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The spirochetal pathogen Treponema pallidum causes 5 million new cases of venereal
syphilis worldwide each year. One major obstacle to syphilis prevention and treatment is
the lack of suitable experimental animal models to study its pathogenesis. Accordingly, in
this study, we further evaluated the responses of mice to Treponema pallidum.
Quantitative polymerase chain reaction showed that Treponema pallidum could
colonize the heart, liver, spleen, kidneys, and testicles of C57BL/6 mice, and the
organism may be able to rapidly penetrate the blood-brain barrier in mice by 24 h after
infection. In subsequent rabbit infectivity tests, we observed evident signs of the
microorganism in the mouse lymph node suspension. After infection, bacterial loads
were higher in the tissues than in the blood of C57BL/6 mice. Moreover, a significant Th1
immune response was recorded by cytokine assays. Flow cytometric analysis suggested
an obvious increase in the proportion of CD3+ T and CD4+ T cells in the spleen cells in the
infected mice. Thus, improving our understanding of the response of C57BL/6 mice for
Treponema pallidum will help to comprehensive elucidate the pathogenic mechanisms of
this bacterium and lay the foundation for the development of a new research model of
Treponema pallidum.

Keywords: Treponema pallidum, C57BL/6 mice, bacterial dissemination, inflammation, quantitative polymerase
chain reaction
INTRODUCTION

Syphilis, a chronic, multisystemic sexually transmitted disease, is caused by the spirochetal
bacterium Treponema pallidum subsp. pallidum (T. pallidum). More than 5 million new cases
occur annually worldwide, and outbreaks of syphilis often occur in low- and middle-income
countries, making syphilis the primary cause of adverse pregnancy and accelerated transmission of
acquired immunodeficiency syndrome in these regions (1, 2).

Rabbits are the most commonly used animal model in studies of syphilis because the pathological
changes and serological responses of rabbits after infection with T. pallidum are similar to those in
humans. However, although the bacterium was identified microscopically early in the 20th century,
our understanding of the pathogenicity of T. pallidum is still limited owing to difficulties in genetic
org January 2021 | Volume 11 | Article 5771291
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manipulation of rabbits. Additionally, appropriate immune
reagents have not been established, making such models even
more difficult to establish (3–6).

In contrast, mice, which have a well-defined genetic and
immunological background, are frequently used for studies of
many infectious diseases. Indeed, many studies of T. pallidum
infection in inbred mice have been reported. T. pallidum has
been shown to be able to infect mice and persist within mice.
However, infection in mice was not accompanied by skin lesions,
as observed in other animal models (7–9), and no further studies
have evaluated the merits and demerits of mice as subjects of
T. pallidum.

The relationship between bacterial dissemination and host
immune responses defines the severity of the disease and the
outcome of infection. Thus, to further clarify the relationship
between T. pallidum and different hosts and improve our
knowledge of the biology of this organism, we explored the
size and kinetics of treponemal burdens in the blood and tissues
of mice and the relationship of this organism with tissue
pathological injury from the start of the infection.
MATERIALS AND METHODS

Animals
Specific-pathogen-free male mice C57BL/6 (5 weeks old) were
obtained from SJA Laboratory Animal Co. Ltd. (Hunan, China).
New Zealand white rabbits were a gift from Professor Zhao
(University of South China). Antibiotic-free food was provided
to mice, and all mice were observed daily for lesions and overall
physical appearance. Live T. pallidum (Nichols strain) was used
for C57BL/6 mice challenge on the same day of extraction from
New Zealand rabbit testicles (10). The overall experimental
design flow is shown in Figure 1.
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Experimental Infection
After acclimation, mice were inoculated with 300 ml virulent T.
pallidum subsp. pallidum (Nichols strain) suspension (3 × 106 total
organisms). The inoculation was done by intradermal, intrarectal
and corpus cavernosum three sites, each of which was injected with
100 ml virulent T. pallidum subsp. pallidum (Nichols strain)
suspension (11). Equal PBS or equal amounts of testicular extract
from uninfected rabbits were injected into the control mice. Five to
six mice infected with T. pallidum were randomly euthanized at
various times after infection (1, 3, 7, 11, 21, 41, 62, 90, 120, and 151
days), and different types of biological samples were collected. To
perform rabbit infectivity tests, the inguinal, brachial, and axillary
lymph nodes were obtained from mice 11 days post infection for
inoculation of New Zealand rabbits, as described previously (11,
12). Based on daily observation of the rabbits and the results of
weekly seroconversion tests, rabbits were euthanized at week 9 after
inoculation, and testicular tissues were extracted for dark field
microscopy detection.

Extraction of DNA
DNA from blood and tissue samples was extracted using a
QIAamp DNA Mini Kit (Qiagen, Shanghai, China) according
to the manufacturer’s instructions. DNA from samples was
stored at -20°C until analysis by quantitative polymerase chain
reaction (qPCR).

qPCR
qPCR was performed on DNA extracted from blood and tissues
from T. pallidum-challengedmice according to the manufacturer’s
instructions. Primers used for T. pallidum flaA (endoflagellar
sheath protein, GenBank number M63142) and mouse b-actin
were as previously described (13, 14). Quantitative PCR was
performed in a 20-ml reaction volumes containing 2 ml DNA, 10
ml of 2× mix, 0.03 mM forward and reverse primers, and 6.8 ml
A

B

FIGURE 1 | Workflow of the animal experiment. (A) C57BL/6 mice in the treatment group were inoculated with 3 × 106 T. pallidum. Mice in the control group were
injected with 300 ml phosphate-buffered saline. (B) Five to six C57BL/6 mice infected with T. pallidum were randomly sacrificed at various time intervals after infection, and
their blood, heart, liver, spleen, kidney, testis, and brain tissues were collected for DNA extraction, pathological sectioning, and multiplex cytokine assays.
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ddH2O according to the instructions of the SYBR green I reagent
kit (Qiagen, Shanghai, China). All assays were run on a LightCycle
96 apparatus (Roche, Basel, Switzerland). The qPCR conditions
for amplification of flaA and b-actin were as follows: pre-
incubation at 95°C for 10 min; followed by amplification for 40
cycles at 95°C for 15 s, 55°C for 20 s, and 72°C for 20 s; and
melting curve analysis for one cycle at 95°C for 10 s, 65°C for 60 s,
and 97°C for 1 s. Data analysis was carried out according to the
standard curve method. Briefly, a 10-fold serial dilution from 107

to 101 copies of linearized plasmid DNA and a two-fold serial
dilution of mouse gDNA from 150 to 1.17 ng/ml were used to
construct standard curves for flaA and b-actin, respectively (15).

Pathology
Tissues were fixed in formalin and sent to the University of South
China for staining with hematoxylin and eosin. The
inflammation was determined by two pathologists, who
completed the histopathological evaluation in a blinded manner.

Multiplex Cytokine Assay
Systemic cytokine responses in mice infected with T. pallidum,
including serum levels of interleukin (IL)-2, IL-6, IL-10, tumor
necrosis factor (TNF)-a, and interferon (IFN)-g, were evaluated
on days 1, 11, and 151 and analyzed using a cytometric bead array
(mouse Th1 Panel [5-Plex] kit; BD Biosciences, USA) according to
the manufacturer’s protocol. Data were acquired on a BD FACS
Canto II flow cytometer (Becton Dickinson, USA) and analyzed
using FCAP Array software (Becton Dickinson, USA).

Immunophenotyping of T Cell Subsets
Spleens were collected from infected mice at day 11 and cell
suspension containing 1 × 106 splenocytes were prepared for
flow analysis. The cells were stained in accordance with the
manual. In short, the cells were incubated with Fc receptor
blocking antibodies for 15 min at 4°C after washing twice with
FACS buffer containing 1% bovine serum albumin, and stained
with surface markers CD3, CD4, CD8, CD62L, and CD44
(eBioscience Inc., CA, USA) in the dark for 30 min at 4°C.
After washing twice, the immunophenotype of the T cells were
identified by BD FACS Canto II flow cytometer (Becton
Dickinson, USA) and the experimental data were analyzed by
FACS Diva software (BD Biosciences, USA).

Statistical Analysis
Two-tailed Student’s t tests were used to compare the T. pallidum
load (flaA DNA copies/mg of mouse DNA) in different organs at
the same infection time. GraphPad Prism 7.0 software (San Diego,
CA, USA) was used for statistical analysis of the data. Results with
P values of less than 0.05 were considered statistically significant.
RESULTS

Clinical Manifestations of Infection
All C57BL/6 mice tolerated the infection well, without any
obvious clinical signs. In contrast, rabbits displayed obvious
symptoms of orchitis after 9 weeks injection of the lymph
Frontiers in Immunology | www.frontiersin.org 3
node suspension from infected mice. The specific experimental
results from rabbit infectivity tests are shown in Table 1.

T. pallidum Dissemination in Blood
Treponemal DNA concentrations (log2 flaA copies/mg mouse
DNA) in blood samples were measured by qPCR at different
times after injection. Similar to studies in rabbits, as early as 24 h
after injection, T. pallidum DNA was detected in the blood of
mice (13). As shown in Figure 2A, elevated levels of T. pallidum
DNA were evident on day 3 and reached peak levels on day 7.
The increase in bacterial load in infected mice was observed later.
As the infection time increase, the microorganism load in the
blood was maintained at a relatively stable level. No spirochetes
were detected in uninfected group (mice injected with PBS) or in
the negative control group (mice injected with an uninfected
rabbit testicular suspension) and the amplification curves were
shown in Figure S1.

T. pallidum Dissemination in Different
Tissues
To further explore the burden and dissemination of T. pallidum in
different tissues during infection, six organs were monitored by
qPCR at each time point (Figures 2B–G). Despite the fact that a
low concentration of bacterial DNA amplification was detected in
the six organs at 24 h after inoculation, the flaA concentrations in
the heart (P = 0.0425), liver (P = 0.0438), spleen (P = 0.020),
kidney (P = 0.045), and brain (P = 0.001) were significantly higher
than those in the blood at the corresponding times. The peak in T.
pallidum flaA amplification in each tissue occurred on day 7 or
day 11 after infection. Interestingly, we found that the kinetics of
the appearance of spirochetes in all tested tissues was similar, and
the burden of bacteria in each organ slowly decreased at different
rates, eventually reaching a relatively stable level. However, this
trend was not consistent with observations in the blood.

The burdens in various tissues were compared at the same
time. Differences in prevalence were observed in different organs.
As shown in Figure 2B, the mean concentrations of spirochete
DNA detected in the heart was greater than that in other tissues
at the corresponding time, with the exception of that on day 62.
In contrast, the average load of T. pallidum in the liver from day
7 after infection was lower than that in other tissues.

Pathology of the Target Tissue
Inflammation was present primarily in the livers of infected
mice, as shown in Figure 3A. Significant inflammatory changes
were not observed in other tissues, including the testicles (Figure
3B). Overall, the changes in the infected mice were minimal
TABLE 1 | Rabbit infectivity testing.

Rabbit testicles inoculated with lymph
nodes from micea

Seroconversiona Darkfield
analysis

Control (n = 5) – 0
Experimental group (n = 5) + (Day 20)b 5
January 2
021 | Volume 11 |
aThe inguinal, brachial, and axillary lymph nodes from mice infected on day 11 were
obtained for inoculation of New Zealand rabbits.
bThe “+” indicates positive seroconversion [reactive RPR (1:1) and TPPA].
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compared with the histopathology commonly observed in
patients with syphilis and in experimentally infected rabbits
(data not shown).

Mild Cytokine Responses Induced by
Infection With T. pallidum
To further characterize the systemic immune responses of mice
to T. pallidum, we evaluated inflammatory factors in the serum
of mice after different times. Th1-related inflammatory cytokines
(IL-2, TNF-a, IFN-g), which are involved in early defense against
Frontiers in Immunology | www.frontiersin.org 4
T. pallidum, were detectable in serum within 24 h after infection
and reached peak concentrations on day 11. Additionally, IL-10
(a Th2-related cytokine) was significantly upregulated on day 11,
which inhibited Th1-related immune responses. In contrast, IL-6
showed only minor upregulation (Figure 4).

T. pallidum Infection Induces Proliferation
of CD3+T Cells and CD4+ T Cells in Spleen
The proliferation of specific splenocytes in mice was detected
after 11 days of T. pallidum infection. Compared with the control
A B

FIGURE 3 | Tissues pathology in mice injected with T. pallidum. (A) The histopathological changes in the liver of mice 11 days after being attacked by T. pallidum
were significant. The arrows indicate marked inflammatory cell infiltration in liver tissue. (B) The testicles tissue of mice showed relatively mild pathological changes
with scattered inflammatory cells on day 11 after injection.
A B

D E F

G

C

FIGURE 2 | Sizes and kinetics of treponemal burdens in blood and other organs. The T. pallidum burden, expressed as log2 flaA copy number per mg mouse DNA,
was evaluated in experimental animals (n = 5 or 6) using qPCR (A) Blood, (B) Heart, (C) Liver, (D) Spleen, (E) Kidney, (F) Testicle, (G) Brain. T. pallidum was not
detected in mice injected with an equal amount of PBS and an uninfected rabbit testicular suspension.
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group, Flow cytometric analysis showed that that the proportion
of CD8+ T cells decreased (Figure 5C) when there was a
significant increase in the proportion of CD3+ T cells and
CD4+ T cells (Figures 5A–B) in the spleen cells in the infected
group. In addition, we examined the expression of CD44 and
CD62L in CD4+ T cells and CD8+ T cell populations because
CD44 was upregulated during effector T cells activation, whereas
CD62L was downregulated. It is puzzling that, in our
experiments, no significant changes in the proportion of
CD44high CD62Llow in CD4+ T cells and CD8+ T cells were
observed (Figures 5D–I).
DISCUSSION

T. pallidum causes systemic infection in humans and
experimental rabbits. Different animal models have been
tested, including mice; however, it seems that no model has
been shown to be better than rabbits. Moreover, except for two
studies (7, 16), no reports have demonstrated the development of
cutaneous lesions after T. pallidum inoculation in mice. Notably,
this bacterium can persist in mice and be transferred to rabbits
by lymph node inoculation (8). Therefore, here, we studied the
spreading trend of T. pallidum in mice and triggered immune
response. In all challenged animals, no mice showed macroscopic
lesions at the inoculation site or any other site, although T.
pallidum DNA was detected in different tissues by qPCR.
Subsequent rabbit infectivity tests also showed signs of
microorganisms in lymph node mixtures in infected mice.
These phenomena are consistent with previous studies,
indicating that we succeeded in infecting C57BL/6 mice.

The reason for the lack of obvious clinical manifestations in
mice infected with T. pallidum is complex and unclear. The
pathogenicity of bacteria and the interaction between the host
Frontiers in Immunology | www.frontiersin.org 5
immune response determine the severity of the disease and the
outcome of infection. As described by Folds and coworkers,
when mice were infected with T. pallidum in which the outer
membrane was incorporated with rabbit protein or host lipids, a
suitable microenvironment was not established to permit the
pathogenicity of the microorganism (7, 8, 16–18). Thus, the
pattern observed in mice may be similar to that occurring in
humans during latent infection. In view of latency can revert to
fulminant infection in humans, as observed in secondary syphilis
and some types of tertiary syphilis; we performed tests on mice
from day 1 to day 151. During this period, however, the mice
maintained a healthy appearance except for changes in the load
of T. pallidum in the organs.

Within hours to days, T. pallidum is able to disseminate
throughout various tissues from the infection site (19–22), and
our mice in this study showed similar characteristics. Strikingly,
the average concentration of T. pallidum DNA in mouse tissues
was always higher than that in whole blood at the same time
point. This feature, which was not often detected in rabbit
models, was consistent with the results of studies in other
pathogens in mice. Moreover, different inoculation methods
affect both the pathogenicity and tropism of pathogens (13,
23–26), and dynamic temporal and spatial regulation of T.
pallidum genes is important for its successful colonization,
dissemination, and invasion in hosts (27). In this study,
however, we did not detect T. pallidum gene expression levels.
We also showed that the contents of T. pallidum were higher in
the heart and spleen, suggesting that these organs may be more
inclined to provide T. pallidum with the necessary material for
survival (28). Moreover, the lack of heat shock response
regulated by s32 may hamper the attachment and replication
of T. pallidum in the liver when the internal temperature is too
high for optimal growth (29, 30). This phenomenon was
consistent with the results of Salazar’s experiments on New
A B

D E

C

FIGURE 4 | Cytokine responses in C57BL/6 mice following infection with T. pallidum. Various cytokines were detected in the serum of C57BL/6 mice on days 1,
11, and 151 after infection. [(A) IL-2, (B) IFN-g, (C) TNF-a, (D) IL-10, (E) IL-6]. Data from two independent experiments are shown (n = 3–6, mean ± SD; *P < 0.05,
**P < 0.01, ***P < 0.001).
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Zealand rabbits, but there is a difference with the results of
Silver’s experiments on mice (11, 13).

Neurosyphilis, a major complication that may causes death in
patients with syphilis, can occur at any time after infection.
Studies have shown that T. pallidum can break through the
blood-brain barrier at the beginning of infection and colonize the
brain tissue in both humans and experimental rabbits. Tp92 and
Tp0751 may be involved in this process by mediating the
adhesion of T. pallidum to host cells, although its exact
mechanism needs to be further elucidated (31, 32). Our results
suggested that the brain may be an important site for spirochetal
invasion, demonstrating consistent PCR positivity. But obvious
pathological changes were not recorded in mouse brain tissue.
Given the method of inoculation used in the study,
unfortunately, it is not clear whether spirochetes in the brain
are caused by the invasion of the spirochetes themselves or by
blood transmission. Changes in the load of T. pallidum in the
blood and tissues are thought to be the result of competition
between the ability of T. pallidum to avoid immune recognition
and the adeptness of the host’s innate and adaptive immune
responses to track down and eliminate the spirochetal pathogen.
In the past few decades, cellular immune responses, macrophage
activation, and opsonic antibody production have been shown to
be effectors of T. pallidum clearance (33–35). The concentration
of T. pallidum in the blood first decreased significantly after
infection in our experiment, which may indicate that activation
of immune responses in the blood occurred earlier or stronger
Frontiers in Immunology | www.frontiersin.org 6
than that in tissues. Mild changes in treponemal DNA levels in
tissue samples were consistent with the observed serological
responses in the mice. Although humoral immune responses
have not yet been tested, James’s experiments have indicated that
the humoral response in mice is slower than that in rabbits to T.
pallidum (36). Furthermore, previous studies have indicated that
the presence of spirochetes within tissues not only constitutes the
driving force for the activation of resident immune cells but also
recruits immune effector cells from peripheral blood (37).
Therefore, the increase observed in the blood could be the
result of immune cell recruitment.

Previous studies have confirmed that T. pallidum can trigger a
strong immune response after infecting the host. In addition to
macrophage activation and mononuclear cell infiltration, high
levels of Th1 inflammatory factors with bactericidal activity could
be detected in the early stage of infection. In our system, an
increase in the proportion of CD4+ T cells in spleen cells and the
parallel elevation of IL-2, IFN-g, and TNF-a in serum after 11 days
of infection in mice suggested that Th1 immune responses may be
caused by early infection by T. pallidum. This result may indicate
similar significance to Centurion-Lara and Van experiments. The
former showed that Th1 inflammatory factors were closely related
to the temporary recovery of primary and secondary syphilis
patients, while the latter showed that Th1 inflammatory factors
were with early recovery of rabbit lesions (38, 39). However, our
experimental data were taken together showed the immune
response in mice does not seem to clear the host of T. pallidum.
A B

D E F

G IH

C

FIGURE 5 | The proliferation of CD3+ T cells and CD4+ T cells in mice spleen were induced by T. pallidum. T-cell subpopulation immunotyping and activation status
determination of mouse splenocytes after 11 days of infection were performed by flow cytometry. (A) CD3+, (B) CD4+, (C) CD8+, (D) CD4+ naive, (E) CD4+ effector,
(F) CD4+ memory, (G) CD8+ naive, (H) CD8+ effector, (I) CD8+ memory. (Ctr, uninfected mice; Inf, infected mice; n = 4-5; mean ± SD; *P < 0.05; **P < 0.01).
January 2021 | Volume 11 | Article 577129

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. Treponema pallidum Dissemination in Mice
There was no significant increase in either the CD4+ effector or the
CD8+ effector, whichmay be closely related to the slow decrease in
T. pallidum. Meanwhile, the increases in IL-10 and IL-6 may be
important reasons for the inability of Th1 immune responses to
eliminate T. pallidum despite significant inhibition of the
inflammatory reaction. Overall, the inflammatory response in
C57BL/6 mice after infection was mild, which may provide a
partial explanation for the absence of gross manifestations in mice
after infection with T. pallidum.

In summary, we successfully infected C57BL/6 mice with
T. pallidum and studied the dissemination and pathogenesis of
T. pallidum in mice. Our study provided insights into the use of
mice as a model for studies of syphilis, particularly asymptomatic
syphilis with no obvious external lesions. Unfortunately, in this
experiment, the dissemination of T. pallidum and its cause of
inflammation were not compared in rabbits and mice. The
comparison results will help us to better understand the
relationship between the T. pallidum and the host, and thus
the pathogenicity of bacteria. PCR was the only technique used to
detect T. pallidum and more experimental methods need to be
adopted to confirm the results.
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