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Abstract: The application of mesenchymal stromal cells (MSCs) from different sources, including
bone marrow (BM, bmMSCs), adipose tissue (atMSCs), and human term placenta (hPSCs) has
been proposed for various clinical purposes. Accumulated evidence suggests that the activity of
the different MSCs is indirect and associated with paracrine release of pro-regenerative and anti-
inflammatory factors. A major limitation of bmMSCs-based treatment for autologous application
is the limited yield of cells harvested from BM and the invasiveness of the procedure. Similar
effects of autologous and allogeneic MSCs isolated from various other tissues were reported. The
easily available fresh human placenta seems to represent a preferred source for harvesting abundant
numbers of human hPSCs for allogenic use. Cells derived from the neonate tissues of the placenta
(f-hPSC) can undergo extended expansion with a low risk of senescence. The low expression of HLA
class I and II on f-hPSCs reduces the risk of rejection in allogeneic or xenogeneic applications in
normal immunocompetent hosts. The main advantage of hPSCs-based therapies seems to lie in the
secretion of a wide range of pro-regenerative and anti-inflammatory factors. This renders hPSCs as a
very competent cell for therapy in humans or animal models. This review summarizes the therapeutic
potential of allogeneic applications of f-hPSCs, with reference to their indirect pro-regenerative and
anti-inflammatory effects and discusses clinical feasibility studies.

Keywords: mesenchymal stromal/stem cells (MSC); placenta-derived mesenchymal stromal cells (hP-
SCs/pMSCs); bone marrow MSCs (bmMSC); adipose tissue stromal cells (atMSCs); pro-regenerative
effects; xenogeneic cell delivery; regenerative cell therapy; cell-based immune modulation

1. Development of the Concept of Cell Therapy for Pro-Regenerative Treatments
Stem Cells: Sources and Proposed Roles in Tissue Regeneration

The definition of stem cells is not straightforward. The relevant qualities of such
cells depend initially on their proliferative potential and the expectations for their trans-
differentiation to mature cells of different target tissues [1]. The possibility of expanding
these cells in vitro rendered them promising candidates for different potential applica-
tions in regenerative therapy. The anticipated genetic predisposition of the delivered
cells is based on inherited genetic and epigenetic differentiation potential, as well as the
environmental conditions in the implantation site [2].

The high interest in stem cells rose based on early experiments and relevant clinical
application, based on harvesting and implanting BM hematopoietic stem cells (HSC) [3,4].
The IV injected progenitors homed to the BM to produce a wide range of hematopoietic
cell phenotypes as a basis for the recovery of the whole failing hematopoietic system [4].
These findings incited the use of other stem cell sources for pro-regenerative therapy of
various other failing target tissues [5,6]. Unlike the recovery of the hematopoietic system
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by HSC in remote IV delivery, the expectations for their homing to the target malfunction
tissues to replace the damaged cells has not materialized. Rather, most of the cells were
trapped immediately in the lungs’ capillaries as well as other highly vascularized tissues [7].
In contrast, the regenerative potential of other stem cells has been documented in many
studies upon local administration (see below).

Regenerative cell therapies in the fast-emerging field of tissue engineering are based
on the anticipation that delivered cells rebuild the affected tissues [8–15]. Various tech-
nologies tested to introduce adequate stem cells for the construction of functioning tissues
and organs, both in vitro and in vivo, have had only minimal success [8,16–23]. In most
cases, in vitro-constructed non-vascularized 3D tissue-engineered complex tissues based
on differentiated stem cells seemed to fade upon their implantation. This failure derives
from the lack of immediate vascularization and supply, which is an inherent basic obsta-
cle that affects the survival and growth of the implanted cellular tissue constructs. This
affects certain tissue types, such as cartilage, less, as the degree of vascularization is less
critical for the survival of chondrocytes in 3D tissue structures [17,24–28]. Other directions,
where cells only were introduced, with the expectation that they serve as “spare parts” for
re-cellularization of ill tissues [29–32], have not turned out to be highly applicable.

One of the major promising breakthroughs in stem cells research was the introduction
of multipotent embryonic stem cells (ES cells), isolated from the gastrula at an early
stage of human fetal development [2,33]. These multipotent ES cells, as well as induced
stem cells (iPS cells, which present ES cell features), present similar trans-differentiation
potentials [34,35]. Due to these abilities the pluripotent stem cells were initially posed
as a promising basis for various directions in tissue engineering [36–39]. Up to now, ES
and iPS cells have had limited clinical applications due to biosafety concerns [2,40–42].
The few applications that may be considered, but not approved, for clinical application
include projects such as the attempt to repair genetic skin disorders [43] or to regenerate
the pigment epithelium [40,41]. In addition to ethical concerns, a limitation for clinical
application of ES and iPS cells can be attributed, as least in part, to the risk of uncontrolled
differentiation to tumors and teratomas [44–47]. However, part of this hurdle may be
overcome by novel protocols generating iPSCs without recombinant viral vectors, but their
pluripotent nature may still pose a problem of a formation undesired tissues. The main
current applications of different types of MSCs for therapeutic uses derive from the highly
significant pro-regenerative and immune-modulatory paracrine effects [48–55]. These
findings diverted gradually the focus of the field of stem cells from tissue engineering to
therapies based on the paracrine effects of MSCs. In such cell therapies, the activity of the
cells seemed to be less dependent on the “stemness” of the cells and their differentiation
potential and was associated more with the indirect effects mediated by the secretome of
the therapeutic cells [56–61].

2. Therapies Based on Mesenchymal Stem/Stromal Cell (MSC) Injections
2.1. Properties and Phenotype of bmMSCs and MSCs Isolated from Other Tissues

The fibroblast-like matrix-adherent colony-forming cells, referred to as mesenchymal
stromal or stem cells (both under the widely used abbreviation MSCs), were initially
described several decades ago. The bona fide description of bmMSCs as stem cells is based
on their self-renewal capability and their ability to differentiate to cells of mesodermal
tissues, mainly osteoblasts, chondrocytes, and adipocytes [45,62,63]. The main advantage in
such a stable cell phenotype was that the implant of bmMSCs from different mesenchymal
tissues, unlike ES and IPS cells, seemed to be less associated with risks of forming teratomas
or uncontrolled malignant transformation [45,64–66].

bmMSCs and stromal cells harvested from other tissues have been tested for regen-
erative medicine in various animal disease models. Though the bmMSCs differentiated
into several mesodermal cell phenotypes in vitro, in vivo studies reported that bmMSCs
contributed to bone formation, while differentiation to other cells such as chondrogenesis
remains questionable [27,67–69]. On the other hand, the more promising direction has been
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based on the accumulated findings showing that the MSCs induced a broad range of anti-
inflammatory, immune-modulatory effects [70–81], and pro-regenerative effects [82–86],
which both set a basis for more practical therapeutic applications [87,88].

2.2. Shared Features and Variations in the Phenotype of MSCs from Different Tissue Sources

In general, all MSCs seem to share a typical set of common mesenchymal cell surface
antigens, which are in part different from the markers of other cell lineages, such as
hematopoietic and endothelial cells [45,89–91]. Based on the accumulated data in recent
years, it is preferred to describe MSCs as mesenchymal stromal cells, without referring
to their “stemness” as a basis for both their pro-regenerative activity [68,92–94] and their
potential role as building blocks of the affected tissues [89–91]. In this context, early studies
showed that injection of MSCs or dermal fibroblasts may accelerate tissue regeneration in a
model of wound healing in irradiated skin [95]. This is similar to the effects so far attributed
mainly to bmMSCs [96,97], which are commonly considered as the gold standard of an
optimal source of active MSCs [1,53,98–105]. However, this claim is not always justified,
since MSCs from different other tissues, such as PSCs, have shown equivalent or even
higher potency, as described below.

2.3. Characterization of Different Tissues’ MSCs Based on Shared Surface Protein Markers

Major efforts along the last few decades identified alternative tissue sources for isolat-
ing MSCs for regenerative therapy application [64], including adipose tissue [106,107], cord
blood [108,109], skin [110], vascular tissues [111], the roots of shed exfoliated deciduous
teeth [112,113], and term placenta [114–122], including the umbilical cord and Wharton’s
jelly [118,123–126].

MSCs isolated from these tissues by standard techniques may present in a blend of different
cell types, enriched by cell adhesion and the choice of expansion medium. By definition,
matrix adhering cells expressing the MSCs’ markers without expression of any of the specific
hematopoietic and endothelial cells’ markers are categorized as MSCs [127–129]. Specifically,
some surface markers are considered as a proof of the identity of the isolated MSCs, including
CD73, CD90, and CD105 and complemented by other cell surface markers, such as CD29,
CD54, CD146, CD102, CD166, and CD271 [87,116,130] (Figure 1). The proposed interpretation
of MSC markers as an indication of their differentiation potential does not seem to be
adequately substantiated [131–133]. A meta-analysis classifying MSCs based on a database
of more than 50 published studies showed discrimination of MSCs from non-MSCs with
more that 95% accuracy by the above markers’ expression [134]. Additional MSCs-related
markers include CD73, CD105, CD106, and CD140 (PDGF receptor B). Furthermore, CD44
and CD90 were claimed to discriminate MSCs from fibroblasts [134,135].

In their gene expression level, cells classified as bmMSCs expressed 425 genes at
significantly different levels compared with non-MSC fibroblasts [134]. A panel of experts
proposed, based on a review of bmMSCs research status, a set of consensus surface markers
for bmMSC [64]. This includes CD90 and CD44, which are dominantly expressed on
fibroblasts, while hPSCs presented a distinctly high expression for CD73 [135]. CD146
expression in bmMSCs was reported in MSCs in all investigated culture conditions [136],
but its expression on hPSCs depends on cell culture conditions (data not shown). CD166
seemed to be a more specific marker on hPSCs, differentiating them from most other types
of mesodermal stromal cells [116].
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Figure 1. A shared phenotype of MSCs surface markers and secretome from different cell sources. MSCs from different
sources seem to have a wide range of shared features in their cell surface markers, secretion profile of growth factors,
cytokines, and miRs. The significant difference between the MSCs from different tissue sources may lie predominantly in
the levels and profile of the factors secreted and the degree of their activation by the induction of these factors secretion. The
data presented were assembled mainly based on the reviews on MSCs of Pittenger et al. [87], Eleuteri and Fierabraci [88],
and on the studies on PSCs of Pinzur et al. [114] and Adani et al. [116].

2.4. Characterization of MSCs from Different Sources by Their Secretion Profiles

MSCs isolated from different tissue sources seem to have similar a secretome, with
variations in the amount and proportions of the different components [137–139]. In addition
to the inherent differences between the different sources of the cells, this parameter may
also depend on culture and growth conditions of the cells [59,61,88,140–142]. The main
variations between the different types of MSCs may derive also from the sensitivity to
stress signal receptors on the MSCs [143], although this point needs further investigation.
Other factors may derive from the variability in the rate and efficiency of the protein
synthesis machinery of the different MSCs [144]. These parameters may dictate the yield
and ratio of the relevant secreted proteins per activated cell. Nevertheless, in the lack of
sufficiently adequate comparative studies, this issue deserves further research. Of note
is that a major factor in the effect of the delivered cells might depend on their survival in
allogeneic/xenogeneic delivery to the target tissues of the treated recipient [58]. The hPSCs
from the fetal tissues of the placenta may have an advantage, since they have lower HLA
expression, which may explain why during long pregnancy the fetal placental tissues are
not rejected by the non-matched maternal immune system, which is shared by the vascular
system of the maternal placenta. The specific relevant properties of hPSCs, which may
somehow differ from regular MSCs secretome, are discussed below.

Recent studies have attempted to overcome the limited ability of identifying and dis-
criminating between different types of MSCs by using advanced molecular transcriptome



Int. J. Mol. Sci. 2021, 22, 5302 5 of 23

and proteasome analyses [145–147]. Transcriptomic profiling suggested that expression
of the adhesion molecule CD106 (VCAM1) and of the leptin receptor (LEPR) could serve
as bmMSCs’ specific gene signatures, while the glycoprotein CD226 and the adhesion
molecule CD56 (NCAM1) could serve as gene signatures of hPSCs. In contrast, no surface
molecule has so far been proposed to define specifically atMSCs or MSCs from fibroblasts
of skin or other tissues [135]. Comparing the transcriptome of bmMSCs with ESCs and
ESC-derived clones of MSCs, open reading frames of some 870 genes were found to be
significantly elevated in mesenchymal cells, specifically in MSCs [145]. Some studies
compared the transcriptome of human bmMSCs with other types of MSCs, such as hP-
SCs [116,148]. Significant differences in some homeobox genes were shown in placental
cells. Specific transcripts such as PSG1–PSG7, PSG9, and nestin were higher, while most
notably, Runx2 and Twist were significantly lower in pMSC, explaining their rather low
osteogenic differentiation potential in vitro [148]. Other studies focused on comparing
human MSCs from different sources, including BM, AT, and placenta with structural tissue
fibroblasts by transcriptomic profiling [135]. However, a consensus on these findings still
needs to be established, especially since the transcriptome of the cells may depend on the
degree and extent of stress signals to which the cells are exposed, as shown for instance for
the profile of related protein secretion in xenogenic hPSCs injection for mitigation of acute
radiation syndrome [114]. The bmMSCs were compared to hPSCs following cell expansion
in cultures of high passages by the attachment to specific peptides; about 80–90% of hPSCs
populations attached to a fibronectin-derived or randomly designed synthetic peptide
while bmMSC populations seemed to attach less to these peptides [149]. This may relate to
significant differences in the expression of integrins between bmMSCs and hPSCs [148].

Since most cell surface molecules investigated so far seem not unique to specific MSCs
populations, they could not be used for enrichment of any specific type of MSCs from a
mixture of mesenchymal cell preparations. Still, differences in cell attachment properties
could be used to differentiate between MSCs from different sources. For instance, culturing
hPSCs on fibrin-coated dishes yielded low cell attachment to the surface and the hPSCs
stayed compact and round, while bmMSCs, under the same conditions, showed a flat,
spindle-shaped appearance [78]. This conformed to earlier study on the difference between
bmMSCs and hPSCs with respect to different cell–matrix interactions. Such differences
may contribute to directed cell migration and may possibly induce some homing of MSCs
to different niches, although this approach still needs to be substantiated [149].

The cloning and systematic expansion of human bmMSCs and detailed analyses showed
differences in phenotype plasticity characteristics in vitro [150]. The current understanding is
that the key benefit of using different types of MSCs for cell therapies is associated with their
paracrine effects, as outlined above [60,69,114,151–155]. In addition, extracellular vesicles,
i.e., microvesicles and exosomes, may carry a significant part of regenerative factors from
the MSCs to neighboring cells, as well as to the circulation [156–158], thus opening new
avenues for cell-free MSC-therapy, using supernatants of these cells collected under GMP-
compliant conditions [114,159,160]. A great portion of the secreted factors of MSCs are
packed in nanoparticles such as exosomes, which are typically 50–100 nm in diameter.
Exosomes derived from endosomes are released following a fusion of late endosomes with
the cell membrane. The proteins can also be released in micro-vesicles generated directly
by budding from the cell membrane [161], which may reach sizes up to 1 µm. Therefore,
extracellular vesicles may present some typical cell membrane-bound surface antigens,
such as adhesion molecules integrin β1 (CD29) and glycoprotein CD44, ecto-5′-nucleotidase
(CD73), or endoglin, a component of the TGF-β receptor (CD105) complex [158]. They
also contain cytoplasmatic proteins, including components of intracellular signaling such a
kinases or cytokines, messenger RNA, and small micro-RNA molecules (miRNA or miR).
The released extracellular vesicles contain a variable panel of proteins whose composition
depends on their source (BM, AT, or placenta) and activation status of the respective cell.
This difference in vesicle cargo may have specific relevance to the regenerative potential of
the MSCs when the paracrine factors may play a role in specific clinical situations.
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Interestingly, extracellular vesicles from different sources may also have different
clinical potential. The atMSCs seemed to have superior regeneration potential for angio-
genesis due to secretion of IGF-1, VEGF, and TGF-β1. In vitro release of such vesicles
induces the expression of angiopoetin-1 in endothelial cells. One may hypothesize that
PSCs-derived micro-vesicles will contribute to angiogenesis as well [130]. A major cargo
of the micro-vesicles also contains regulating miRNAs that may contribute to the effect of
MSCs treatment and PSCs [88,153,162]. Here also, accumulating evidence suggests that
the patterns of miRNAs may differ in MSCs isolated from different sources. For instance,
miR125 was prominent in bmMSCs but miR494, which was detected in other MSCs types,
was not detected [162] (Figure 1).

2.5. MSCs for Modification of the Immune System Activity and Reduction of
Inflammatory Responses

A major field of MSCs is dedicated to investigating their effects on the immune system
in various preclinical and clinical studies. This includes graft-versus-host disease [163] and
autoimmune diseases, such as lupus and arthritis and even prohibition of some cancer cell
proliferation [164–166]. A potential benefit of MSCs treatment was also proposed for other
conditions.

In early studies it was noted that MSCs, unless specifically activated, express very
few MHC class I antigens and no MHC class II molecules [167]. They were also found to
express no T-lymphocyte co-stimulatory molecule CD80 (alias B7-1), which is expressed
on dendritic cells presenting an antigen in the MHC context and as activating signal to T
cells via CD28. The lack of MHC class I and class II molecules on MSCs, in combination
with lack of CD80 and CD86 may strengthen the immune modulation of these cells by
inhibiting maturation of dendritic cells and suppressing proliferation and function of T, B,
and natural killer cells [167].

Preliminary data suggest that human MSCs express additional immune-checkpoint
antigens, which further augment their anti-inflammatory action. Activation of immune cells
through toll-like receptors (TLR) activates the different paths of the innate and adaptive
immune responses, but activation of TLR on MSCs enhanced their immunosuppressive
potential [168]. Their activity following their potential infiltration into tumors may also
result in their protection from the immune system [169].

Another interesting emerging direction in cell therapy relates to the role of mito-
chondria in the regenerative process. It was suggested that implanted cells may not only
contribute to the health of the mitochondria in the cells of the target tissue but may even
transfer healthy mitochondria to the repaired failing tissues [170–172].

3. Application of hPSCs from Mature Placentae for Tissue Regeneration and
Immune Modulation

Unlike the BM, the human placentae are an easily available tissue source of fully dif-
ferentiated human mesenchymal cells [173]. Figure 2 shows the basic tissue structure of a
full-term placenta, with special reference to the mesenchymal tissue compartment from which
stromal cells could be isolated. In view of the vast availability of the disposable human full-term
placentae, many studies focused on this source for isolation of MSCs [174–179].
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Figure 2. The structure of full-term placenta and the tissues from where hPSCs are isolated. The
structure of the placenta. The placenta is composed of the fetal and maternal tissues interconnected
with a border and separate network of blood vessels. It is clearly demonstrated that the source of
the stromal cells, in case the tissue samples taken are not carefully dissected out, may contain the
combination of the fetal and maternal cells from two separate individuals.

3.1. The Isolation of hPSCs from Full-Term Human Placenta and Their Expansion for Pre-Clinical
and Clinical Studies

The hPSCs are often termed “placental mesenchymal stem cells” (pMSCs) based on the
tendency to label any mesenchymal stromal cells isolated from various other tissue sources as
“MSC”. Such an assumption is based on the expectation that all MSCs share some properties and
could serve as alternative for bmMSCs in cell therapies [118,120,173,180–186]. Nevertheless,
the placenta presents as a complex tissue generated as a whole from two individuals. Cells
isolated from placentae therefore come as complex blends containing probably a higher
variety of cell types when compared, e.g., to blends of BM or adipose tissue-derived stromal
cells [187].

Early studies expected the hPSCs to serve as building blocks of damaged tissues [182,187–193],
but they seem to have limited differentiation potential [120,126,137,148,181,184,194–196].
The activity of hPSCs in allogeneic and xenogeneic administration seems to derive from their
rich secretome, activated in response to a wide range of stress signals [114,130,180,197–203].
The hPSCs isolated from the whole placentae and further expanded tend to produce
cultures primarily composed of cells from the maternal placental tissues (m-hPSCS)
(Figure 1) [115,116,204]. Under careful extraction of the fetal tissues, fetal only hPSCs
(f-hPSCs) can be enriched.

A major cellular component of the placental tissues is the multinuclear syncytium of
trophoblasts mixed with supporting cells. Only isolated trophoblast stem cells in early
gestation could be cultured in vitro as organoids for the study of different trophoblast
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sub-populations. Nevertheless, it is not feasible to culture and expand trophoblasts from a
mature full-term placenta [130,205].

The hPSCs isolated from the fetal versus maternal placenta and expanded separately
differ in some features of their phenotype, their secretome, and activity. The shape of both
types of hPSCs also differs from fibroblasts or bmMSCs (Figure 3). The hPSCs are isolated
from a placenta from two interlaced organs derived from two allogeneic individuals—the
maternal placental tissues with the maternal genotype and the fetal placenta tissues, where
the cells originate from the tissues, with the genotype of the developing fetus. The hPSCs
isolated from the two distinct tissue sources of the placenta seem to demonstrate different
properties and pro-regenerative activity [206–208].

Figure 3. Difference of shape of cultured PSCs vs bmMSCs. The difference in the shape of freshly
cultured isolated human hPSCs and human skin fibroblast (HF). The hPSCs spread in culture can
reach a size of up to ~100 µm, while the fibroblasts are much smaller in size and grow in much more
condensed cultures. Nevertheless, both cell types show almost similar surface markers, except for
CD166, which is expressed more in PSCs (see also Figure 1).

The identification of fetal hPSCs is not straightforward [118,122,125,208–214]. In
the case of a male newborn, the validation of the hPSC origin can be based on gene
expression or detection of Y-chromosome staining [116,215] (Figure 4A). The f-hPSCs can
be isolated from different fetal placental tissues [216,217]. Some studies have examined the
difference between hPSCs from the chorionic plate and the tissues fused to it, such as the
cord and Wharton jelly. However, significant differences between the cells from various
fetal placental tissues could not be demonstrated [83,217–223]. Some studies therefore
proposed the use of hPSCs from Wharton Jelly, an immune-privileged tissue from which,
by definition, all hPSCs are of fetal origin and apparently with similar phenotype as chorion
derived f-hPSCs [199,217].

When isolating hPSCs from adjacent fetal and maternal tissues, even when the source
of fetal tissues is carefully dissected from the chorionic plate, a mixture of maternal and
fetal hPSCs and cells with heterogeneous properties can be anticipated. We assume that
one of the subpopulations may overgrow the culture and thus reduce the proportion of
the other [224]. Nevertheless, when the tissue is carefully sampled only from the chorionic
plate, the cord, or the Wharton Jelly, the isolated hPSCs yield preparations enriched for
f-hPSCs [116,206,219,225,226]. This may have a major impact on the properties of cells
produced, as f-hPSCs are known for higher regenerative potencies than m-hPSC, at least
for inducing the regeneration of the depleted BM. But careful separation of fetal tissues is
important because m-hPSCs tend to dominate cultures quickly [227,228].
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Figure 4. An example of successful hPSCs-based treatment for mitigation of acute radiation syndrome by remote PSCs
injection. Example of the indirect systemic effect of the f-hPSCs as demonstrated in studies on the mitigation of acute
radiation syndrome. Mice were total body irradiated with a lethal dose and then treated by fetal human PSCs. The X/Y
chromosomes staining and cell surface markers profile of the cells are presented in (A). The CFSE-stained f-hPSCs seemed
to stay in the injection site in the muscle, from where their secretome must have reached the circulation to help regenerate
the BM (B). The mice treated with f-hPSCs had better mitigation of ARS than PSCs isolated from the maternal placenta (C),
with impressive recovery of white blood cells, platelets, and red blood cells (D–F). (G) The cytokine production (shown as
yellow peak) represents the kinetics of major related secretome in the plasma. The peak of the kinetics of plasma levels of
the f-hPSCs secreted human cytokines coincided with the apparent recovery of the cell-treated pre-irradiated mice and the
increase of their BM progenitors (red line) in comparison with the progenitor number in the few surviving non-treated
pre-irradiated mice (green line). The figure presented was re-plotted based on the data in the reports of Gaberman et al. [206],
Pinzur et al. [114], and Adani et al. [116]. * indicates a significant difference between cell-treated (+IM PSC) and sham-
treated (vehicle) animals.

3.2. Suggested Modes of Action of hPSCs-Based Therapies

Accumulated data support the observation that most stem and stromal cells therapies,
leading to the repair of compromised tissues and organs, are not necessarily associated
with their physical integration in the repaired organs or with replacing cells in the damaged
tissues, as some studies seem to propose [188,229–232]. Rather than their pro-regenerative
activity and high potency being used to support the healing of damaged tissues, their angio-
genic and anti-inflammatory effects seem to be associated with their ability to respond to
stress signal and to subsequently induce pro-regeneration and anti-inflammatory effects by
releasing the corresponding growth factors, cytokines, and extracellular vesicles [114,233].

3.3. Pro-Regenerative Therapy with hPSCs from Commercial Sources

Many studies used commercially produced hPSCs, such as the PLX cells produced
by Pluristem or PDA-1 cells by Celgene. Commercial companies purposely do not fully
disclose in peer-reviewed scientific publications the exact methods of isolation, quality
measures, and production of such cells. However, production methods employed will have
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an impact on cell characteristics. This tendency of corporate entities to disclose as little
as possible critical information on the cells is a major drawback for the comprehension
of their activity and exact composition, which may be crucial for understanding their
mode of action. In general, the f-hPSCs provide systemic effects when applied in highly
vascularized tissues [114,206]. Nevertheless, this may not be always the case. For instance,
IM injection of f-hPSCs failed to reduce the cerebral damage in a mouse model of induced
brain inflammation, probably due to the blood–brain barrier. In contrast, the efficacy of
f-hPSC was highly significant after intracerebral injections [234].

3.4. hPSCs Therapy as an Example of Their Use for Mitigation of Acute Radiation
Syndrome (ARS)

BM regeneration in ARS has been a therapeutic challenge. Since hematopoietic stem
cells are dependent of the support of BM stromal cells, the administration of bmMSCs
was proposed to help recover severe radiation-induced damage [235,236]. Intramuscular
(IM) injection of f-hPSCs mitigated experimental ARS by induction of regeneration of the
radiation-depleted BM [206,237,238]. The xenogeneic therapy was based on expanded
hPSCs, enriched with high proportion of f-hPSCs, termed PLX-RAD (or commercially
tagged as PLX-R18) [206]. The injected cells remained at the injection site without migration
to other organs [239,240] (Figure 4). The product with a high proportion of f-hPSCs out-
performed significantly the benefit of the product containing m-hPSCs only [206,237,238].
The effect seemed to relate to the response of the hPSCs to stress signals induced by the
experimental injury, which provoked the release of the regenerative factors described above.
The kinetics of the hPSC responses correlated well with the stress condition of irradiated
mice. Of note, when injected to non-irradiated mice, the secretome of the f-hPSCs was not
activated [114].

Based on these results, Gorodetsky’s group disclosed a simple procedure for the
direct isolation and expansion of pure population of f-hPSCs, which contained only cells
from the chorionic plate [116]. The intramuscularly injected pure f-hPSCs induced the full
regeneration of the hematopoietic system and BM in an ARS mouse model after lethal
irradiation (Figure 4D–F) [130,206]. The use of f-hPSCs isolated from Wharton Jelly was
also proposed for the mitigation of radiation damage of lower doses, which seems to
confirm a higher pro-regenerative effect of f-hPSCs derived from placenta [199,217]. Pre-
clinical studies with pure f-hPSCs seem to yield beneficial effects, surpassing the effects of
injections of G-CSF only [241].

3.5. The Anti-Inflammatory Effect of the hPSCs

Various types of MSCs and PSC have been claimed to have anti-inflammatory ef-
fects. Most of these studies related to inflammatory lung failure [53,73,242–245]. These
treatments have been tested successfully also for other severe inflammatory conditions,
including colitis and skeletal inflammation [53,243,246–250]. In induced CNS inflammation,
a significant effect of the cells was reported only upon direct intra-cerebral injections. It can
be concluded that upon IM injection of f-hPSC either the penetration of the cells’ secretome
to the brain or the relay of stress signals from the brain to activate the cells in remote
injection sites (i.e., muscle) are blocked by the blood–brain barrier (BBB) [233]. To overcome
the possible BBB obstacle and to increase the effect of the therapeutic cells, their injection
into the olfactory bulb was proposed [251].

Accumulating evidence suggests that the diseased tissue targeted by MSCs or the
current health condition of the patient treated—in pre-clinical situations this would be
the stage of a disease/defect induced in the experimental model—may modulate the
regenerative potential of such cells. MSCs applied during flare of inflammation, in different
stages of an (autoimmune) disease seem to act differently from MSCs applied during
remission or injected in a healthy environment [252].

Secondary inflammatory processes may derive from various disorders such as diabetes
mellitus. The hPSCs were shown to be useful in treating the inflammatory complications
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of diabetes [56,74,253–255]. An extensive study showed effects of f-hPSCs on pancreas
regeneration and experimental diabetes in a rat model [256].

Typical to placental stromal cells, the f-hPSCs were found to express mesenchymal
stromal cell markers [205], as well as CD166, a common marker of mesodermal cell types
and MSCs [115,257]. They also are positive to CD146 (MCAM), expressed in different
mesenchymal cells, including pericytes. The negligible expression of HLA-G (class I)
and HLA-DR in f-hPSCs seems to contribute to the immune-tolerance of these cells in
both allogenic and xenogeneic injections [258,259]. Based on these insights, the f-hPSCs
that were isolated only from the fetal placental tissues and further expanded can be
proposed as an optimal indirect pro-regenerative and anti-inflammatory treatment for
various conditions [116,130,234]. Other reports on the effect of these cells on the recovery
from inflammatory bowel disease and reduction of skin and hair follicle damage following
high dose local irradiation are now prepared for publication. Preclinical studies comparing
the efficacy of atMSCs vs PSCs to regenerate the sphincter muscle in an animal model for
urinary incontinence are well under way. Interestingly, MSCs derived from the amniotic
membrane produced a secretome suitable for regeneration of musculoskeletal tissues [260].

The biological rational for the expectation of better responses from f-hPSCs is that
these cells, which originate of the chorionic plate, share and connect to the fetus’ circulation.
This may explain the apparent higher activity of f-hPSCs, which can respond to the fetal
stress signals carried in the fetal circulation along the development of the pregnancy, in
confronting various acute stress messages, such as depleted function of the hematopoietic
system [261–263]. This may explain why preparations enriched for f-hPSCs were more
effective than preparations of m-hPSCs consisting of cells from maternal tissues only [206].

4. Summary and Conclusions

The mainstream approach of attempting to use stem cells implants for the reconstruc-
tion of degenerated tissue and for the replacement of cells in failing organs has so far
yielded disappointing results. This diverted the focus of cell therapy from dealing with the
differentiation potential (“stemness”) of the cells while attempting to develop treatments
based on the indirect and paracrine regenerative effect of this cell therapy. For this goal,
MSCs from different sources seem to pose as preferred candidates based on their role in
wound healing and tissue regeneration in many disorders. The most studied cells are the
bmMSCs, isolated from BM in low numbers and expanded to high numbers by passaging.
A wide range of projects demonstrated that MSCs isolated from various other tissues may
have pro-regenerative, anti-inflammatory, and immune-modulating activity that surpasses
the effects observed initially with bmMSCs.

The mature, full-term fresh placenta is an easily available disposable healthy bulk
organ. It contains cells from comparably young donors. Such cells are sensitive to different
stimuli and seem to adapt their secretome to the regenerative need of the donor. The
f-hPSCs seem to be the most potent candidates for PSCs-based therapies. The rational for
this difference may lie in the role of the fetal part of the placenta in the direct support and
nourishment of the developing fetus. Another advantage of f-hPSCs is their lower rejection
rates, since they derive from the fetal placenta, which is in a very tight interaction with
the allogeneic maternal tissue and blood that would otherwise reject a foreign tissue. This
renders the f-hPSCs an ideal source of allogeneic cells for (pre-) clinical studies.

In continuation of earlier studies on the use of MSC for regenerative medicine, m-
hPSCs and f-hPSCs have demonstrated very impressive activities in treating severe com-
plications associated with tissue degeneration and severe inflammation. The mechanistic
explanation of their activity and their diverse applications deserve further thorough inves-
tigation.
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Abbreviation

MSCs mesenchymal stromal/stem cells
PSCs placental stromal cells
f-hPSCs (or fet-hPSCs) isolated and expanded human placental stromal cells, from fetal tissues
m-hPSCs or mat-hPSCs isolated and expanded human placental stromal cells, from maternal tissues
HLA human leukocyte antigen antibodies
BM bone marrow
ES cells multipotent embryonic stem cells
iPSCs induced stem cells
IM, IP intramuscular, intraperitoneal
atMSCs adipose tissues MSCs
BBB blood–brain barrier
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