaced white particles; (e)–(h) chessboard examples of segregated black and white pixels. The images in panel (A) were analysed by our 
algorithm based on eqs (5)–(11)) and corresponding segregation levels as a function of size of field of view (FOV) are given in panel (B). The numerical segregation 
levels (y-axis) are graphically represented by Average FOV as determined by eq (6); Ŝd = 0 both type of particles are present, Ŝd = 1, only one type of particle is 
present in the FOV. The sampling error of algorithm estimated by eq S2 is within the symbol size. 
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is not the same. Also, the two terms in eq (1) are obtained independently 
and their averages are finally subtracted. In this process the information 
about local correlations between the two strains is lost. Moreover, it is 
difficult, if not impossible, to decode the value of SVG to the expected 
ratio of the two strains at certain size scale, which is an important 
quantity in many ecological simulations. Because the reference point to 
put the calculated SVG in a perspective is missing, it is difficult to make 
relative comparisons among different SVG. For all 0 < SVG < 1 one can 
only conclude that SVG values are somewhere between randomly mixed 
sample (SVG = 0) and fully segregated sample (SVG = 1). However, even 
this may not be always true. We tested the algorithm based on eq (1) on 
image (c) in Fig. 1A, which depicts maximally segregated black and 
white particles of pixel size. The obtained calculations showed that at 
size scales much smaller than the image size (246 pix x 246 pix), SVG 
approaches the expected value of 1 (at r = 5 pix SVG = 0.99 ± 0.01), but 
at larger size scales that are however still much smaller than the image 
size, SVG significantly deviates from the expected value of 1 (at r = 50 pix 
SVG = 0.71 ± 0.01). Testing image (b) in Fig. 1A, which depicts mini
mally segregated black and white pixels gave a similar, albeit less pro
nounced problem. At size scales much larger than the pixel sized particle 
size, the SVG is at the expected value of 0 (at r = 50 pix SVG = 0.00 ±
0.01), but at size scales approaching the pixel size, i.e. looking at 
neighbouring bacteria cells, the value of SVG deviates again from 0 (at r 
= 1.5 pix SVG = 0.11 ± 0.01). Due to the described drawbacks, we 
decided to developed different segregation metrics on which we based 
multiscale spatial segregation analysis. 

Briefly, our approach is based on calculating the segregation level in 
the square shaped field of view (FOV) of size d that is randomly placed 
over a digital image. The idea came from microscopy, where an observer 
can change the size of FOV by changing magnification and by moving 
microscopy stage in x and y direction changing the position of FOV. 

2.2. Derivation of segregation measures for multiscale spatial segregation 
analysis 

In this section, we will use simple binary images (Fig. 1A, (a) and (d)) 
depicting cases of minimal and maximal segregation to assist the deri
vation of segregation measures. These images represent the 2D space of 
much bigger size than the size of the two types of particles occupying the 
2D space. In Fig. 1A, (a)–(d) the particles are of pixel size. In this system, 
we define complete segregation as the total absence of one type of 
particle on account of the presence of another type of particle in an 
arbitrary region in an image. The region could be of any shape, but for 
the sake of simplicity, we chose a square with side length d that we call 
the “field of view” (FOV) of size d. This minimal size (dmin) may 
represent the size of a pixel in an image or be as big as whole image 
(dmax). The examples of segregation extremes are shown Fig. 1A. The 
segregation is minimal in image (a) (Fig. 1A), where equal parts of white 
and black particles of pixel size were randomly mixed and the sharing of 
the same area was allowed. On average, both particles are present in the 
FOV in equal portions. The measure sought for segregation should in this 
case display the minimum value. In contrast, the segregation is maximal 
in the image (d), (Fig. 1A), where pixel-sized particles have totally dis
placed the white particles. Therefore, in this image, regardless of the 
scale of observation (for all FOVs of dmin ≤ d ≤ dmax), only one type of 
the particle is present in the FOV. The segregation measure we would 
like to derive should in this case display maximum value for all d. 
Regardless of the segregation case discussed, the segregation measure 
should evaluate the presence or exclusion of both types of particles in 
the FOV. 

In a digital image, the size of an area under consideration is defined 
as number of pixels that comprise the considered area. The smallest unit 
of area is thus 1 pixel and objects smallest than 1 pixel are not visible. If 
the particles are approximately of the same size (e.g. bacterial cells) the 
number of particles in the field of view (FOV) is proportional to the area 
they occupy. Let us say that the two types of particles occupy the areas 

with size a and b, respectively. We can measure the degree of particle 
exclusion in the FOV by the absolute difference of a and b. The signifi
cance of an absolute difference depends on the total area of particles (a 
+ b) in the FOV; therefore, the relative difference is a better measure for 
segregation. This simple segregation measure in the FOV of size d can be 
given as: 

sd =
|a − b|
a + b

(eq 2) 

The sd is 0 if both particles are present in the FOV in equal portions 
and 1 if only one type of particle is present. However, this simple 
segregation measure assumes that the two types of particles in an entire 
digital image are present in equal amounts (i.e. in overall ratio of 1:1), 
but this is often not true. This is important, because if one type of particle 
is more common in a whole image than it is more likely that the same 
particle type will be also dominant in smaller region of the image (i.e. in 
the FOV) and this does not necessarily indicate high segregation. In 
order to ensure the validity of eq (2) for any particle ratio, it is necessary 
to normalize the size of area of particles in the FOV to the size of total 
area of the two types of particles in a whole image, denoted as A and B, 
respectively. In this way we obtain local segregation level defined as: 

Sd =
|a/A − b/B|
a/A + b/B

(eq 3) 

If we move randomly n times over an image with a FOV of size d and 
calculate the local segregation level by eq (3) for i-th FOV (denoted as Sd,i 

in eq (4)), we obtain the arithmetic mean segregation level of the FOV of 
size d, denoted as Sd: 

Sd =
1
n
∑n

i=1
Sd,i (eq 4) 

In a digital image such as a microscopy image, the entire area is not 
always occupied by particles. Hence, some FOVs might contain low 
number of particles or even be empty, while others may contain high 
number of particles. Therefore, we propose that it is better to replace the 
arithmetic mean segregation level, Sd, as a segregation measure with the 
weighted mean segregation level, Ŝd , where weights, wd,i, are the total 
normalized areas of particles (ai /A+bi /B) in the FOV of size d: 

Ŝd =

∑n

i=1
Sd,i wd,i

∑n

i=1
wd,i

(eq 5) 

The segregation level, Ŝd , will be 1 if only one type of particle is 
present in the FOVs, and 0 if both types of the particles are present in 
equal amounts normalized to the total amount of each particle in the 
image (i.e. |a /A − b /B| = 0 in eq (3)). Note that if the FOV is empty, its 
weight wd,i = 0 and therefore empty FOV do not contribute to the 
average. 

To aid the interpretation of the segregation level, it will be useful to 
obtain the typical ratio of the two types of particles in the FOV of size d. 
For example, in a microscopy image of a biofilm composed of two strains 
with an overall ratio of A:B (as determined from whole image), we 
would like to know what is the strain ratio in the FOV of d if the 
segregation level is Ŝd . One can easily envision how the FOVs with Ŝd =

0 or 1 look-like. In case of Ŝd = 0, which means no segregation is pre
sent, the strains in the FOVs will be in the ratio that one expects from 
their total areas (i.e. a:b = A:B); in the case Ŝd = 1, which means 
maximal segregation is present, only one of the two strains will be 
present in the FOV. It is less straightforward to determine the strain ratio 
in the cases with Ŝd between the extreme values of Ŝd . For example, 
what is the strain ratio in the case of Ŝd = 0.5 compared to the ratio in 
more segregated biofilm at Ŝd = 0.6? Let us say that we want to express 
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the ratio of the two strains from the point of perspective of more (or 
equally) abundant strain (as determined from whole image) in the bio
film. In this case the ratio of the two strains in the whole image can be 
expressed as X:1 (with X ≥ 1), where X corresponds to more (or equally) 
abundant strain. In the FOV of size d the corresponding areas of the 
strains are, a’, for more (or equally) abundant strain and area b’ for the 
less (or equally) abundant strain. Assuming that Ŝd (which is weighted 
average of Sd, eq (5)) represents well a typical segregation level in the 
biofilm in the FOV of size d, we can rearrange the eq (3) to the useful 
relation: 

a′

b′ =X
(1 + Ŝd )

(1 − Ŝd )
(eq 6) 

It means that at segregation level ̂Sd present in the FOV of size d, with 
the more abundant strain being X-times more abundant than the other 
strain in the whole image, we can expect the ratio of the two strains to be 
a’: b’. Note that the areas in eq (3) are not fixed by their dominance, 
therefore we used for corresponding areas different symbols in eq (6). 
For above example, when the total abundancies of the two strains in the 
biofilm are 1:1 (i.e. X = 1), we get that the strain ratio is 3 : 1 at Ŝd =

0.5, and the strain ratio is 4:1 at ̂Sd = 0.6, which is ecologically relevant 
difference. The eq (6) can be also interpreted in this way-as the X:1 is the 
ratio of the overall strain abundance (in the whole image), one would 
expect that the same ratio is going to be observed in the considered FOV 
of size d, if no segregation is present. The term (1+ Ŝd )/(1- Ŝd) is telling 
us what will be the change in the expected strain ratio if the segregation 
level is ̂Sd . If no segregation is present (i.e. ̂Sd = 0) the ratio in the FOV is 
just the same as expected ratio (i.e. X:1). For any other segregation level 
(i.e. 0 < Ŝd < 1) the ratio in the FOV (a’: b’) will be increased. 

By calculating the segregation level, ̂Sd , at different d of FOV (sizes of 
the field of view), one can obtain a graph of the segregation level versus 
the FOV size of a particular image (segregation level curves). The 
segregation level curves can be then compared among several binary 
systems (e.g. two or more biofilms, each composed of two different 
strains). In this way it is possible to compare segregation level at 
different sizes of FOV among several binary systems, because the dif
ferences in segregation level among different binary systems can vary 
significantly with the size of FOV. Although this approach gives a very 
good insight into different segregation patterns, sometimes a simpler 
presentation of segregation is sufficient and can be a more convenient 
form of data to use in a subsequent presentation or analysis. For 
example, in an experiment where two different bacterial cultures are 
mixed and their segregation is followed over time under the microscope, 
it may be useful to express segregation level versus time in a simple 2D 
plot. In such cases d, the size of FOV might be redundant. On the other 
hand, the difference among segregation level curves can be dependent 
on d. For example, from large distance the two images of two mixed 
biofilms may appear equally well segregated, but closer inspection re
veals that one biofilm is more segregated than the other. For such cases, 
the segregation in an image described by single number that takes into 
account segregation levels at several distances is required. To obtain 
this, we propose to average segregation level, Ŝd , over all d to give a 
distance-averaged segregation level, which we call the multiscale spatial 
segregation level, MSSL: 

MSSL=
1

dmax − dmin

∫ dmax

dmin
Ŝd d(d) (eq 7) 

The MSSL represents an average segregation level that is hypothet
ically obtained in the FOV of sizes dmin ≤ d ≤ dmax. In this article the 
dmin and dmax always refer to the full range of FOV sizes shown in the 
plots, but in principle one could calculate MSSL also in the narrower 
range. 

The extremes of Ŝd (e.g., for (a) and (d) in Fig. 1A), denoted as Ŝmin
d 

and Ŝmax
d , give MSSLmin and MSSLmax, respectively: 

MSSLmin =
1

dmax − dmin

∫ dmax

dmin
Ŝmin

d d(d) (eq 8)  

MSSLmax =
1

dmax − dmin

∫ dmax

dmin
Ŝmax

d d(d) (eq 9) 

The values of Ŝmin
d and Ŝmax

d are important as they represent segre
gation negative and positive control, respectively. For example, if Ŝd >

Ŝmin
d , it means that the segregation at the spatial scale of d is higher than 

the segregation in a randomly mixed system, and if Ŝd = Ŝmax
d , it means 

that segregation has reached the maximum possible segregation at 
spatial scale of d in a given system. Accordingly, MSSLmax represents the 
maximal multiscale spatial segregation level and MSSLmin the minimal 
spatial segregation level. To take this into account, the MSSL in eq (7) 
has to be compared to MSSLmin and normalized on the range of MSSL, 
which gives a version of MSSL, relative MSSL (rMSSL), corrected by 
segregation extremes: 

rMSSL=
MSSL − MSSLmin

MSSLmax − MSSLmin
(eq 10) 

The corrections assure that if there is no segregation in the system, 
rMSSL = 0 and if the segregation is at maximum, rMSSL = 1. 

Ideally, the segregation level, Ŝmax
d and Ŝmin

d will be for all FOVs of 
dmin ≤ d ≤ dmax 1 and 0, respectively. This gives MSSLmax = 1 and 
MSSLmin = 0; this is, however, possible only if the opposite particles 
either fully displace each other or always share the same pixels. In this 
case, rMSSL in eq (10) becomes equal to the uncorrected variant, MSSL 

in eq (7). To obtain Ŝmax
d and Ŝmin

d , the MSSsegregation first constructs 
synthetic binary images (via simulation) displaying the maximum and 
minimum segregation cases and then calculates segregation levels 
(Fig. S2). For the uncertainty estimation and application of multiscale 
spatial segregation analysis on 3D images, the reader is referred to the 
Supplementary (SI Results, The uncertainty in multiscale spatial 

Segregation analysis, Multiscale spatial segregation analysis in 3D 
digital images). 

Another interesting measure that could be inferred from Ŝd as a 
function of d is a multiscale spatial segregation distance (MSSD), which 
we define as: 

MSSD=
1

Smax

∫ dmax

dmin
Ŝd d(d) (eq 11)  

where Smax = 1, regardless of the distance. By the division of the in
tegral by Smax one obtains a distance. This distance can be interpreted 
as the distance over which Ŝd = 1 (i.e. maximal segregation level), if we 
theoretically compact all segregation levels, Ŝd , from dmin to dmax to 
the distances from dmin to MSSD. In the hypothetical image where the 
overall abundance of the two particles is equal, the MSSD approximately 
matches the size of homogenous hypothetical aggregates (patches 
composed of only one type of the particle) distributed without any gaps 
between them. These aggregates may contain either one type of particle 
or the other, but not both of them. For samples with higher level of 
segregation, one expects larger aggregates composed of only one type of 
particles. A good example are the chessboards in Fig. 1 with corre
sponding MSSD listed in Table S1. Note that calculated MSSD are slightly 
lower than true size of the squares, which is because some of the 
randomly placed FOVs with d > 1 pix contain both types of particles, i.e. 
have Sd < 1, thereby decreasing Ŝd (eq (5)) and hence MSSD (eq (11)). 

Equations (7)–(11) are dependent on the choice of dmin and dmax. 
Idealy, dmax would extend into infinity, but in praxis it has to be limited 
to the maximal size of FOV, which is usually the size of the investigated 
image. On the other hand, the choice of dmin that signifies the smallest 
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size of FOV where the segregation levels are evaluated, should be such 
that the optical information in the FOV will predominantly come from x, 
y plane and that it will not go below the resolution of microscope in x,y 
plane. This means in 2D images of thin microscope specimens, where the 
bacteria are in single layer dmin should not go below the optics resolu
tion. In thick specimens the situation is more complicated. Firstly, 
because it can happen that the sample is too thick, and deepest layers of 
the biofilm cannot be optically accessed and secondly, all of the 
collected information in the 2D FOV contains not only information 
coming from x,y plane of the biofilm, but also some information coming 
from z-axis. In this case it is advisable to use confocal microscope or 
similar, to reduce out of plane light. However, even in this case, due to 
the intrinsic imperfection of the confocal systems the light in the 
confocal 2D image does not come from perfectly thin optical slice. This 
slice has some finite thickness, usually referred to as optical slice 
thickness. Therefore, if ̂Sd is not to be dominated by segregation in the z- 
axis, we suggest that dmin should not go below optical slice thickness 
(see Supplementary information, Multiscale spatial segregation analysis 
in 3D digital images for more details). Otherwise, the interpretation of 
Ŝd as a function of size d of FOV will become more complicated. In the 
case the thick samples are observed with non-confocal system, the op
tical slice thickness cannot be defined and in the FOV light from several 
planes will be collected, which makes the interpretation of the results 
more difficult. Without any knowledge on how light from different 
planes contributes to the observed image, one can still say that limiting 
dmin to specimen thickness should assure that Ŝd will not become 
dominated by segregation in z-direction. Nevertheless, in all thick 
specimens the evaluation of areas of particles will have some errors, 
because of the 2D projections of finite volumes of observed optical slices. 
However, as long as the errors are equally affecting both particles the 
segregation levels as determined by eq (3) should not be greatly affected. 
For example, if a and A or b and B are both equally inflated, the Ŝd does 
not change. 

When utilizing an imaging device with limited resolution and a 
detection threshold to observe systems comprised of small particles (e. 
g., when observing weakly fluorescent bacteria with a typical stereo
microscope), additional challenges may emerge. The estimation of 
particle counts within the field of view (FOV) may result in either un
derestimation or overestimation. When these deviations occur in 
opposite directions for the two types of particles, it can have a sub
stantial impact on the accuracy of ̂Sd . For example, the observed patch in 
the biofilm can appear as being comprised of red bacteria only, although 
the green bacteria are present. However, they may go undetected due to 
their lower quantity and dispersion within the same cluster. At the same 
time, there is a possibility of overestimating the count of red bacteria, as 
the imaging device’s limited resolution may not capture empty spaces 
effectively. Therefore, unless the assumption that most of the bacteria in 
the clusters are visible to the imaging device and that the bacterial 
density at size scales below the resolution limit of the imaging system is 
the same in most of the clusters throughout the FOV can be made, the 
segregation analysis shall not be performed. 

We implemented our approach in MSSegregation analysis software 
(for details see Methods, Macro implementation), the workflow of 
analysis is depicted in Fig. S2. The main output parameters (based on eq 
(3) to eq (11)) of the segregation analysis and their brief description are 
summarized in Table 1. For advanced users, the auxiliary segregation 
measures and statistics (based on eqs S4 to S6) are also calculated by the 
software. 

2.3. Validating multiscale spatial segregation analysis by application to 
synthetic images 

To validate the multiscale spatial segregation analysis, eqs (5)–(11) 
were implemented in an algorithm encoded in the imageJ Macro lan
guage (see Methods, Macro Implementation) and applied to synthetic 

images (Fig. 1A) with an easy-to-predict outcome. The black pixel-sized 
particles completely excluded the white pixel-sized particles from space 
of the image [(Fig. 1A), (d)]. As expected in Section 2.1., one can observe 
in Fig. 1B the segregation level, Ŝd = 1, regardless of the spatial scale of 
the observation (d of FOV). On the other hand, in a case where none of 
the particles can exit the system, the segregation maximum will have a 
different appearance (Fig. 1A), (c). Here, white and black pixel-sized 
particles coexist at the spatial scale of the whole image (i.e., when the 
FOV is of dmax) and both types of particles are present in equal (relative) 
numbers. Correspondingly, the ̂Sd at dmax = 0 (Fig. 1B). However, when 
we turn to smaller spatial scales (smaller d of FOV), one of the two type 
of particles becomes quickly dominant and, as expected, segregation 
increases rapidly. Very soon, FOVs containing only one type of particle 
become dominant and segregation at this spatial scale has to approach 1, 
as can indeed be observed in Fig. 1B. On the contrary, the segregation 
level has to be significantly lower in Fig. 1A (b), where image (c) was 
pixel randomized and overlapping of opposite pixels was not allowed. 
Here, as predicted, the segregation level, Ŝd , is close to zero for all 
d (FOV sizes), except for d approaching particle size (pixel in this case), 
where Ŝd rapidly increases to 1 (Fig. 1B). When overlapping is 
permitted, as is the case in image (a), the Ŝd correctly drops further than 
is the case in image (b). At d = 1, where the size of the FOV is 1 × 1 pixel, 
half of the FOV contains either black or white pixel particle (Sd = 1) and 

Table 1 
Main output parameters of segregation analysis by MSSegration package running 
in Fiji-ImageJ.  

Output 
parameter 

The name in MSSegregation 
software 

Brief description 

Ŝd vs d segregation level in your 
image (Sd^) 

Shows how weighted mean 
segregation level (eq (5)) varies 
with the size d of field of view 
(FOV) in the sample image (e.g. 
microscopy image of the biofilm). 

Ŝmin
d vs d segregation level in min seg 

image (Sd^min) 
Shows how weighted mean 
segregation level varies with the 
size d of field of view (FOV) in the 
simulated minimum segregation 
case image. 

Ŝmax
d vs d segregation level in min seg 

image (Sd^max) 
Shows how weighted mean 
segregation level varies with the 
size d of field of view (FOV) in the 
simulated maximum segregation 
case image. 

X:1 ratio of the two types of 
particles 

Tells what is the overall ratio (in the 
whole image or stack of images) 
between the two types of particles. 

Sd vs x,y local Sd (unweighted) 
together with coordinates 

Shows how local segregation level 
(eq (3)) in the FOV of size d varies 
across the sample image. 

MSSL multiscale spatial 
segregation level (MSSL), 
your image 

A single value quantity (eq (7)) that 
is an average of Ŝd over all d for the 
sample image. 

MSSLmin multiscale spatial 
segregation level (MSSL), 
min image 

A single value quantity (eq (8)) that 
is an average of Ŝd over all d the 
simulated minimum segregation 
case image. 

MSSLmax multiscale spatial 
segregation level (MSSL), 
max image 

A single value quantity (eq (9)) that 
is an average of Ŝd over all d for the 
simulated maximum segregation 
case image. 

rMSSL relative multiscale spatial 
segregation level (rMSSL- 
your image) 

A single value quantity that gives 
MSSL relative to MSSLmin and 
MSSLmax; it runs from 0 to 1 (eq  
(10)). 

MSSD multiscale spatial 
segregation distance (MSSD) 

A single value quantity (eq (11)) 
that gives an idea of the size of 
hypothetical aggregates composed 
of only one type of particle in the 
sample image.  
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half of the FOV contains black and white pixel particle (Sd = 0), giving 
the predicted segregation level, Ŝd = 0.5 (Fig. 1B). The challenging tests 
are more complex chessboard images of (e)–(h) in Fig. 1A. As can be 
seen in the graph in Fig. 1B, our approach correctly predicts the chess
board segregation levels, ̂Sd ; with smaller chessboard squares, the size of 
the FOV, where Ŝd of pixel-sized particles starts to rapidly increase, 
decreases. Accordingly, the MSSL, (eq (7)), which is the size of the FOV- 
averaged segregation level, decreases in the direction of the decreasing 
size of the chessboard squares (Table S1). As the chessboard squares 
consist of several basic pixel-sized particles that are clustered together, 
the MSSL does not reach the MSSL value for the minimal segregation 
case. Also, the MSSL of the maximal segregation case is not reached, 
because in image (e), i.e., the 2 × 2 chessboard, the mixing is still better 
than in the case of image (c), where pixel-sized particles minimized 
contacts in order to avoid each other. The relative MSSL (eq (10)), which 
takes explicitly into account the maximum and minimum segregation 
cases and is denoted rMSSL (Table S1), tells us what the multiscale 
segregation level is on a scale from 0 to 1. As expected, the segregation in 
the 2 × 2 chessboard with rMSSL = 0.72 ± 0.05 is relatively close to the 
maximum segregation, where the black and white pixel particles are not 
allowed to exclude each other from the space (image (c) in Fig. 1B). 
Doubling the number of chessboard squares roughly halves the rMSSL. 
Also, as expected, MSSD (eq (11)), which corresponds roughly to the size 
of single square, halves by doubling the number of chessboard squares. 
Overall, the proposed multiscale spatial segregation analysis based on eq 
(5) to eq (11) gave the expected results. 

To further validate the new approach, we have applied it to the 
actual cases of segregation. The first case was a real-life scene with a 
predictable multiscale segregation analysis outcome and is given in 
Supplementary, SI Results, Mixing of oats and raisins, Fig. S1. The re
sults were entirely consistent with our expectations, showing that 
increased mixing of oats and raisins resulted in reduced segregation 
levels. Therefore, we went on testing the biologically relevant cases 
given in the next sections. 

2.4. Biofilms of two bacterial strains 

The evaluation of cell segregation in biofilms composed of two flu
orescently labelled bacterial strains by visual observation alone repre
sents a challenge (Fig. 2A). First, the segregation level may change with 
the scale of observation, i.e. with the size of field of view (FOV), as for 
example in Fig. 1B. Second, a biofilm confocal image typically comprises 

Fig. 2A. Multiscale spatial segregation analysis of two strain biofilms, example 1. 3D reconstructions presented as maximum intensity projections of biofilms formed 
by two differently labelled bacterial strains based on confocal scanning laser microscopy (CLSM) image slices are shown on top. The green and red color represents 
B. subtilis strain constitutively expressing YFP and mKate fluorescent protein, respectively. 15-25 image slices (forming a CLSM stack of image slices) with optical slice 
thickness of 14 µm were acquired for each biofilm. The middle image slice in the CLSM image stack representing the FOVs of size (d) of 1200 µm x 1200 is shown 
together with additional zoom in (120 µm x 120 µm). The corresponding image of simulated minimal and maximal segregation of the two strains in the biofilm is 
shown. For simulation of maximal segregation, we assumed that only one strain is present in the slice of CLSM stack (in this case the red, mKate strain, but result 
would be the same for yfp strain). The contour plots show local segregation level Sd at d = 120 µm in the space of the middle slice (1200 µm x 1200 µm). 

Fig. 2B. The CLSM images of B. subtilis biofilms in Fig. 2A were analysed by our 
algorithm based on eqs (5)–(11) and corresponding segregation levels as a 
function of size of field of view (FOV) are presented for all bacterial strain 
combinations. The curves of simulated minimal and maximal segregation cases 
for the two bacterial strain combinations do not differ significantly, therefore 
only one max and min segregation curve is presented. The sampling error is 
within the symbol size. The curves shown represent one of the three replicates 
shown as averages in Supplementary information of [14]. 
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of 15–25 image slices and the cell distribution can vary from slice to 
slice. We compared here simulated minimal and maximal segregations 
to segregations in experimental microscopic images (Fig. 2A) of floating 
biofilms composed of two bacterial strains labelled with either Yellow 
fluorescent protein (YFP) or Red fluorescent protein (mKate2). Visual 
inspection of the two images suggests that the strains are neither entirely 
segregated nor perfectly mixed (Fig. 2A), but without multiscale spatial 
segregation analysis (of all image slices), no quantitative descriptor of 
segregation can be given. Therefore, for example, it is not possible to 
determine which of the two biofilms is more segregated. Performing 
multiscale spatial segregation analysis gives a higher rMSSL value for the 
strain pair PS-216 mKate2 + PS-196 YFP compared to PS-216 YFP + PS- 
216 mKate2, meaning the segregation is stronger in the first pair 
(Table S3) and comparable to the value obtained by mixing oats and 
raisins at t3 (Fig. S1, Table S2). At t3, oats and resins were mixed, but 
have not yet reached maximal mixing, i.e., rMSSL = 0. If the two bio
films were to be interpreted in the terms of hypothetical patch sizes 
belonging exclusively to one of the two strains, the patches of PS-216 
mKate2 + PS-196 YFP would be at MSSD = (300 ± 10) μm, which is 
larger than the patches of PS-216 YFP + PS-216 mKate MSSD = (150 ±
10) μm. One of the advantages of our approach is also that we can 
spatially assign the segregation levels, as shown in contour plots 
(Fig. 2A). The local segregation levels, as determined by eq (3) in the 
FOV of size d = 120 μm were positioned in the plot according to the 
coordinates of the centre of the many FOVs randomly placed over the 
image (slice). In the analysed example slice, it can be seen that segre
gation has patchy distribution in both strain pairs, but the values are 
higher in strain pair PS-216 mKate2 + PS-196 YFP, indicating that at d 
= 120 μm the average segregation is stronger in this strain pair. As can 

be seen in Fig. 2B, the latter holds for all the sizes of FOV. As expected, 
the segregation in both biofilms is high at small d and decreases towards 
higher d. At the smallest observable FOV of size corresponding to a few 
bacteria (dmin = 7 μm), the biofilms PS-216 mKate2 + PS-196 YFP and 
PS-216 YFP + PS-216 mKate2 have Ŝd = 0.58 and 0.53, respectively. 
This indicates a high segregation level as most FOVs will have high 
dominance of one of the two strains in the biofilm and that the neigh
bouring cells will be most likely of the same strain. Although the 
segregation level and strain ratio in both biofilms is similar at small 
d (according to eq (6), with X = 1, the strain ratio in PS-216 mKate2 +
PS-196 YFP is 3.8:1 and in PS-216 YFP + PS-216 mKate2 is 3.3 : 1, for a 
simplified graphical interpretation of Ŝd , see y-axis of Fig. 1B) the dif
ference in segregation level grows with d (slopes of Ŝd curves of both 
biofilms are correspondingly different, Table S3). For example, at d =
500 μm the biofilms PS-216 mKate2 + PS-196 YFP and PS-216 YFP + PS- 
216 mKate2 have ̂Sd = 0.22 and 0.06 (corresponding to the ratios of 1.6 : 
1 and 1.1 : 1), respectively. 

We next compared two mixed biofilms where the distinction be
tween the two segregation patterns is less straightforward (Fig. 3A). The 
spatial segregation analysis gives an rMSSL value for both biofilms of 
around 0.23 ± 0.03 (Table S3). This indicates the average segregation 
level over all distances is similar in both strains, but as with all averages, 
the distribution of values comprising the average might be fully different 
and therefore this does not necessarily mean the two segregation pat
terns are the same. That this is indeed not the case can be deduced from 
different MSSD and even more from strongly different average slopes of 
Ŝd curves (Table S3). Even better insight can be gained by comparing the 

Fig. 3A. Multiscale spatial segregation analysis of two strain biofilms, example 2. 3D reconstructions presented as maximum intensity projections of biofilms formed 
by two differently labelled bacterial strains based on confocal scanning laser microscopy (CLSM) image slices are shown on top. The green and red color represents 
B. subtilis strain constitutively expressing YFP and mKate fluorescent protein, respectively. 15–25 image slices (forming a CLSM stack of image slices) with optical 
slice thickness of 14 μm were acquired for each biofilm. The middle image slice in the CLSM image stack representing the FOVs of size (d) of 1200 μm x 1200 is shown 
together with additional zoom in (120 μm × 120 μm). The corresponding image of simulated minimal and maximal segregation of the two strains in the biofilm is 
shown. For simulation of maximal segregation, we assumed that only one strain is present in the slice of CLSM stack (in this case the red, mKate strain, but result 
would be the same for yfp strain). The contour plots show local segregation level Sd at d = 120 μm in the space of the middle slice (1200 μm × 1200 μm). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Ŝd curves directly (Fig. 3B) where it can be seen why it is important to 
quantify the segregation level, Ŝd , as a function of size of the FOV and 
not determine segregation level just at 1 d. Although the overall segre
gation levels (rMSSL) of the two compared biofilms are similar, their Ŝd 
curves are markedly different (Fig. 3B), indicating that segregation in 
these biofilms differs significantly and depends on the scale of obser
vation. Comparison of Ŝd at the FOV of dmax (size of the image – 1220 
μm in this case) shows that the segregation at this spatial scale in the 
biofilm PS-68 YFP + PS-68 mKate2 is stronger than in biofilm PS-218 
YFP + PS-68 mKate2. A segregation level, Ŝd , of 1 at dmax means 
that in all slices of the particular biofilm, we detect only one strain, 
whereas 0 indicates that in all slices both strains are present, as expected 
from their overall amounts in the biofilm. Therefore, a deviation from 
Ŝd = 0 at dmax indicates that in some slices one strain is more dominant 
than the other. At the intersection of both segregation curves at about a 
FOV of size d = 300 μm, the segregation level in both biofilms is the 
same (Ŝd = 0.25). This value of Ŝd indicates that at these spatial scales 
one of the strains in the biofilm will be slightly dominant over the other 
(according to eq (6), the two strains would be 1.7 : 1). When going to 
smaller FOVs, the differences between segregation in the two biofilms 
become more prominent (Fig. 3B). Inspection of the Ŝd of biofilms at the 
FOV size of tens of bacteria (e.g., d = 20 μm) indicates that the segre
gation at this spatial scale is higher in biofilm PS-218 YFP + PS-68 
mKate2 compared to PS-68 YFP + PS-68 mKate2. At the smallest 
observable FOV of size corresponding to a few bacteria (dmin = 7 μm), 
the biofilm PS-218 YFP + PS-68 mKate2 has ̂Sd = 0.75, indicating a high 
segregation level as most FOVs will have high dominance of either PS- 
218 YFP or PS-68 mKate2 (according to eq (6), the strain ratio is 7 : 
1). On the other hand, biofilm PS-68 YFP + PS-68 mKate2 has Ŝd = 0.4, 
indicating a less prominent dominance of one strain over the other 
(according to eq (6), the strain ratio is 2.3 : 1). The segregation between 
the two biofilms can be further investigated by the spatial distribution of 
local segregation levels, Sd. In the example given in Fig. 3A, Sd at d =
120 μm of the confocal image slice representing the cross-section of the 
biofilm in the middle of its thickness were plotted on the corresponding 

contour plots. The variability and the general values in Sd are much 
higher in the biofilms PS-218 YFP or PS-68 mKate2 compared to the 
biofilms of PS-68 YFP + PS-68 mKate2, which is in agreement with the 
assessment that the segregation patterns in the two biofilms differ. 

From the above analysis we see that it is possible to quantitatively 
differentiate segregation levels of strains in biofilms at different scale of 
observation (i.e., the size of FOV) and that these differences are 
dependent on the spatial scale of observation. 

2.5. Analysis of segregation in well-mixed sonicated biofilm suspensions 
of two bacterial strains 

The biofilms composed of two bacterial strains exhibited clear spatial 
dependant segregation (Fig. 3B). To further challenge the proposed 
multiscale spatial segregation approach and show its sensitivity, we 
disintegrated the two-strain biofilms by sonication and then treated cell 
suspensions by vortex stirrer to improve the mixing of the two bacterial 
strains. Both suspensions were inspected by microscopy (Fig. 4A) and 
the digital images acquired were subjected to multiscale spatial segre
gation analysis (Fig. 4B and Table S4). The segregation level curves 
(Fig. 4B) for sonicated biofilms drastically changed compared to intact 
biofilm segregation curves (Fig. 3B), and became, as expected, closely 
similar to the minimal segregation level curve (Fig. 4B), indicating 
improved mixing of the two bacterial strains after sonication. Note that 
without having the minimal segregation curve, which is the simulated 
negative control, one could wrongly conclude that the segregation of Ŝd 
= 0.46 at d = 13 μm is significant. The segregation level curve of the 
strain pair PS-68 YFP + PS-68 mKate2 suspension closely resembled the 
minimum segregation level curve of complete mixing, while the strain 
pair PS-218 YFP + PS-68 mKate2 suspension showed a slight deviation 
from it (Fig. 4B). Accordingly, the rMSSL of the strain pair PS-68 YFP +
PS-68 mKate2 was 0.005 ± 0.007 and rMSSL of the strain pair PS-218 
YFP + PS-68 mKate2 was 0.026 ± 0.010, indicating a significant dif
ference. This was confirmed by calculating a t-test for ̂Sd of the FOV with 

d from 30 to 1000 μm (p < 0.03 for all ̂Sd ), where the difference with Ŝmin
d 

was most pronounced (Fig. 4B). This indicates that the cells of the dis
integrated PS-218 YFP + PS-68 mKate2 biofilm are not entirely mixed, 
as one would expect. A possible explanation is that some cells of the 
biofilm of strain pair PS-218 YFP + PS-68 mKate2 remained physically 
connected (via exopolymers, for example) after sonication. The largest 
d with the segregation level, Ŝd , that significantly differs from Smin

d (the 
segregation level in randomly mixed sample) was approximately at d =
1000 μm. Therefore, the maximal length of the physical connections 
preventing perfect mixing corresponds to d = 1000 μm. Note that this is 
the largest d from the analysed points, where Ŝd can be different than 0; 
Ŝd at dmax, which is 1280 μm in this case, will be in 2D images always 0, 
because from the FOV of size of dmax the overall strain abundances are 
obtained and therefore a = A and b = B, yielding Ŝd = 0 in eq (3). 
Therefore, it is possible that if we had acquired the microscopy image 

with even larger FOV (dmax > 1280 μm) the Ŝd > Ŝmin
d would hold even 

for d > 1000 μm. As intercellular connections likely prevented maximal 
mixing, it can be concluded that harsher sonication conditions should 
have been used to fully disintegrate the PS-218 YFP + PS-68 mKate2 
biofilm. 

The results of the proposed MSSegregation analysis approach agrees 
with predicted drop in segregation in disintegrated vs. native two-strain 
biofilms. Also, small differences in segregation level in well-mixed cul
tures that are otherwise difficult to spot can be detected by this 
approach. A possible misinterpretation can be avoided by comparing 
obtained segregation levels to segregation extremes in controls. 

Fig. 3B. The CLSM images of B. subtilis biofilms in Fig. 3A were analysed by our 
algorithm based on eqs (5)–(11) and corresponding segregation levels as a 
function of size of field of view (FOV) are presented for all bacterial strain 
combinations. The curves of simulated minimal and maximal segregation cases 
for the two bacterial strain combinations do not differ significantly, therefore 
only one max and min segregation curve is presented. The sampling error is 
within the symbol size. The curves shown represent one of the three replicates 
shown as averages in Supplementary information of [14]. 

I. Dogsa and I. Mandic-Mulec                                                                                                                                                                                                                



Biofilm 6 (2023) 100157

9

2.6. Time-efficiency of multiscale spatial segregation analysis 

The time taken on the AMD F6 (3.2 GHz)-based PC (2012 build), 
using a single core CPU to obtain segregation level of biofilm microscopy 
images, was about 6 min for an 18 slice-CLSM stack. To simulate cor
responding segregation extreme images and calculate their segregation 
level curves (segregation extreme curves) took 13 min. Although one 
can run parallel instances of FIJI-ImageJ and use the multi-core abilities 
of most modern computer processors in order to process several stacks of 
images in parallel, the question arises, if the introduction of new 
segregation metrics slowed down the analysis process and would have 

not been better to find a way to improve and build our MSSegregation 
approach around existing van Gestel approach (eq (1)). To clarify this, 
we benchmarked the cores (i.e. eq (1) and eq (5)) of the two approaches 
on the same biofilm images (one slice of the CLSM stack in Fig. 3A) by 
calculating segregation levels at two different d (Fig. 5). In general the 
values of the two measures correlated well, although the relative dif
ferences increased with d (Table S5). However, at the smaller d our 
approach is more than two times faster and at the larger d for more than 
30 times faster. Note that in the Van Gestel approach the circle of 
dimeter d is placed on random focal cells, therefore the list of foreground 
pixels (representing the cells) with respective x and y coordinates is 
needed as a first step in application of Van Gestel approach. Because we 
believe that imageJ is not very time efficient in extracting these co
ordinates from the image and other more efficient approaches exist, we 
did not include the time taken for this extraction in benchmarking of 
Van Gestel approach. Nevertheless, the differences shown in Fig. 5, 
would have been even greater if the time taken for conversion of fore
ground pixels to x and y coordinates was taken into account. 

3. Discussion 

The new approach to the analysis of the multiscale spatial segrega
tion in digital images was successfully tested on synthetic and real 
digital images of binary mixtures. Also, the synthetic chessboard images, 
where classical segregation measures such as the Duncan Index of 
dissimilarity [22] fail to distinguish different degrees of segregation 
present [23], were successfully analysed by the new approach. When 
analysing complex biological mixtures, such as two species biofilms, the 
multiscale spatial segregation can reveal and quantify the degree of 
segregation and give information on how segregation correlates with the 
scale of observation. It is known that bacteria can interfere with each 
other either through physical displacement or actively, by interference 
competition [24], applying mechanisms such as cell contact inhibition 
[24–26], diffusible extracellular toxins [27] or signals [28]. All these 
phenomena can span the spatial scale from micrometres to centimetres 
[29]. In such cases, the multiscale spatial segregation analysis is very 
useful, as one can distinguish between different segregation levels at 

Fig. 4A. Multiscale spatial segregation analysis of biofilms of two B. subtilis strains that were disintegrated to individual bacterial cells by sonication; the sonicated 
samples were imaged by confocal scanning laser microscopy (CLSM); two sets of images presenting two strain mixtures are shown; the microscope images of samples 
are presented as full size images of 1300 μm × 1300 μm and zoom-in images of 100 μm × 100 μm; the corresponding images of simulated minimal and maximal 
segregation of the two bacterial strains in the biofilm is shown. The slice optical thickness in the microscopy hardware and sample thickness exceeded the size of two 
individual cells thereby permitting individual cells to overlap (yellow). Therefore, for simulation of minimal segregation, overlapping of individual cells was allowed. 
For simulation of maximal segregation, we assumed that strains cannot exclude each other out of the image. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 4B. The CLSM images of disintegrated biofilms of two B. subtilis strains to 
individual bacterial cells and corresponding simulated segregations in 
Figure 4A were analysed by our algorithm (eqs (5)–(11)). Corresponding 
segregation levels as a function of size of field of view (FOV) are presented for 
the two bacterial strain combinations. The sampling error is within the sym
bol size. 
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different spatial scales and also quantify them. By introducing multiscale 
spatial segregation level (MSSL) we were able to express the spatial scale 
dependant segregation in an image by a single number. We have shown 
that (simulated) positive and negative controls for segregation extremes 
are important for proper interpretation and included them quantita
tively in the relative multiscale spatial segregation level (rMSSL). These 
concepts were not present in previous advanced approaches for studying 
segregation in biofilms [17,18,21]. 

Our approach has a number of advantages. The segregation level of 
each subspace (i.e. FOV) in an image can be directly assessed and 
compared to what an observer sees. From the segregation level, one can 
deduce the ratio of the two strains in the FOV (eq (6)) aiding the 
interpretation. Furthermore, one can obtain a distribution of segregation 
levels across the image. All of these is not possible, when applying the 
method by van Gestel (eq (1)), because the focal cells of the respective 
strains are randomly and independently selected across the whole 
image. In this process the local spatial correlation among strain 1 and 
strain 2 is lost. This is also likely the reason why at larger d the number of 
evaluated subspaces (FOVs or circles) to obtain the same coefficient of 
variation is significantly smaller in our approach compared to van Gestel 
approach. The latter approach is additionally slowed down by using 
circles, which are computationally more demanding than square shaped 
FOVs. 

Currently, our approach is limited to the segregation analysis of only 
two components (e.g. biofilms of two species), which means that several 
species biofilms, as often found in nature, cannot be analysed by it. 
However, in the future, it might be possible to extend the approach to 
more species. For example, adding a third species, means that the 
segregation can now exist between three different pairs of species. 
Accordingly, the eq (3) can then be adopted to take into account all three 
species pairs. 

We have derived quantitative and easy-to-interpret measures for the 

multiscale spatial segregation analysis of digital images and imple
mented them into an easily applicable algorithm that solves the draw
backs of existing approaches for segregation analysis in biofilms. The 
algorithm, implemented in freely available software, calculates the 
segregation levels of two components in a digital image as a function of 
the spatial scale of observation (i.e., size of field of view). Based on the 
images analysed, the algorithm also simulates maximal and minimal 
segregation cases that present negative and positive controls in our 
analysis, which further improves the objectiveness of the proposed sci
entific approach and prevents possible misinterpretations. The appli
cation of the multiscale spatial segregation analysis is not restricted to 
the examples presented: mixed species biofilms, bacterial suspensions or 
oats and raisins mixtures. It can be applied whenever the quantification 
of segregation level or mixing efficiency of two components is required 
and digital images of such a binary system can be obtained. 

4. Methods 

4.1. Macro implementation 

The algorithm to calculate different segregation measures (eq (1) to 
eq (11)) was implemented in ImageJ macro language using the ImageJ 
(FIJI) environment [30,31], which is an open-source microscopy image 
processing software. It has multiple built-in functionalities and, most 
importantly, it is compatible with the majority of microscopy data 
output formats thanks to the BioFormats plug-in Ref. [32]. Our analysis 
is performed by custom macros (Fig. S2), comprising the macro package 
MSSegregation (see Supplementary, SI Methods, Macro implementation 
and see user manual for details and examples available at https://gith 
ub.com/IztokD/MSSegregation-package). 

4.2. Acquisition of example images and macro settings 

4.2.1. Synthetic images for testing 
The maximum segregation images (Fig. 1) and chessboard images 

were drawn in ImageJ (FIJI) environment. The settings for macro 
package MSSegregation are given in Supplementary information (SI 
Methods, Acquisition of example images and macro settings). 

4.2.2. Biofilms of two bacterial strains 
The biofilms containing two bacterial strains each constitutively 

expressing fluorescent proteins (green – YFP; red – mKate2; Fig. 3A, 
Table S6) were grown in 30-mm, glass-bottom petri dishes. After over
night incubation, when the biofilm in the form of a pellicle floating on 
the interface air/growth medium was mature, the growth medium was 
removed by syringe. The fluorescence images of the biofilms were ac
quired by inverted confocal laser scanning microscopy Axiovsion Z1, 
LSM800 (Zeiss, Germany), using EC Plan-Neofluar 10x/0.30 Ph 1 
objective and two laser channels: a 488 nm laser to acquire green 
fluorescence and a 561 nm laser to acquire red fluorescence. The pinhole 
size for the green channel was set to 1.0 AU and the red channel to 1.2 
AU. The frame time was 3.7 s, averaging was set to 4 and 930 × 930- 
pixel single frame size. The mosaic function of Zen 2.3 (Zeiss, Germany) 
was used for 2 × 2 frame acquisition. The stitched image of 1960 × 1960 
pixels covered a FOV of size 1.2 mm × 1.2 mm. Slicing was set to half of 
the Nyquist distance, which was 6 μm. 

To improve quality and resolution, the confocal laser scanning mi
croscopy images were single pixel filtered and deconvolved using the 
Tikhonov-Miller algorithm applied in DeconvolutionLab2 application 
[33], with artificial point spread function as obtained by point spread 
function (PSF) generator application [34], both running in FIJI-ImageJ 
environment [31]. Images were then thresholded by the following 
procedure: we applied the ImageJ Li thresholding algorithm [35] and 
then checked if the thresholding was appropriate. In some instances 
manual correction was needed as not all the bacteria in the stack were 
above the suggested threshold. It should be noted that there is no 

Fig. 5. Computational time required to calculate segregation level in biofilm 
microscopy image (1946 × 1946) using MSSegregation algorithm (eq (5)) or 
algorithm described by Van Gestel et al., 2015 (eq (1)); d is the size of the 
square field of view (FOV) (MSSegregation) or diameter of the circle (Van 
Gestel). In MSSsegration, the local segregation level (of two particles, e.g. two 
bacterial strains, 1 and 2) is calculated in each FOV that is randomly placed 
over the image, the average of local segregation levels presents segregation 
level at certain d; in Van Gestel method the segregation level is defined as the 
difference of average relative frequencies of the strain 1 around the focal cell of 
strain 2 and the average of relative frequencies of the strain 1 around the focal 
cell of strain 2 calculated within the circles of diameter d placed over random 
focal cells. The n, number of surveyed FOV or circles was adjusted to obtain 
segregation levels with the same coefficients of variations (at d = 30 pixel CV =
1%, n(MSSegregation) = 5000, n(Van Gestel) = 5000; at d = 300 pixel, CV =
1.5%, n(MSSegregation) = 2000, n(Van Gestel) = 10000). 

I. Dogsa and I. Mandic-Mulec                                                                                                                                                                                                                

https://github.com/IztokD/MSSegregation-package
https://github.com/IztokD/MSSegregation-package


Biofilm 6 (2023) 100157

11

universal threshold approach that will give in all cases optimal result 
[36] and that the choice of particular threshold method can influence, as 
with many other microscopy image analysis, the output of the method 
[37]. Although the segregation level as calculated by eq (3) has same 
tolerance against over or under estimation of the particle areas (if a and 
A or b and B are both equally inflated, the Ŝd does not change), larger 
deviations can still impact the Ŝd . For example, by setting the threshold 
too high, one can artificially create more empty space increasing the 
likelihood that only one type of the particle will be present in FOV, 
which increases the calculated segregation levels. Therefore, it is 
advisable that the users follow the same chosen threshold and denoising 
protocol throughout their data analysis in order to keep the possible 
systematic error constant within the experiment and assure valid rela
tive comparisons among biofilms. 

The thresholded images of both bacterial strains comprising the same 
biofilm were converted into a binary format (pixel value of 255 means 
the pixel belongs to particular strain, 0 it belongs to empty space or to 
the other strain), which served as an input for Sim_seg_extremes and 
MSS_calc macros. The dmin corresponded to half of the optical slice 
thickness of original (no deconvolution) images (≈6 μm) and dmax to 
1.2 mm. 

For multiscale spatial segregation analysis, the sampling factor in 
macro MSS_calc was set to 0.005 (default value), enabling the evaluation 
of around 10,000 randomly placed FOVs at dmin The standard error of 
the segregation level was at all sizes of FOV <2%. The resolution factor 
was set to 0.75 (default value), giving a range of 22 points on a graph of 
segregation level vs. size (d) of FOV. For simulation of the minimal 
segregation, the bacterial cell was assumed to be a circle 1.8 μm in 
diameter, which corresponded well to the sizes determined in the son
icated samples, from which we could resolve the size of the individual 
cells (Fig. 3B). The simulated cells were randomly distributed in the 
biofilm of the same shape as original, and overlap was allowed. For 
maximal segregation case, it was assumed that in each image slice only 
one strain was present and that shape of the original biofilm was 
preserved. 

4.2.3. Sonicated biofilms suspensions of two bacterial strains 
The two-strain biofilms were harvested from a growth medium and 

transferred to Eppendorf tubes, where they were sonicated with an MSE 
150 Watt Ultrasonic Disintegrator Mk2 equipped with exponential 
probe for 5 s at an amplitude of 15 μm. The slides of the bacterial sus
pension obtained were then observed under inverted confocal laser 
scanning microscopy. 

The slides of sonicated bacterial biofilms were observed using an 
Axiovsion Z1, LSM800 microscope (Zeiss, Germany), with a LD Plan- 
Neofluar 20x/0.4 Korr M27 objective and two laser channels – a 488 
nm laser to acquire green fluorescence and a 561 nm laser to acquire red 
fluorescence. The pinhole size for green channel was set to 1.0 AU and 
the red channel to 1.2 AU. Frame time was 3.7 s, averaging was set to 4 
and a 948 × 948-pixel frame size was set. The mosaic function of Zen 2.3 
(Zeiss, Germany) was used for 4 × 4 frame acquisition. The stitched 
image of 3972 × 3972 pixels covered a FOV of sizes 1.2 mm × 1.2 mm. 
The total number of bacteria was >12,000. A single optical slice was 
recorded. 

For multiscale spatial segregation analysis, the sampling factor in 
macro MSS_calc was set to 0.005 (default value), which means that 
around 10,000 randomly placed FOVs were evaluated at dmin. The 
standard error of the segregation level was at all sizes of FOV <2%. The 
resolution factor that determines the spacing among FOV sizes for which 
segregation level is calculated was set to 0.75 (default value). 

For simulation of the minimal segregation, the cells were assumed to 
be circles with diameters representing the average diameter obtained 
from the statistical analysis of all cells in the image. In the combination 
of PS-218 YFP and PS-68 mKate2, both strains had a circle diameter of 
1.8 μm; in the case of the combination PS-68 YFP and PS-68 mKate2, the 

cell circle diameter was 2.2 μm and 2.5 μm, respectively. As the spec
imen thickness and optical slice thickness were bigger than 2 x cell 
diameter, the overlapping of cells was allowed in the simulation of 
minimal segregation. For maximal segregation simulation, the presence 
of both strains in the same image was assumed. 

Data and code availability 

The multiscale spatial segregation analysis approach is implemented 
in ImageJ macro language and consists of four macros that comprise 
MSSegregation package. The package including the manual is freely 
available under the terms of Modified BSD License at https://github. 
com/IztokD/MSSegregation-package. It can be run in open source Fiji- 
ImageJ application available online https://imagej.net/Fiji. The orig
inal (source) images used to perform analysis in this article are available 
at https://github.com/IztokD/MSSegregation-package. 
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