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Mesenchymal stem/stromal cells (MSCs) have long been recognized to help regenerate
tissues, by exploiting their intrinsic potentials for differentiation and secretion of thera-
peutic paracrine factors together with feasibility for cell banking. These unique MSC
properties are attractive to provide effective new cell-based therapies for unmet medical
needs. Currently, the infusion of suspended MSCs is accepted as a promising therapy to
treat systemic inflammatory diseases. However, low cell engraftment/retention in target
organs and off-target entrapment using conventional cell infusion must be improved to
provide reliable localized disease treatments. Cell sheet technology offers an alternative:
three-dimensional (3D) tissue-like structures can be harvested from culture using mild
temperature reduction, and transplanted directly onto target tissue sites without suturing,
yielding stable cell engraftment and prolonged cell retention in situ without off-target
losses. Engineered MSC sheets directly address two major cell therapy strategies based
on their therapeutic benefits: (1) tissue replacements based on mult-ilineage differenti-
ation capacities, focusing on cartilage regeneration in this review, and (2) enhancement of
tissue recovery via paracrine signaling, employing their various secreted cytokines to
promote neovascularization. MSCs also have production benefits as a promising allogen-
eic cell source by exploiting their reliable proliferative capacity to facilitate expansion and
sustainable cell banking for off-the-shelf therapies. This article reviews the advantages of
both MSCs as allogeneic cell sources in contrast with autologous cell sources, and allo-
geneic MSC sheets engineered on thermo-responsive cell dishes as determined in basic
studies and clinical achievements, indicating promise to provide robust new cell therapies
to future patients.

Introduction
Medical treatments continuously advance with new technology developments. Newly introduced and
approved biologic drugs provide increasing examples of improved efficacies and fewer side effects for
biological molecules compared with conventional small-molecule synthetic drugs. Nevertheless, many
clinical pathologies remain unaddressed, including diverse inextirpable degenerative diseases, such as
neurodegenerative disorders, some cardiovascular diseases, osteoarthritis, and acute/chronic fibrosis,
due to lack of effective therapeutic approaches.
In a healthy body, various cell types, including somatic stem cells, continuously orchestrate normal

tissue and organ functions through appropriate proliferation–differentiation-aging processes to main-
tain homeostasis. Deteriorations of cellular function, especially stem/progenitor cell deficiencies,
promote degenerative diseases since these normal maintenance pathways are disrupted or abnormal.
Cell therapies have been arduously attempted to treat some of these intractable diseases. Currently,
embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and somatic stem/progenitor cells,
such as mesenchymal stem/stromal cells (MSCs) and hematopoietic stem cells, have been investigated
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as promising cell sources for new therapies. MSCs in particular have been widely applied to address various
diseases by exploiting their known multipotency (e.g. bone, cartilage, and adipose) and abundant paracrine
secretome [1]. MSCs also exhibit high growth potential that facilitates a reliable, sustainable cell banking and
supply system amenable to produce substantial numbers of human doses [2,3]. However, few MSC-based ther-
apies have progressed beyond preclinical studies to clinical trials evaluating their safety and therapeutic efficacy.
One reason for this struggle is thought to derive from their intrinsically poor cell engraftment/retention in
target tissues and substantial off-target loss of infused cells, which remains a daunting, significant hurdle for
many MSC therapies [4–10]. To overcome this challenge, cell delivery systems with or without biomaterials are
designed to produce tissue-like structures that are implanted or adherent locally at host target tissue sites, and
improve cell retention without off-target problems, and therefore considered more efficient as culture-expanded
cell-based therapies.
In this review, we discuss cell delivery to tissue sites exploiting ‘cell sheet technology’ allowing local cell

transplantation with thermo-responsive cell cultureware that allows confluently cultured cells to yield readily
harvested three-dimensional (3D) tissue-like sheet structures. Sheets are harvested with minor temperature
reduction to below 32°C from 37°C (i.e. that of a normal cell culture incubator) (Figure 1). Cell sheets retain
endogenous cell matrix and membrane proteins and enhance healthy cultured cell yields for immediate use as
engineered patches [11,12]. This enables direct cell sheet transplantation onto target tissues without supporting
scaffolds or suturing [13,14]. Decades of investigations developing cell sheet technology reveal that scaffold-free
cell sheets exhibit both safety and efficacy in treating seven different organs using autologous cell sources in
clinical settings: cornea, esophagus, heart, lung, middle ear, periodontal membrane, and cartilage regeneration
[15–21]. Moreover, recent reports describing use of allogeneic cell sheet technology suggest a high potential for
clinical utility, especially with MSCs isolated from adipose tissue, bone marrow, periodontal membrane, and
cartilage [22–25]. This review discusses the advantages of combining cell sheet technology and MSCs; effective
cell sourcing, expansion and cell delivery using cell sheets engineered from MCSs, and resulting numerous

A

B

Figure 1. Cell sheet technology using TRCDs.

(A) Conventional single-cell recovery method by proteolytic treatment. (B) Non-proteolytic cell sheet recovery using

thermo-responsive cell culture dish (TRCD). Mild temperature reduction facilitates spontaneous cell sheet detachment.
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attractive features and reliable outcomes in preclinical and clinical studies. MSC sheet technology will offer new
opportunities for diverse disease treatments in the near future. Furthermore, we discuss the scaling and eco-
nomic benefits of forthcoming allogeneic MSC sheet-based regenerative therapies.

Allogeneic cell sourcing: MSCs with high proliferative
capacity enabling sustainable cell banking for off-the-shelf
sourcing as therapy
Clinically feasible cell-based regenerative therapies rely on consistent, available and potent cell sources. Several
clinical trials of ES cells have been conducted, followed by recent iPS cell-based early-stage clinical trials
[26–29]. Nonetheless, the crucial hurdles for commercialization of pluripotent stem cells, including costs of
long-term cell culture, must be cleared [30] and reliable methods for tumorigenic cell elimination must be
established and validated [31]. On the other hand, somatic stem/progenitor cells isolated from various tissues
are valuable to replenish deficient host cells to restore homeostasis [32] by exploiting their lower possibilities of
tumorigenicity compared with pluripotent stem cells [33,34]. Autologous somatic cell sourcing is an advantage
when cells must avoid host immune rejection for stable cell engraftment and retention [35]. However, autolo-
gous cell therapy usually requires multi-stage surgeries for obtaining patients’ own cells, expanding them ex
situ, and transplanting the harvested cells back to targeted tissue sites. Additionally, variability due to patient
individual difference is a major obstacle for product quality control and reliability [36–39].
To overcome these obstacles, allogeneic cell transplantation has frequently been attempted as a promising

next-generation cell therapy. In this regard, MSCs are a primary allogeneic cell source amenable to cell banking
due to their high proliferative potential [2,3]. This robust proliferative capacity allows use of a single qualified
cell line showing high efficacy for expansion to accommodate substantial numbers of patient treatments.
Moreover, MSCs show no/low-MHC class II expression, suggesting tolerance to host immune rejection [40,41].
Therefore, MSCs are frequently proposed as a strategy to overcome current major problematic issues surround-
ing allogeneic cell immune rejection while yielding large cell banks for therapeutic applications. Beyond cell
banking advantages, MSCs exhibit unique multi-lineage differentiation both in vitro and in vivo, and thera-
peutic cytokine secretions to heal damaged tissues [1]. Based on these remarkable properties, MSC-based
therapy can be a game-changing strategy to provide new treatments to address unmet medical needs.

Conventional cell delivery systems —advantages and
disadvantages
Cultured MSCs are a major allogeneic cell source of current interest due to their immunomodulatory effects
against excessive immunoreactions in systemic diseases such as graft-versus-host disease (GVHD), Crohn’s
disease, and severe acute pancreatitis [42–46]. While single-cell administration by intravenous infusion is
advantageous to deliver cells and their paracrine factors to the entire body via the blood stream, this strategy is
unsuitable to treat non-systemic, localized diseases due to low cell engraftment and survival rates at target sites
and high off-target localization [4–9]. Intra-arterial and local injections show slightly better homing to target
sites, though injected MSC accumulation is still high in lung early post-transplantation [10,47,48]. To date,
both systemic and local injection of cell suspensions have been used to position MSCs in target organs for loca-
lized disease treatments, but insufficient MSC retention can limit local exposures to therapeutically beneficial
paracrine factors and compromise the potency and duration of the desired therapeutic effect [5]. Increasing
MSC dose to enhance therapeutic effects concomitantly expands the risks of embolism in lung and liver by off-
target MSCs, exposing the difficulties of dose control [7,10]. This is one reason currently limiting clinical trials
to small-cohort safety and efficacy studies [5]. Therefore, alternative cell delivery methods are needed to estab-
lish localized disease treatments.
To facilitate and improve cell engraftment in target host tissues, numerous biomaterial-based scaffold

approaches using seeded MSCs are continuously reported. However, biomaterial designs often focus on
manipulating a single parameter of the cell transplantation (e.g. biocompatibility, biodegradability, and donor
cell viability or differentiation), and among myriad types of materials applied, few examples of knowledge
transfer from in vitro experiments are translated successfully to in vivo cell transplantation experiments [49].
An alternative approach is scaffold-free tissue engineering utilizing biological cell–cell binding architectures as
typified by spheroid/aggregate culture or cell-dense culture in non-adherent wells to facilitate ‘self-assembly’.
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This approach can deliver cells at high density to target sites while avoiding interference by and rejection of
scaffold biomaterials and their degradation products [50,51]. This strategy removes certain confounding
cell-implant variables to enhance tissue regeneration and integration in host disease sites.

Cell sheet engineering —key enabling features of
thermo-responsive cell cultureware
Among diverse cell sheet engineering methods more recently reported, Okano and co-workers originally
invented the thermo-responsive culture dish, thermo-responsive cell dishes (TRCD), to produce the first
scaffold-free cell sheets, enabling cultured cells to form native tissue-like structure compared with other
scaffold-free methods (cell sheet technology, Figure 1) [52,53]. Culture plastic grafted with ultrathin layers of the
temperature-responsive polymer, poly(N-isopropylacrylamide), transitions from hydrophobic in culture condi-
tions, 37°C, to hydrophilic below its lower critical solution temperature of 32°C. Below 32°C, grafted poly
(N-isopropylacrylamide) swells and hydrates, forming a swollen polymer layer between the culture surface and
adherent cells, enabling harvest of cultured cells as a confluent sheet retaining instructive extracellular matrix
(ECM) and cell-cell interactions (Figure 1) [12,52–55]. The approach yields transplantable tissue-like constructs
that spontaneously adhere to target organs without sutures or complex procedures, safety concerns in trans-
planted cells, and show therapeutic effects [56,57]. In addition to TRCD-based methods, electro-responsive
[58,59], pH-responsive [60], and magnetic-responsive systems [61–63] are employed to harvest cells from
culture surfaces as cell sheets. However, the pioneering TRCD-based cell sheet technology has now been widely
applied to treat diverse diseases with various cell types, requiring no additional devices in laboratory and clin-
ical situations, limiting safety concerns caused by cell labeling systems or pH reduction methods that affect cell
property changes when harvested as cell sheets. Significantly, several types of autologous human cell sheets
have been successfully delivered to small numbers of patients using this TRCD approach to date, demonstrating
clinical safety and efficacy in cell sheet therapies in seven tissue sites [15–21].
Extending this strategy to MSCs as a prospective allogeneic cell source, two major cell sheet-based strategies

have been proposed in clinical and preclinical studies: (1) tissue replacement, especially focusing on cartilage
regeneration in this review to introduce a unique allogeneic cell source, based on cell sheet differentiation into
chondrocytes, and (2) tissue recovery employing cell sheet therapeutic cytokine production and paracrine
signaling.

Tissue replacement: cartilage-derived MSC/chondrocyte sheet treatment
Cartilage regeneration has been an active target of diverse tissue engineering efforts due to the increasing inci-
dence of cartilage injury, its lack of innate regenerative capacity [64], and outcomes from surgical bone marrow
induction approaches (e.g. microfracture) that commonly result in fibrocartilage in contrast with hyaline cartil-
age found in native healthy articular surfaces [65–67]. Native cartilage contains self-renewing chondrocyte pro-
genitors expressing MSC-related markers [68]. Isolated cells from cartilage de-differentiate into a fibroblastic
morphology in vitro, and exhibit the capacities of colony-forming unit fibroblast (CFU-F) formation and multi-
lineage differentiation [69,70]. Culture-expanded chondrocytes can re-differentiate into mature cartilaginous
cells expressing cartilage-specific molecules under chondrogenic differentiation conditions [71,72]. These
reports strongly suggest that cultured chondrocytes are one MSC type possessing strong chondrogenic capacity.
Although nomenclature of cultured-expanded chondrocytes varies by schools (e.g. cartilage-derived stem/pro-
genitor cells, chondroprogenitor cells, etc.), ‘chondrocytes’ in this review particularly denote in vitro-expanded
cells derived from cartilage as one MSCs type, distinct from mature/differentiated chondrocytes existing in vivo.
Various tissue engineering methods, either combined with or without biomaterials, have been developed

with myriad clinical studies ongoing seeking to reliably regenerate cartilage [73–75]. However, to date, most
human studies utilize autologous cells, such as matrix-associated autologous chondrocyte implantation
(MACI). No gold standard clinical practice for cell-based chondral defect treatment exists due to the various
limitations of current approaches, including the necessity for and expense of multiple surgeries, inconsistent
donor tissue availability, donor cell quality, and potency [76,77].

Cell sheet engineering for cartilage repair
MACI has demonstrated better outcomes compared with bone marrow induction approaches [78]. However, its
cost compared with microfracture is high, and reported graft delamination and fibrocartilage formation [79,80]
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may be attributed to low density, and dissociated chondrocyte colonization in the porcine collagen grafting
matrix. Cell sheet technology can better address these clinical issues, grafting cell-dense scaffold-free patches
directly to target tissue surfaces, preserving cell-cell communication and endogenous ECM presumed to
promote chondrogenic re-differentiation based on previous basic studies [81,82]. Additionally, cell sheets
conform to the shapes of various defects to better facilitate graft integration with host tissue, avoiding align-
ment and defect space-filling issues seen in grafts such as osteochondral allograft [83].
As one MSC type, cultured chondrocytes isolated from articular cartilage have been investigated as a primary

cell source in autologous cell sheet therapy for cartilage regeneration. Articular cartilage-derived chondrocyte
sheets secrete cartilage protective humoral factors [84]. The formation of human articular chondrocyte sheets
from these cells enhances gene expression of aggrecan and type 2 collagen in vitro compared with convention-
ally cultured cells [85,86]. Interestingly, extended culture after layering of three human articular chondrocyte
sheets enhances gene expression levels of type 2 collagen while suppressing type 1 collagen expression com-
pared with single-cell sheets [85,86]. Human articular cartilage-derived cell sheets spontaneously engraft at
transplanted tissue sites and regenerate cartilage tissue, expressing type 2 collagen in rat and rabbit xenogeneic
transplantation models [87,88]. Moreover, the safety and efficacy of chondrocyte sheets is shown in large
animal model studies using mini pigs [89] and rabbits [90]. Targeted biodistribution to the knee [91] and
genomic stability of human-derived chondrocytes after in vitro cultivation were certified by G-band staining
and array CGH [92]. Significantly, both safety and prominent clinical improvements were demonstrated in
human patients transplanted to unloaded cartilage areas in eight autologous cases using patient-derived chon-
drocyte sheets combined with alignment surgery [21]. However, the two-stage surgical procedure and patient-
specific cell quality variations still remain challenging issues in autologous cell-based approaches.

Juvenile cartilage-derived chondrocytes
Cultured chondrocytes as an MSC sourced from young donor cartilage show a higher proliferative ability and
chondrogenic potential compared with adult donor cells [93,94]. One prominent juvenile cartilage cell source is
from polydactyly surgical discards (incidence: approximately 1 per 1,000–2,000 live births [95,96], which can
be easily isolated, expanded to a thousand times in a few weeks. Cryopreserved human allogeneic cell bank
from one donor from both Japanese origin [25] and US origin (Kondo et al., submitted) can cover large popu-
lations of the applicable patients. Polydactyly-derived cell characteristics, including high transforming growth
factor (TGF) beta secretion, in juvenile chondrocyte sheets, has been reported [25]. Hyaline cartilage regenera-
tive capacity using human juvenile polydactyly cartilage-derived chondrocyte sheets was confirmed in an
immunosuppressed rabbit osteochondral defect model [97] and nude rat focal chondral defect model (Kondo
et al., submitted). The rat chondral defect model without intentional bone marrow induction particularly
demonstrated that regenerated hyaline cartilage forms from human origins with no gaps found at host–donor
tissue interfaces (Figure 2). This suggests the advantage of juvenile chondrocyte sheets for native tissue-like
repair by exploiting highly proliferative and chondrogenic sheet characteristics. These reports support applica-
tion of potent juvenile chondrocyte sheets to serve as next-generation single-stage cartilage regenerative
therapy. Strategies that can reliably validate regenerative capacity and minimize variability of human juvenile
chondrocyte sheets with proper cell/donor selection criteria will be critical for designing and conducting suc-
cessful large-scale studies.

Tissue recovery: MSC sheets promote tissue regeneration in seven different
organs via secreted paracrine factors
In addition to recognized intrinsic multi-lineage differentiation potential (e.g. osteogenic, adipogenic, and chon-
drogenic), MSCs also produce a remarkable array of paracrine factors that elicit both immunomodulatory
effects and enhance tissue regeneration [98–100]. Cell sheets engineered from human MSCs (i.e. MSC sheets)
have been studied in vitro [101,102] and in vivo to employ those functional properties. Significantly, cell sheet
technology enables transplantation of tissue-like structures containing contiguous MSCs grown in their
endogenous matrix onto target sites without off-target distribution. This results in stable cell engraftment and
target site retention over time compared with single-cell administration [7,23,103,104]. Local MSC sheet appli-
cation better facilitates direct, local therapeutic factor delivery to damaged tissue sites, resulting in continuous
support for tissue recovery from various diseases.
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MSC sheet treatments in multiple organ disease models, such as heart [22], periodontal membrane
[20,24,105–107], skin [108], bone [23], esophagus [109], intestine [110], kidney [7], artery [104], and brain
[111], have been studied using the TRCD approach, and their details are summarized in Table 1. These studies
reveal that MSCs isolated from bone marrow, adipose tissue, and periodontal ligament consistently exhibit
common characteristics such as multi-lineage differentiation potential, adipogenesis and osteogenesis, and
colony-forming ability in vitro. These isolated MSCs can be employed to prepare transplantable MSC sheets to
address various cell culture conditions (Table 1). In addition, in vivo analyses show that MSC sheets remain
localized on target tissue surfaces up to 2 months, depending on the target sites and/or their assays [7,20,22–
24,104–111] (Table 1), although long-term studies are required to verify sheet safety and efficacy. Furthermore,
prolonged MSC local engraftment in cell sheets distinguishes their capabilities to enhance therapeutic benefits
compared with single-cell administration [7,23,104]; local MSC sheet transplantation is reported to improve
organ functionality on seven different tissue/organ disease models. Notably, transplanted MSC sheets adhere
spontaneously and directly to host tissue surfaces, influencing the cells in damaged and surrounding area
through local autocrine and paracrine effects that promote both neovascularization and tissue regeneration with
host cell recruitment (Figure 3) [7,22,23,104,108,109,111–113]. Interestingly, some reports using GFP-labeled
cell tracking systems also indicate that transplanted MSCs from TRCD-prepared cell sheets migrate into the
host tissue and express markers of endothelial cells, pericytes, and/or other cell types after transplantation, sug-
gesting direct support for neovascularization in addition to indirect contributions from MSC-secreted paracrine
factors in local tissue regeneration [22,108,111].
Based on distinct, promising therapeutic effects reported for TRCD-based MSC sheet transplantation

(Table 1), a first-in-human clinical study to verify their safety and efficacy has demonstrated periodontal regen-
eration using autologous human MSC sheets [20]. To permit expanded patient treatments for diverse diseases,
allogeneic MSC sources exhibiting broad histocompatibility and consistent paracrine factor secretion profiles
are required to produce cell banks that yield validated, efficient MSC therapeutic properties. As a next-step to
scaling more effective, local MSC therapy for economic off-the-shelf use, allogeneic human MSC sheet trans-
plantation exploiting their innate high proliferative capacity and therapeutic efficacy is timely; yet, challenges
defining MSC sheet critical quality and functional attributes still remain. Nonetheless, human allogeneic MSC
sheet fabrication and transplantation is rapidly developing as a rational and economically attractive process,
capable of possibly addressing both past issues with inconsistent cell therapy outcomes, and also diverse unmet

A
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Figure 2. Cartilage regeneration with engineered human juvenile polydactyly cartilage-derived chondrocyte sheets.

(A) Schematic images of chondrocyte sheet transplantation to knee defects. (B) Repaired trochlear groove cartilage with human

juvenile polydactyly cartilage-derived chondrocyte sheet. In situ hyaline cartilage maturation occurs within 4 weeks in rodent

focal cartilage defect models. (a) Macroscopic image (right corner box shows defect only control). (b) Safranin O staining of

nude rat trochlear groove (right corner box shows defect only control with fibrotic tissue formation). (c) Magnified image

of Safranin O staining at regenerated cartilage and host tissue interface. Note no gap is observable at the interface. (d) Human

vimentin antigen-specific immunostaining, suggesting that regenerated cartilage originates from transplanted human cells.

Bars: 200 μm.
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Table 1. Preclinical models reporting TRCD-based allogeneic MSC cell sheet therapy in various tissue sites

Target site Disease model

MSC sheet preparation and properties in vitro In vivo observation

Origin Size

Seeding
density in
35 mm dish

Culture
duration

Total grafted cell
number In vitro properties Grafted MSC sheets

Therapeutic effects in host
tissue

Heart [22] Rat myocardial infraction
model

Adipose
tissue

24 ×
24 mm2

7.8 ×
105 cells/
dish

3 days 1 × 106 cells/rat VEGF and HGF
secretion

High cell viability at
2-day
post-transplantation
Cell sheet retention at
least for 4 weeks

Enhanced angiogenesis
Suppression of fibrosis
Improvement of cardiac
function

Periodontal
membrane
[24,105,106]

Dog three-wall infrabony
defect model

Periodontal
ligament
tissue

8.8 cm2

(35 mm
dish)

3–4 ×
104 cells/
dish

5 days N.A. (trimmed
triple-layered
sheets)

Alkaline phosphatase
activity
Osteoblast/
cementoblast
markers
Periodontal markers

Cell sheet retention at
least for 2 months

Periodontal regeneration
including alveolar bone,
cementum, well-oriented
fibers, and nerve filament

Skin [108] Rat wound-healing model of
type 2 diabetes and obesity

Adipose
tissue

8.8 cm2

(35 mm
dish)

1.5 ×
105 cells/
dish

7–8 days 1.5 × 105 cells/rat VEGF, HGF, TGF-ß1,
IGF-1, EGF, and
KGF secretion

Cell sheet retention at
least for 2 months

Improved skin wound healing
Enhanced angiogenesis

Bone [23] Rat bisphosphonate-related
osteonecrosis of the jaw
model

Bone marrow 8.8 cm2

(35 mm
dish)

2.5 × 105

cells/dish
7 days 1.5 × 106 cells/rat VEGF and HGF

secretion
Bone regeneration
marker (RANKL and
OPG) gene
expression

Cell sheet retention at
least for 2 months

Improved skin wound healing
Bone regeneration
Enhanced angiogenesis

Esophagus
[109]

Porcine esophageal
endoscopic submucosal
dissection model

Adipose
tissue

3.5 cm2

(12 well
plate)

3.8 ×
106 cells/
dish

12 h 1.2 × 107 cells/rat
(double-layered
sheets x4)

N.A. Cell sheet retention at
least for 3 days

Less alimentary trouble and
higher weight gain
Reduced stricture and fibrosis
formation

Intestine [110] Porcine intestial anastomosis
delayed wound-healing
model

Adipose
tissue

8.8 cm2

(35 mm
dish)

2.4 × 106

cells/dish
4 days 2.4 × 106 cells/rat Gene expression

levels of FGF2 and
TGF-ß1

Cell sheet retention at
least for 1 week

Enhanced collagen synthesis
Increased the stiffness of
intestinal anatomosis

Artery [104] Rat femoral artery injury
model

Adipose
tissue

8.8 cm2

(35 mm
dish)

1 × 106 cells/
dish

1–2 days 6 × 106 cells/rat
(triple-layered
sheets x2)

N.A. Cell sheet retention at
least for 2 weeks

Artery reendothelialization
Suppression of myofibroblast
proliferation

Kidney [7] Rat ischemia — reperfusion
— injury model

Bone marrow 8.8 cm2

(35 mm
dish)

1.2 ×
106 cells/
dish

2 days 7.2 × 106 cells/rat VEGF and HGF
secretion

Cell sheet retention at
least for 2 weeks

Enhanced angiogenesis
Suppression of microvascular
injury
Suppression of fibrosis
Improvement of renal function

Neuron [111] Rat stroke model Adipose
tissue

8.8 cm2

(35 mm
dish)

1 × 106 cells/
dish

2 days 3 × 106 cells/rat
(triple-layered
sheets)

IGF-1, HGF, VEGF,
and TGF-ß1
secretion
single-cell condition)

Cell sheet retention at
least for 2 weeks

Enhanced angiogenesis
Enhanced neurogenesis
Behavior improvement
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medical needs in multiple organ diseases. Additionally, establishing human MSC sheet treatments and thera-
peutic mechanisms in one initial target disease could support expansion of related new MSC-based therapeutic
strategies for other diseases in the future.

Conclusions
Cell sheet therapy strategies are well-established in numerous preclinical and clinical applications using diverse
cell types. TRCD-based MSC sheet technology in particular is now described in diverse preclinical models and
some early pilot human clinical reports. While autologous human MSC sources are first-in-human for cell
sheet therapeutic use, allogeneic human MSC sources are currently more attractive to produce new scalable,
affordable, histocompatible and widely distributable cell sheet-based therapies for tissue regeneration, exploiting
their recognized differentiation potential, immunomodulatory capacity, and diverse paracrine secretome at
transplanted specific organs. Moreover, allogeneic human MSC therapies are shown scalable due to readily
accessible cell sourcing and cell banking systems, enabling phenotypic and genomic stability for safety and effi-
cacy control and off-the-shelf cell sheet availability for broad clinical use. Thus, allogeneic MSC sheets repre-
sent an attractive cell therapy strategy to provide more reliable, novel therapies to address diverse unmet
medical needs.

Figure 3. Enhanced tissue recovery after MSC sheet transplantation onto diseased kidney.

Schematic depiction of mesenchymal stem/stromal cell (MSC) sheet strategy. MSC sheets are transplanted over diseased

kidney sites in an ischemia-reperfusion injury (IRI) model. Two-weeks post-transplantation, MSC sheets remain on kidney

cortex surface and improve kidney functions as evaluated by levels of serum creatinine and blood urea nitrogen. In addition,

renal tubule and epithelial cell injury in this IRI kidney model are ameliorated, and renal fibrosis, the final common product of

chronic kidney disease, is significantly suppressed with enhanced neovascularization in MSC sheet transplantation group

compared with non-treatment and single-cell administration groups. These findings suggest that MSC sheets might provide

new therapy options for treating kidney disease.
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Summary
• Cell therapies in conventional injectable cell suspension forms currently lack sufficient

homing, disease site retention, reliable potency, and durable therapeutic responses for local
diseases.

• Human MSCs offer substantial therapeutic benefits if quality control features for allogeneic
sourcing and disease use are known.

• Juvenile chondrocytes harvested from routine polydactyly surgical discards are an attractive
source of MSCs amenable to scaling, banking and allogeneic cell sheet use to regenerate/
replace the damaged human cartilage.

• MSC sheet transplantation rapidly engrafts and elicits therapeutic signaling in situ via secreted
paracrine factors to provide a new strategy for tissue regeneration in various diseases.

• TRCD-based MSC sheet technology is a feasible approach as demonstrated by its safety and
efficacy in multiple preclinical and clinical studies.
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