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Abstract

Chronic infections are often connected to biofilm formation. In presence of implants, this can

lead to loss of the implant. Systemic or local application of drugs is relatively ineffective in

case of biofilm formation. One technique to provide antibacterial properties on demand is

the antibacterial photodynamic therapy (aPDT). Using this technique, these properties can

be “switched on” by light illumination. In the middle ear with the semitransparent tympanic

membrane, it might be possible in future to activate the antibacterial effect without opening

the membrane. Therefore, we investigated the optical absorbance spectra of the tympanic

membrane. Optical absorbance spectra were measured in ex vivo preparations from neona-

tal and adult rats with the membrane still being attached to the surrounding bony ring and

four human samples. After performing area scans, the spot with the lowest absorbance

being surrounded by a ring like structure with higher absorbance was chosen as region of

interest for scanning wavelengths between 300 and 900 nm. Absorbance is generally higher

at lower wavelengths with a local absorbance maximum at 420 nm and a weak second max-

imum with two neighbouring peaks at 540 / 580 nm and is significantly higher in adult rats

compared to neonatal rats where about 10% of light was transmitted. The human samples

show similar characteristics with a little higher absorbance. For activation of aPDT through

the tympanic membrane, larger wavelengths are more promising. Whether the amount of

light transmitted through the membrane would be sufficient to induce aPDT remains to be

tested in further experiments.

Introduction

One of the key components for sound transmission to the auditory system is the tympanic

membrane (TM) which separates the external ear from the middle ear [1, 2]. Acoustic sound

waves are transformed into mechanical vibrations and transmitted from the outer ear canal to

the ossicles of the middle ear [1, 3]. The human TM is a tri-laminar membrane with a thin

outer epidermal layer (lateral side), a middle lamina propria (intermediate fibrous layer) and a

very thin inner mucosal epithelial layer (medial side) of cells. The overall membrane thickness

is about 100 μm [4], non-uniform and tapered from periphery to the center of the TM, the

umbo [2, 3]. The particular orientation of the TM enables a larger surface than the outer ear
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canal diameter [2]. It is almost oval in shape and conical in cross section, with the apex point-

ing medially towards the middle ear [3]. The boundary of the TM is strongly anchored to the

wall of the tympanic cavity. Most of its boundary is formed by a fibro-cartilaginous ring called

the annulus. This ligament is a fibrous thickening firmly attached to a sulcus in the bony tym-

panic ring except superiorly where it separates the two main regions or sub-membranes of the

TM called the pars tensa (PT) and the pars flaccida (PF) [2, 3]. The PF is located in the superior

region and is more fragile as it lacks the fibrous middle layer of the TM [1, 3]. The function of

the PF remains unclear. The PT covers most of the TM and is attached to the manubrium of

the malleus and directly responsible for transmitting sound from the ear canal to the middle

ear ossicles. The manubrium stretches from a point on the superior edge of the TM to the

umbo [2, 3]. Changes in structure and mechanical properties of the TM due to middle ear dis-

eases, such as middle ear infection, otitis media with effusion, or perforation of the TM can

deteriorate sound transmission and cause conductive hearing loss [3]. One of the most com-

mon infections of the middle ear is otitis media (OM). Three different types of OM are

described, which are closely related and symptoms can overlap: acute OM (AOM), OM with

effusion (OME) and chronic suppurative OM (CSOM) [5, 6]. Inflammation of the middle ear

can produce excess fluid behind the TM, and OME is essentially characterized by fluid accu-

mulation in the middle ear cavity behind an intact TM [7, 8]. This fluid accumulation in the

middle ear can be detected by otoscopy through the intact semitransparent TM [9].

Repeated acute infections that persist more than three months can become chronic and

chronic infections are often connected to the formation of biofilm. This is especially important

when implants are present at the location of the infection because it can lead to loss of the

implant. In an investigation of 15 explanted cochlear implants bacterial colonization was

found on eight implants [10]. In three out of four devices explanted due to infections, a bacte-

rial colonization was found. Most common germs in the investigation were Staphylococcus
aureus, Pseudomonas aeruginosa, and Haemophilus influenza [10]. Other authors report that

implants can repeatedly evoke inflammation in the surrounding of the implant, whereby in

65% of chronic infections biofilm formation is involved [11].

Biofilm can contain bacterial or fungal cells that are in contact with each other. The cells are

trapped within an adherent matrix on an inert or living surface. The extracellular matrix pro-

tects the bacteria against antibodies, phagocytosis and antibiotics [11]. Therefore, systemic or

local application of antibiotic drugs is relatively ineffective in case of biofilm formation [12].

To prevent biofilm formation especially on implant surfaces, it is possible to add drug-contain-

ing coatings to the implants. Drug-releasing coatings are clinically used for different purposes

[13]. But as the coating serves as reservoir for the drugs, the amount of drug that can be stored

is limited [14]. That is why it would be more beneficial to have a drug-release on demand. One

technique that provides antibacterial properties on demand is the antibacterial photodynamic

therapy (aPDT) [15]. Here, antibacterial properties can be “switched on” by illumination with

light [16]. So far, aPDT is mainly tested and used for dental applications [17, 18] but also

wound healing [19]. Additionally, few reports on application of aPDT on common bacteria

causing OME in vivo [20] and in vitro [15] are available. In the case of the in vivo study, the

fiber for light activation was inserted into the bullae through the tympanic membrane of ger-

bils [20].

As more aPDT substances are emerging, it might be possible in future to activate the anti-

bacterial effect without opening the TM as the TM is semitransparent. Therefore, the aim of

the study was to investigate light transmission properties (absorbance) of the TM. This was

done in ex vivo preparations of the TM from young and adult rats, and additionally, four

human TM could be tested.
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Material and methods

Ethical statement

The experiments were accomplished in accordance with the German “Law on Protecting Ani-

mals” (§4) and the European Directive 2010/63/EU for protection of animals used for experi-

mental purpose, and registered (neonatal rat: no. 2016/118; adult rat: no. 2016/125) with the

local authorities (Lower Saxony State Office for Consumer Protection and Food Safety

(LAVES), Oldenburg, Germany).

The collection and use of human tympanic membranes was approved by the institu-

tional ethical committee of Hannover Medical School and registered under number

8375_BO_K_2019. Written informed consent was obtained from all patients. All personal

information that could lead to identification was removed.

Preparation of neonatal rat tympanic membranes

The absorbance of tympanic membranes was analyzed with freshly isolated samples. Neonatal

Sprague-Dawley rats (p3-5) of different sexes were used for dissection of the tympanic mem-

brane from the petrous bone. After rapid decapitation the skull was opened along the midline,

removing the brain, and separating it into two halves, according to the previously described

protocol for isolation of spiral ganglion neurons [21]. The head halves were transferred into

ice-cold phosphate-buffered saline (PBS; PBS tablets, Gibco1 Thermo Fisher Scientific, Wal-

tham, US). All further preparation of the TM took place under microscopic magnification

(Leica M165 C, Bensheim, Germany). The surrounding tissue and ossicles were removed care-

fully with fine forceps and the tympanic membrane remained attached to the surrounding

bony ring. The TM was then placed on the lid of a 96-well plate (TPP, Trasadingen, Switzer-

land) for the measurements (Fig 1).

Preparation of adult rat tympanic membranes

Fresh cadavers of adult Sprague-Dawley rats (age between 6 months and 2 years) were received

from the central animal facility. The skull was removed with a scissor and the fur was retracted

until the ears were free. Muscles and tissue around the outer ear canal were removed and the

petrous bone was detached from the skull with Luer bone pliers. The area of the TM was

cleaned as good as possible from ossicles, muscles and other tissue without damaging the

membrane. Finally the TM was placed centrally on the pit of a 96-multiwell culture plate lid

with the outer ear canal side facing the lid for absorbance measurements.

Human tympanic membrane

In this study, samples of four human TM were measured for comparison. The TM were har-

vested from tissue samples that are usually disposed due to temporal bone surgery with com-

plete exenteration of all pneumatic tracts also termed as subtotal petrosectomy (STP) with

obliteration of the middle ear and mastoid and closure of the external auditory canal. An over-

view on patients is provided in Table 1.

After intraoperative removal of the TM these were stored in PBS for immediate transfer to

the lab. The samples were carefully cleaned by removing surrounding tissue with fine forceps.

In one case the malleus was not removed from the TM (Fig 2A) because of an expected high

risk of damage to the TM. For measurements, samples were also placed centrally on the lid of a

96-multiwell plate (TPP) with the ear canal side facing the lid (Fig 2A–2D).
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Experimental setting for absorbance measurements

Absorbance measurements of the TM were performed at wavelengths between 300 and 900

nm by using a plate reader (Synergy H1 Hybrid Reader; BioTek, Bad Friedrichshall, Germany).

Fig 1. Tympanic membrane (rat P3-5). The TM was positioned centrally on the lid of a 96-well plate for measurements.

https://doi.org/10.1371/journal.pone.0254902.g001

Table 1. Patient information for human samples.

Sample Gender Age Etiology

1 female 68y s/a cochlear implantation and subsequent electrode dislocation in the mastoid with a

prolapse of the electrode array into the outer ear canal (right side)

2 female 63y s/a deafness on both sides after skull base fracture in childhood, s/a multiple ear surgerys

with open mastoid cavity (so called radical cavity) on both sides

3 male 56y s/a radical cavity after recurrent cholesteatoma right, surditas right

4 male 62y s/a extensive cholesteatoma in the mastoid left, surditas left

https://doi.org/10.1371/journal.pone.0254902.t001
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The finally prepared TM’s were placed centrally on the pit of a 96-multiwell culture plate lid

(TPP) for absorbance measurements. First, a spectral scan was performed. For this, the system

used one spot per well and measured the transmitted light in the defined range of wavelengths

in 10 nm steps. In a second measurement, an area scan with 81 measuring points (9x9 matrix)

and 20 nm steps over the wavelength range was performed. As internal control the wavelength

300 nm was measured again at the end of the area scan. In a third measurement, a second spec-

tral scan was performed as additional control. For each series of measurements n = 6–8 tym-

panic membranes were used. In addition to the TM’s also controls in empty and covered wells

were measured. For covering the wells, paper towels or bone were used allowing at least some

light passing through. Completely intransparent materials (paper wrapped grey plastic) were

used for a complete block of the light pass.

Data evaluation

Absorbance (A) is calculated from A = log10 I0/I with I0 being the initial light intensity and I
the transmitted intensity and is therefore dimensionless. An absorbance of 0 means that 100%

of light is transmitted, absorbance of 1 stands for transmission of 10% of the initial light inten-

sity and so on. The quotient I/I0 is also called transmittance.

To evaluate the absorbance at different wavelengths of a scan the software of the system

calculates one absorbance value for each measured wavelength at each spot. Having per-

formed the area scans, the system generates a heat map for each measured wavelength (com-

pare Fig 3). Light blue stands for high transmission (low absorbance, low optical density

(OD)), dark blue for low transmission (high absorbance, high OD). If the system did not

detect transmitted light at a single spot, these areas were left white. In the heat map generated

for the wavelength of 300 nm, the spot with lowest absorbance (marked black in the example

of Fig 3), being surrounded by a ring like region with higher absorbance, was chosen as

region of interest (ROI). The absorbance at this spot was taken as value for the absorbance of

the TM. To evaluate the absorbance at different wavelengths, the defined ROI was transferred

to all other heat maps of the same TM and the referring absorbance values were collected

accordingly.

Statistical analysis

Statistical analyses were performed using GraphPad Prism version 5.02 for Windows (Graph-

Pad, La Jolla, California, US) and OriginPro 2021 (OriginLab Corp., Northampton, MA, US).

Different scans were compared by 2-way ANOVA (repeated measures) whereas drying of TMs

was evaluated by paired t-test.

Fig 2. Human tympanic membranes after preparation. (A) Tympanic membrane with attached malleus cleaned as good as possible before

measurements. (B-D) Tympanic membranes as received from the OR without malleus.

https://doi.org/10.1371/journal.pone.0254902.g002
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Results

Rat tympanic membrane

In a first step, upper and lower limits were determined by covering the wells with paper towels

or bone (Fig 4). An absorbance of approximately zero was measured with empty wells (black

dashed line), and an absorbance between 2.5 and 4 was measured with paper towels or bone

(black or dotted line). Data of completely covered wells are not shown due to full absorbance

(transmittance of zero; infinite absorbance).

Scans of individual TM’s of neonatal rats are provided in Fig 5 as spectral scan and area

scan. The spectral scan measurements (Fig 5A) are based on one large spot per well, it contains

information from bone, TM, tissue, but also empty areas. To investigate the TM more

Fig 3. Heat map of absorbance measurements of a tympanic membrane at 300 nm with a 9x9 matrix. The point with the least

absorbance (ROI) was marked in black. Spots with no light transmission are presented as white areas in the heat map.

https://doi.org/10.1371/journal.pone.0254902.g003
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specifically, area scans (Fig 5B) were performed as described above. Both scans show compara-

ble characteristics over the tested wavelengths (300–900 nm). Absorbance is generally higher

at lower wavelengths and appears to be slightly lower in the area scan compared to the spectral

scan. The difference between average values of both scans is significant for wavelengths 300

nm to 460 nm (2-way ANOVA). In all scans, a local absorbance maximum was detected at 420

nm. A weak second maximum with two neighboring peaks was found at 540 nm / 580 nm.

Generally, these maxima are less pronounced in the area scans.

To investigate whether results were influenced by drying of the TM during the measure-

ments and samples should be wetted, 100 μl PBS were added to one sample before the scan.

During the area scan, absorbance of this TM increased between measurements at 500 nm and

520 nm from 1.15 to 2.09. As this was interpreted as movement of the sample in the well, all

other reported measurements were done without addition of fluid. To test for the possible

influence of drying in this approach, for each TM, measurements at 300 nm were done first

and repeated at the end of the different scans. Paired t-tests revealed no difference between

Fig 4. Spectral scan of control wells from 300 nm to 900 nm. To determine the upper and lower limits, wells were covered (black line) or partly

covered (grey line) with paper or the bottom of the well was covered with bone (dotted line). For comparison a spectrum of an empty well (dashed line)

is provided.

https://doi.org/10.1371/journal.pone.0254902.g004
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measured absorbance (p = 0.471). In addition, for some TM spectral scans (300 nm to 700

nm) were repeated after 30 min and 60 min (Fig 6). No differences compared to the initial

scans were detected. For other TM (N = 5), area scans (300 nm to 900 nm) were repeated after

2 hours. Also in these cases no differences to the initial scans were found (S1 Fig).

All measurements presented so far were performed with TMs from neonatal rats. As the

auditory organ in neonatal rats is still immature [22], measurements were also performed

using TMs from adult rats. A comparison of mean absorbance values as received using the

area scan approach is provided in Fig 7. Absorbance of the adult TM is significantly higher at

all measured wavelengths (p< 0.001 at all wavelengths). In the wavelength range from 800 to

900 nm the amount of transmitted light is slightly above 10% in neonatal TM and gets reduced

to about 1% in adult rats.

Fig 5. Comparison of spectral scan (A) and area scan (B) of 11 TM from 300 nm to 900 nm.

https://doi.org/10.1371/journal.pone.0254902.g005

Fig 6. Spectral scan of two TM directly after preparation (red), after 30 min (grey) and after 60 min (purple). No effects of drying were detected

without additional wetting for at least 1 hour.

https://doi.org/10.1371/journal.pone.0254902.g006
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Human tympanic membrane

The measuring system established with the rat samples was also used for four human samples.

To find the spot with the least absorbance (ROI) it was necessary to use the 460 nm 9x9 matrix

because in a large part of the sample no light was transmitted at lower wavelengths (Fig 8).

Finally all scans show the same characteristics as the rat TMs but with little higher absorbance

(Fig 9). Variability between the scans appears to be larger compared to the rat results especially

with regard to the characteristic peaks. The position of the peaks was not changed compared

to the rat TM. Before and after each area scan, spectral scans were performed to control for

time dependent changes such as drying. Only with sample three some changes in spectral char-

acteristics were detected. Here, absorbance was reduced to values below 1 at all wavelengths

above 300 nm (S2 Fig).

Discussion

Implant associated infections can lead to biofilm formation and are one of the main reasons

for complications after implantation. In the worst case, it can lead to explantation of the

Fig 7. Absorbance of TM from neonatal and adult rats. All TM were measured from 300 nm to 900 nm in area scan mode. Presented are mean

values ± standard deviations.

https://doi.org/10.1371/journal.pone.0254902.g007
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affected device. Therefore antibacterial photodynamic therapy (aPDT) can be a good solution

to eliminate the resistant pathogens that cannot be managed by antibiotics [20]. aPDT is based

on photosensitizers (PSs) activated by light at PS-specific wavelengths (visible or ultraviolet

light). Activation of a PS leads to generation of singlet oxygen and other reactive oxygen spe-

cies (ROS). The production of ROS induces irreparable and lethal oxidative damage affecting

the integrity of the cell surface and intracellular bacterial biomolecules as well as significant

destruction and disintegration of the biofilm matrix [15, 16, 20]. aPDT can also be considered

as an alternative therapy in selective cases of OM because the middle ear cavity provides space,

which can store the PS for a given time period [20]. In the mentioned study, the aPDT effect

was initiated by a 632 nm diode laser with the tip of the fiber being advanced through the TM

into the bulla of gerbils. As the TM is semitransparent, it might also be possible to activate the

effect by bringing the light source in front of the TM without opening it. To investigate this

possibility it is necessary to know the absorbance spectra of the TM.

The TM works optically like a translucent diffuser but reflects a small amount of light [8].

Reflection characteristics were earlier investigated by different authors [4, 23]. For human TM,

reflection characteristics were investigated for wavelengths from 400 nm to 900 nm in cadavers

with and without contributions of middle ear structures behind the TM [24]. Results showed

that contribution of middle ear structures to reflection was larger at higher wavelengths. The

authors concluded that the TM is more transparent above 600 nm. Reflection was minimal

around 420 nm and another local minimum was found in the range of 540 to 580 nm. These

results perfectly match the general absorbance characteristics as found in the current study

with lower absorbance / higher transmission at longer wavelengths and the local absorbance

maxima at 420 nm and 540/580 nm. The fact that the local peaks indicate less reflection [24]

but also less transmission (current study) leads to the assumption that at these wavelengths

absorption plays a major role. As these local absorbance maxima were less pronounced in neo-

natal rats compared to adult rats and human samples, and the amount of tissue and bone that

Fig 8. Heat map (9x9 matrix) of sample 1 at 380 nm (left) and 460 nm (right). The point with the least absorption (ROI) is marked in black. No light

was transmitted at lower wavelengths in large parts of the sample.

https://doi.org/10.1371/journal.pone.0254902.g008

PLOS ONE Optical absorbance of the tympanic membrane

PLOS ONE | https://doi.org/10.1371/journal.pone.0254902 July 22, 2021 10 / 14

https://doi.org/10.1371/journal.pone.0254902.g008
https://doi.org/10.1371/journal.pone.0254902


remained at the samples was lower for neonatal TM, these peaks might be caused by blood and

/ or tissue / bone. Absorbance spectra of hemoglobin show prominent peaks at above 400 nm

and at 540/580 nm with oxygenated hemoglobin being responsible for the double peak [25].

Therefore we might conclude that the measured absorbance maxima are caused by remaining

blood on the samples or the tissue containing blood cells. This is also supported by the fact

that in control experiments with bone and some tissue still being attached to the bone also

these peaks were detected.

Resulting spectra were also dependent from the type of scan. The spectral scan measure-

ments are based on one large spot per well containing information from bone, TM, tissue and

empty areas. The more specific area scan is limited by the 9x9 matrix with 81 measuring

points. Overlapping of these individual measuring points is unavoidable and must be taken

into account when looking at the results. Using the area scan approach, a spot with low absor-

bance surrounded by spots with higher absorbance was detected in the heat maps for all sam-

ples. The position of this spot was stable throughout the measurements except when adding

PBS to protect the samples from drying. Measured values at the spot of low absorbance were

taken as absorbance values of the TM. As the spots are expected to overlap, even these values

Fig 9. Area scan of four human TM samples. Absorbance was measured at the spot of least absorption at wavelengths between 300 nm and 900 nm.

https://doi.org/10.1371/journal.pone.0254902.g009
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will be influenced by the surrounding tissue and bone, which most likely leads to an overesti-

mation of the absorbance in all measurements. That the above mentioned absorbance maxima

were smaller in area scans compared to spectral scans supports our approach for the measure-

ment of optical TM absorbance, but the appearance of (weak) peaks also shows the mentioned

limitations.

The absorbance of the adult TM is significantly higher than in TM from neonatal rats. Prep-

aration of neonatal TMs was much easier compared to the one of adult TMs with firm bone.

To avoid damage to the samples, preparations of adult TM contained more bone and appeared

more “bloody”. The influence of the remaining surrounding tissue is also reflected by the mea-

sured larger peaks in area scans of adult TM. These preparation induced differences might

contribute to and explain at least parts of the measured differences in absorbance between neo-

natal and adult rats. Additionally, also developmental differences could play a role as the hear-

ing system is not yet functioning in rats at p3-5 [22].

Since all measurements were carried out without addition of fluid, the influence of possible

drying of the TM had to be investigated during the measurements, whereby no significant dif-

ferences to the first measurements could be determined. As no differences were found, we

may also speculate that reflection at access fluid on the membrane at the beginning (compare

Fig 1) does not play a role for the measurement in our setup, as the TM appeared to have a dry

surface after the measurements.

The collection and extraction of sufficient large pieces of intact human TM for the measure-

ments were challenging. In the majority of cases where STP is planned/performed, the patients

have previously undergone radical and/or reconstructive ear surgery due to chronic OM or

recurrent cholesteatoma. Therefore, the four samples of human TM differed in appearance

and characteristics (e.g. presence of malleus, thickness or morphology of the TM due to prior

ear surgeries), influenced by the etiology of the patients. The samples clearly differ in clarity of

the membrane and the surrounding tissue from those of the neonatal rats. In some cases even

a clear view on the TM was hard to achieve. This also explains the higher absorbance com-

pared to the scans of the rat TMs, as well as the greater variability between the scans. The posi-

tion of the peaks did not change and all scans have the same general properties as the rat TM.

Only the third human sample showed a clear difference of the second spectral scan (done after

the area scan) to the first spectral scan (before the area scan). This patient had a history of

reconstructive ear surgery due to recurrent cholesteatoma. We can only speculate that this ear-

lier reconstruction plays a role in this observation.

All together and due to the above discussed reasons, we expect the absorbance of the TM

being slightly lower than measured in the current setting. Whether the amount of light being

transmitted through the TM would be sufficient to induce aPDT remains to be tested in fur-

ther experiments. A further possible application could be the use of high-energy visible (HEV)

light (400–450 nm) to kill bacteria as recently shown in vitro for bacteria involved in otitis

media [26]. These authors concluded that the appropriate dosage of light would be a combina-

tion of the intensity and the duration of exposure whereby less intensity requires more time

for inactivation.

Supporting information

S1 Fig. Area scans of five TM. Scans were performed directly after preparation (solid lines)

and after 2 hours (dotted lines) from 300 to 900 nm. No effects of drying were detected without

additional wetting for at least 2 hours.

(TIF)
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S2 Fig. Spectral scan of human sample 3. Scans were performed before (red) and after (blue)

the area scan with about 1 hour in between.

(TIF)
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