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and passive movement
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and Mohammad Reza Daliri1,2,4,*

SUMMARY

Area 2 of the primary somatosensory cortex (S1), encodes proprioceptive information of limbs. Several
studies investigated the encoding of movement parameters in this area. However, the single-trial decod-
ing of these parameters, which can provide additional knowledge about the amount of information avail-
able in sub-regions of this area about instantaneous limb movement, has not been well investigated. We
decoded kinematic and kinetic parameters of active and passive hand movement during center-out task
using conventional and state-based decoders. Our results show that this area can be used to accurately
decode position, velocity, force, moment, and joint angles of hand. Kinematics had higher accuracies
compared to kinetics and active trials were decoded more accurately than passive trials. Although the
state-based decoder outperformed the conventional decoder in the active task, it was the opposite in
the passive task. These results can be used in intracortical micro-stimulation procedures to provide propri-
oceptive feedback to BCI subjects.

INTRODUCTION

Neurological diseases and spinal cord injuries can cause the spinal cord to be disconnected from the brain, while networks of the brain that

generate and control the movements remain undamaged and functional. Brain-computer interfaces (BCIs) are being increasingly developed

to bypass this disconnection in the motor pathway of people with movement disabilities. Motor Rehabilitation BCIs intend to decode user

commands using neural sources, such as electroencephalography (EEG), electrocorticography (ECoG), and intracortical signals, and translate

them into commands for assistive devices. Some patients suffering from disabilities stated that functionality of the hand and arm is essential

for their recovery.1 In these people, the neural interfaces can approach brain activity head-on andmake a direct communication path between

neural activity and external devices.2 Using the current understanding of cortical motor activity during natural forelimb movements and the

development of decoding algorithms, human and non-human individuals have been able to control computer cursors,3,4 reach and grasp

using robotic limbs,5–7 and their own reanimated limbs.8,9 In these studies, neural signals recorded from motor areas, including the primary

motor cortex (M1), premotor cortex (PM), and posterior parietal cortex (PPC), translate into commands that allow people with disability to

communicate with their environment.

As a result, the advancement of BCIs has improved our understanding of neural phenomena10 and neuroprosthetics using decoding

kinetic and kinematic parameters derived from intracortical signals during limbmovements and then converting them to command signals

to control an external device or prosthetic limb.5,6 In most of the studies, only one group of kinematics/kinetics parameters has been ad-

dressed; some studies have dealt with decoding the kinematic movement parameters,11–15 and some studies have decoded kinetic move-

ment parameters,16–19 and limited studies have investigated the accuracy of decoding in both categories of these parameters using intra-

cortical neural signals from the same area.20–22 Investigating the movement parameters in both groups, kinetic and kinematic, allows us to

compare the information available about each parameter in the brain areas, and these findings can be used in the development of BCI

systems.

Most decoding studies have focused on the motor cortex area so far; however, a critical complement in movement control is the sensory

feedback about the consequences of the movement.23 Muscles and joints continuously send proprioceptive feedback, including body po-

sition in space and muscular force, to the somatosensory motor cortex,24 and impairment in the proprioceptive system can lead to imprecise

and failed movements.25 The primary somatosensory cortex (S1) and mainly area 2 of this region contains neurons that respond to the
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proprioceptive feedback received from joints andmuscles during active and passivemovements.26,27 The activity of S1 has already been char-

acterized during handmovements in passive28 and active tasks.29 Even though encoding of handmovements by the neural activities of area 2

of S1 has been investigated,30 the capability of this area to provide feedback to BCI systemsmust be investigatedmore. One good strategy to

address this question is by evaluating our capacity to decode kinematics/kinetics parameters through the neural activity of this area. As so-

matosensory neurons process detailed hand movement information, these neural representations can be used to convey artificial proprio-

ceptive feedback,31 and artificial tactile feedback using intracortical microstimulation.32 As online brain control may cause functional plas-

ticity,33 proprioceptive feedback may also cause changes in neuronal networks.

Therefore, one of the objectives of this study is to investigate the extent to whichmovement parameters can be decoded from area 2 of S1

neural activity. For a better comparison, we tried to consider both categories of movement parameters, kinematics/kinetics, and compare the

decoding accuracy of these two categories to see which type can be decodedmore accurately. Also, we compared the decoding accuracy in

active and passive tasks to investigate the amount of available information in this area regarding each task. These results can help us evaluate

the utility of area 2 of S1 neural information in providing proprioceptive feedback to BCI systems.

In goal-directed movements, modulation of neural activity changes during different stages of movement, including preparative, pre-

movement, and execution periods.34 Hence, cortical activity has been used to predict time intervals between movements.35 Some studies

have investigated how a state-based decoder could be a movement decoder using neural ensemble activity recorded from the PM,12,36,37

the parietal cortex,38 and M1.12,39,40 As mentioned, despite the importance of S1 in the development of accurate BCI systems that can

auto-correct movements and provide sensory feedback, decoding of movement parameters from neural activity of this area has been inves-

tigated in limited studies.

The goal of this study is to investigate whether hand kinematics and kinetics can be decoded accurately from the neural population re-

sponses of area 2 of S1 neurons. First, we show that neural signals in area 2 of S1 carry precise representations of the hand to classify the di-

rection of movement and to reconstruct time-varying hand trajectories, joint angles, force, and moment. Second, we show that these kinetic

and kinematic parameters can be decoded in the passive task as well as the active task. Still, area 2 of S1 carries different amounts of infor-

mation about the hand state in these two tasks. Finally, we use a state-based decoding algorithm to decode movement parameters in both

active and passive tasks and compare the results. We find an optimized decoding approach for each task, suggesting possible differences in

cortical encoding for active and passive tasks. Our results emphasize the promise of using somatosensory signals to achieve better control of

hand and demonstrate that neural activities in area 2 of S1 accurately represent forelimb configuration that can be used to restore proprio-

ception through intracortical micro-stimulation.

RESULTS

The neural data used in this study was recorded by Chowdhury et al. and the details are described in Chowdhury et al.30 Briefly, they re-

corded neural signals from two Rhesus macaques (Monkeys C and H) from the arm representation of Brodmann’s area 2 of S1 during cen-

ter-out task (COT), and the sensory receptive fields of each neuron weremapped in twomodalities (a) deep or cutaneous, (b) the location of

each field. In this study, the feasibility of discriminating neural activity of area 2 of S1 according to kinematics and kinematic parameters of

hand movement was investigated. Totally, in this study, 2764 trials of data (52.17% active task, and 47.83% passive task), were analyzed

during the monkey performing COT (see STAR methods). In the results sections, first, we will investigate neural activity in two modes of

hand movements, active and passive, and compare these two modes. Then, we will present the results of integrating the discrete state

classifier into the continuous decoder, and also compare the performance of the state-based continuous decoder with the conventional

continuous decoder in terms of R and R2 decoding performance in active and passive, respectively. We will also compare the result of the

state-based continuous decoder employing both partial least square (PLS) and multiple linear regression (MLR) regression methods in

these two movement modes. The procedures for state-based continuous decoding of movement parameters in the training and test

phases are depicted in Figure 1.

Neuronal population activity patterns are different during active and passive movements

In Figure 2, the neural activity of neurons recorded in the second session of monkey H during the execution of the COT task in two active and

passivemodes are presented. At first, we arranged the neurons based on the start of their activity over time in each direction, which active and

passive task results plotted in Figures 2A and 2C, respectively. As can be seen, in the active task, the activity of the neurons is carried out

hierarchically. In contrast, in the passive task, the activity of the neurons is carried out collectively at the beginning of the movement. In Fig-

ure 2E, the neurons of each direction in the passive task were arranged with the order of the neurons in the active task in the same direction to

realize how the neurons that were gradually activated in the active task, behave in the passive task. The results shown in the passive task most

of the activity of the neurons takes place in the bins after the start of themovement. Figures 2B and 2D show the post-stimulus time histogram

for each direction in the active and passive tasks, respectively. As shown, in the active task, the activity of the neurons increases over time

during the execution of the task and continues until the end of the movement. In contrast, in the passive task, the activity of the neurons in-

creases shortly after the start of the movement and quickly decreases to the initial amount. Furthermore, if the neurons in the passive task are

arranged in the activation pattern of the neurons in the active task, the set of neurons that were activated slowly in the active task is activated in

the passive task at the beginning bins of the movement (primary interval), and their activity decreases. This difference in neuron behavior in

these two tasks is most likely due to the cerebral cortex’s different coding of these two types of movement.
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Movement direction classification

By examining the firing rate of neurons in different directions, we found that this signal probably contains valuable information about the di-

rection of movement.We used themedian of the kernelled firing rate of each neuron in two 10ms bins after themovement started as discrim-

inate features between the four classes of interest. Adding a feature selection step can ensure that the most discriminative features are

selected for the classification purpose. The output signal of the test fold was classified into desired direction class. This clearly shows that

this feature extraction and selection technique can highly discriminate the features of direction classes. Four direction states were identified

with average accuracies of 98:98% in the active task, and 99:13% in the passive task (Table 1). For the classification of four hand movement

directions using neuronal information of area 2 of S1, no significant difference was observed during the active and passive tasks (P < 0:005).

Figure 3 shows the overall normalized confusion matrices of classifying hand movement direction in both tasks. As shown in Figure 3A, in

the active task, the accuracies for the four directions (0�, 90�, 180�, 270�) states were obtained as approximately 99:27%, 98:43%, 98:93%, and

98:83% on average, respectively. In this task, the overall recognition rate of 0� is higher than in other directions. In the passive task (Figure 3B),

the accuracies were 99:50%, 97:29%, 99:46%, and 99:50% on average for the direction (0�, 90�, 180�, 270�), respectively. In the passive task, the

overall recognition rate of 90� is lower than in other directions.

As previously stated, in both active and passive tasks, the firing rate data have been used in the interval of 200 ms after the start of the

movement to perform the hand direction classification. The firing rate is divided into two 100 ms windows, and the median firing rate of

each window in each neuron was used as the feature. Different time lengths for classification steps were utilized, and the results were

compared. Figure 3C depicts the results of classification accuracy using different time lengths of classification data. As can be seen, the clas-

sification accuracy increases as the length of the window used for classification increases. This rise continues until a window of 200 ms, after

which the surge becomes insignificant (P > 0:005). The purple color represents the active task, while the orange color represents the

passive task.

Furthermore, the effect of feature dimensionality on classification accuracy was also investigated to determine the sensitivity of hand di-

rection state classification to the dimensionality of features and whether, despite the reduction in feature dimensions, the direction state can

still be decodedwith acceptable accuracy. In Figure 3D, themean and standard deviation of classification accuracy are plotted as a function of

feature count. The active task is represented by purple, while the passive task is represented by orange.

Train Data

Test Data

Neural Signal

Figure 1. Schematic of the proposed method

The schematic representation of the proposed state-based continuous movement parameters decoder.
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Continuous movement decoding using state-based decoder and conventional method

In this study, the multiple parameters of hand movement were decoded using linear decoders, which expressed the parameters as weighted

sums of neuronal firing rates. We decoded the position of the handle in the x and y axis, the velocity of the handle in the x and y axis, the

interaction forces between the monkey’s hand and the handle in the three axes (x, y, and z), the moment of hand in the three axes (x, y,

and z), and the joint parameters including shoulder adduction, shoulder rotation, shoulder flexion, elbow flexion, radial protonation, wrist

flexion, wrist abduction.

Two decoding approaches have been used to decode thesemovement parameters, state-based and conventional decoders. To evaluate

the performance of these two decoders, the correlation coefficient and the coefficient of determination between the actual and decoded

parameters were computed. Figure 4 illustrates the result of continuousmovement parameters decoding in the average of all sessions in sub-

jects using a PLS state-based movement parameters decoder and a PLS conventional decoder. Figure 4A illustrates the average correlation

coefficient of the state-based decoder in active task in each parameter group, including positions, velocities, forces, moments, and joint

movement parameters were 0:98, 0:9, 0:85, 0:86, and 0:88, respectively (ten times 5-fold).

In all parameters except shoulder adduction joint angle, the state-based decoder led to significantly better results in terms of correlation

coefficient ðP < 0:005); but decoding accuracieswere not significantly different for shoulder adduction ðP > 0:005). Figure 4B shows the average

coefficient determination of decoding in the average of all sessions in subjects using a state-based decoder and conventional decoder in the

active task. Using the state-based decoder, the average coefficient determination of decoding in positions, velocities, forces, moments, and

joint movement parameters were 0:97, 0:8, 0:71, 0:71, and 0:76, respectively (ten times 5-fold). In coefficient determination criteria such as cor-

relation coefficient, the state-based method outperforms the conventional method in all parameters except shoulder adduction joint angle,

demonstrating that the state-based method is more efficient than the conventional method (P < 0:005). Figure 4C illustrates the average cor-

relation coefficient of PLS state-based and PLS conventional decoders in positions, velocities, forces, moments, and joint movement

Figure 2. Firing patterns during hand movement in different directions

The neural activity of neurons recorded in the second session of monkey H during the execution of the COT task in active and passive modes.

(A) In active task, the neurons arranged based on the start of their activity over time in each direction.

(B) PETH of neurons in the active task.

(C) In the passive task, the neurons arranged based on the start of their activity over time in each direction.

(D) PETH of neurons in Passive task.

(E) The passive task, the neurons arranged based on the start of their activity in the active task.

(F) PETH of (E).
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parameters in the passive task, which is 0:91, 0:7, 0:68, 0:69, and 0:78, respectively, for specified movement parameters (ten times of 5-fold).

Figure 4D shows the average coefficient determination of decoding in the average of all sessions in subjects using a state-based movement

parameters decoder and conventional decoder in the passive task. The average coefficient determination of decoding using the state-based

decoder in positions, velocities, forces, moments, and joint parameters were 0:82, 0:4, 0:36, 0:38, and 0:56, respectively (ten times 5-fold). In the

passive task, using compare coefficient determination criteria, positions, the moment in x and z dimensions, and all joint parameters except

elbow flexion were decoded more efficiently using the conventional decoder compared to the state-based decoder (P < 0:005).

Figure 5 shows examples of a 6-s time segment of output signal decoded using the proposed state-based PLSmethod from neural activity

in the active task. As can be seen, using a state-based decoder, the decoded output signal was accurate in all parameters. In this figure, the

red color represents the predicted, and the blue color represents the actual. The examples of a 6-s time segment of output signal using the

proposed state-based PLS method from neural activity in the passive task as shown in Figure 6; the red and blue color represents the pre-

dicted and actual output parameters, respectively.

Decoding kinematic and kinetic parameters in active and passive tasks

In order to compare the result of decoding kinematic versus kinetic parameters in active and passive tasks, the mean and standard error of the

mean of the correlation coefficient of position, velocity, force, andmoment in two dimensions, x/y axis, are shown in Figure 7 x axis parameters

are shown in Figures 7A and 7B for the active and passive tasks, respectively. Figures 7C and 7D represented the correlation coefficient in the y

axis in the active and passive tasks, respectively. The correlation coefficient of position is higher than other parameters in both tasks (P < 0:005).

In decoding the x axis, position, velocity, force, and moment were decoded with better results, respectively. Despite that, the speed has less

decoding accuracy in decoding the y axis, and the order of the results in the y axis are as follows: position, moment, force, and, velocity.

In the previous analyses, we showed that movement-related parameters could be directly decoded from the neuronal activity of area 2 of

S1, and the decoding performance is better in the active task. With this in mind, we assessed whether neuronal responses in area 2 of S1

preferentially encode kinetic/kinematic parameters during COT hand movement. To this end, we reconstructed five groups of movement

parameters fromarea 2 of S1 responses and compared these results in active and passive tasks. In Figure 7E, position, velocity, force,moment,

and joint parameters are shown in red, green, blue, purple, and yellow, respectively. Each circle shows the result of one of the coefficients of

determination results (5-folds, ten-time cross-validation for four sessions results). Figure 7E, illustrated the averageddecodingperformance of

the state-based versus the conventional decoder in the active task. In the active task, all parameters except moment and joint parameters

were decoded accurately in all sessions using the state-based decoder. In the passive task, the conventional decoder decoded movement

parameters better than the state-based decoder (Figure 7F). In the usage of the state-based decoder, movement-related parameters were

decoded significantly better in the active task (Figure 7G). In the use of the conventional decoder, the performance of movement-related

parameters decoding is almost similar in both tasks (Figure 7H).

State-based decoder using MLR regression and PLS regression

We also used a different regression method to evaluate the effect of incorporating a discrete-state classifier into a continuous variable

decoder. In this section, the same classification methods were used, but MLR regression was used instead of PLS. Table 2 demonstrates

that the PLS method outperforms MLR in both active and passive tasks, and can lead to significant improvement in decoding performance

(P < 0:001).

By comparing the obtained results, we realized that the decoding of the movement kinematic and kinetic parameters from area 2 of S1

neuronal information, in active and passive tasks, has different results in the use of the state-based and conventional decoders. For example,

in the active task, in most kinematic and kinetic parameters, decoding using the state-based method led to better results, while this was not

the case in the passive task. Therefore, in the next step, we investigated the results of the state-based decoder when the number of states is

considered less than the actual movement’s direction. To this aim, only the main direction of movement was considered, movement in the x

axis and y axis. The results of active task using the state-based decoder are also better than the results of the conventional decoder. Mean-

while, the results of the conventional decoder are better in most parameters in the passive task. Also, in most parameters, decoding in the

active task was better than in the passive task.

DISCUSSION

In the current study, we showed that the kinematic and kinetic parameters of hand movement can be continuously decoded from neural ac-

tivities of area 2 of S1 with high accuracy. As far as we know, this is the first study on the continuous decoding of the forelimb kinetic and

Table 1. Summary of hand direction state classification based on the firing rate of neurons

Task

Monkey 1 Monkey 2

AverageSession 1 Session 2 Session 1 Session 2

Active 98.5 G 1.0 99.1 G 0.7 99.1 G 1.7 99.2 G 1.7 98.98%

Passive 99.0 G 1.0 98.6 G 1.0 99.2 G 1.9 99.7 G 1.0 99.13%
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kinematic movement parameters using area 2 of S1 intracortical signals during active and passive movement. This area is considered to be

mediating the hand-reach-related proprioception. Proprioception is critical in coordinatingmovements by providing information about body

position andmovement.30 Previously, Chowdhury et al.30 conducted a study on how proprioceptive information is represented in area 2 of S1

during both active and passive hand movement tasks. They compared two categories of models, namely the hand-only models and the

whole-armmodels. Their findings revealed that the whole-armmodel performed better than the hand-only model when it came to explaining

the neural activities in area 2 of S1. Thismay suggest that area 2 encodes the overall state of the entire armduringmovement. Interestingly, the

researchers also noted that area 2 of S1 encodes passive movements, but in a different manner compared to active movements. However,

their study did not delve into the investigation of decoding these parameters. However, their study did not delve into the investigation of

decoding these parameters. To the best of our knowledge, the possibility of decoding both kinetic and kinematic movement-related param-

eters using neuronal activities in this area has not been comprehensively studied and the difference between decoding capacity during active

and passivemovements has not beenwell investigated. Decoding proprioceptive sensory information using area 2 of S1 signals can represent

the amount of information about these parameters received by this area. This can also clarify the type of relationship between neural activities

and movement-related parameters, which in turn can be used to develop effective stimulation paradigms to restore proprioceptive sensory

information.

Some studies have shown that somatosensory cortical neural activities can be used in BCI applications. The results of investigations into

the S1 neural activities hold the potential for advancing the field of BCIs in three manners. Firstly, these studies provide valuable insights for

designing effective stimulation strategies aimed at mimicking sensations encompassing tactile perception and proprioceptive aware-

ness.30,41,42 These systems can be used alongside with BCIs and can provide meaningful proprioceptive and tactile feedback to subjects.

Figure 3. State classification

(A) The overall normalized confusion matrices of classifying hand movement direction ((1) 0�, (2) 90�, (3) 180�, (4) 270�) in active task across all sessions of all

subjects.

(B) The overall normalized confusion matrices of classifying hand movement direction in the passive task.

(C) The mean classification accuracies across sessions of all subjects using LDA classifier and different window time lengths in the active and passive tasks

(mean G SD).

(D) Average classification accuracies across sessions of all subjects using LDA classifier and different numbers of sorted features (using MI method) in active and

passive tasks.

ll
OPEN ACCESS

6 iScience 26, 107808, October 20, 2023

iScience
Article



Secondly, according to some studies, S1 is activated during the observation of touch43 and encodes imagined handmovement in the absence

of sensory feedback.44 Thus, BCIs can use S1 neural activities as control signals in tasks such as tactile or movement imagery, in which subjects

imagine experiencing a touch or moving their limbs, respectively. These paradigms have been shown to be useful for developing BCIs.45,46

Thirdly, in addition to the previous manner, the activation of S1 and encoding properties in the absence of movement and afferent sensory

information, suggest that the S1 neural activities can also be used as a feedback source to periodically tune the BCI system and correct the

decoding errors. However, further studies are required to determine the applicability of using S1 signals as feedback sources in the absence of

limbmovement. Having these reasons in mind, decoding S1 neural signals can be beneficial in all of the aforementioned manners. Decoding

Figure 4. Performance of state-based decoder vs. conventional method

(A) The results were displayed by correlation coefficient (R) averaged in all sessions in the active task.

(B) The results were displayed by the coefficient of determination (R2) averaged in all sessions in the active task.

(C) The results were displayed by correlation coefficient (R) averaged in all sessions in the active task.

(D) The results were displayed by the coefficient of determination (R2) averaged in all sessions in the passive task (meanG SEM). Asterisks indicate a statistically

significant difference (P < 0:05). The color of the asterisk shows the method with higher mean accuracy.
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analysis can provide further insight into the amount of information about movement available in S1, neuron contribution analysis in decoding

can provide richer insight into developing stimulation strategies, and developing S1 decoders with higher accuracy can provide the basis for

BCIs that use sensory feedback to refine their output.

In this study, we tried to investigate (1) whether kinematic and kinetic movement parameters can be decoded using area 2 of S1 signals, (2)

which type of parameters (position, velocity, joint angle, force, and moment) can be decoded more accurately, (3) whether the decoding ac-

curacy is affected by the type of movement (passive/active movement), (4) how do the neurons in area 2 of S1 contribute to decoding these

movement-related parameters, (5) what is the relationship between the receptive field of neurons and their contribution in decoding discrete

and continuous movement parameters, and (6) whether state-based decoders outperform conventional methods in decodingmovement pa-

rameters using area 2 of S1 neural activities. Chowdhury et al.30 showed that area 2 of S1 encodes whole-armmovements and the encoding of

movements is different during active and passive movement. However, decoding kinetic or kinematic movement parameters was not inves-

tigated in Chowdhury et al.30 Asmentioned before, to the best of our knowledge, these items have not been investigated in previous studies,

despite their potential application in BCIs and enhancement of our knowledge about the S1. Our results show that the investigated move-

ment parameters can be decoded with very high accuracies in both active and passive tasks. However, the decoding accuracy is significantly

higher in active task compared to the passive movement. Additionally, using state-based decoders can significantly increase the decoding

accuracy in the active movement. However, in the passive movement, conventional decoder can predict most of the investigated parameters

with significantly higher accuracy.

In this study, we investigated the decoding of these parameters in passive and active reaching movements in single trial mode using

area 2 of S1 neural activities. The results show that neural activities of this area contain accurate information about position, velocity, angle,

forces, and moment of hand at each instant of time during active and passive execution of the COT. The accuracy of continuous decoding

of several kinematic and kinetic parameters in terms of the correlation coefficient and coefficient of determination is demonstrated in Ta-

ble 3. As can be seen, position, velocity, angles, and forces could be decoded with mean R2 values as 0:94, 0:86, 0:82, and 0:78 in the active

task, respectively, which indicates that the proprioceptive sensory information in this area can accurately represent the high-level and low-

level active hand movement parameters. Although the decoding accuracies during the passive task are significantly lower, the mean ac-

curacy of position decoding is still high enough (R2 = 0:74) to accurately reconstruct the hand endpoint. The significant difference be-

tween decoding accuracy in passive and active tasks may be originated from the different encoding of hand movements in area 2 of S1

for these two movement modes.

The analysis of peri-event time histogram (PETH) and the pattern of individual neurons’ activation also indicate that the neuronal activities

in this area are different in active and passive tasks as well as in different directions of handmovement. Figure 2 shows the activity of different

neurons during the COT in different directions in passive and active tasks. Neurons are sorted based on the peak firing rate time in active

(Figure 2A) and passive (Figure 2C) tasks. The pattern of activation of neurons during task execution is different in passive and active tasks.

In the active task, neurons’ firing rates peak at different times, and simultaneous firing rate peaks for different neurons is not observed, except

for 180o direction in which several neurons’ firing rates peak almost simultaneously near the end ofmovement execution (Figure 2A). However,

in passive trials, the ensemble firing rate of neurons peaks within 140 ms after the start of movement (Figure 2C). These peaks are visible in

PETH diagrams of active and passive tasks as well (Figures 2B and 2D). These peaks in firing rate may be related to the response of neurons in

this area to the unintentional movement of the hand. Furthermore, the order of neurons in these two modes is different, emphasizing the

different encoding of movement in these two modes. Several studies have shown that the S1 receives information about movements from

the motor system.47–50 In addition, previous studies have shown that the neural circuits responsible for generating movements can influence

the sensory processing in the S1.47,51,52 The difference in neural activities and higher decoding accuracy in active task is consistent with the

Figure 5. Sample decoding results for hand movement parameters during active movement

Segments of actual (blue) and neural state-based regression-estimated (red) kinematics/kinematics during COT active task. Here, R2avg stands for the average

coefficient of determination of each kinematic parameter in all trials of all recorded sessions.

ll
OPEN ACCESS

8 iScience 26, 107808, October 20, 2023

iScience
Article



findings of these studies, suggesting that as the S1 receives movement-related information frommotor circuits in the active task, thus, higher

amount of information is available for decoding proprioceptive information.

We compared the capability of different decoding strategies as well. Firstly, we compared the multilinear regression method with PLS

regression. MLR is a straightforward method that is widely used in several studies to decode movement-related parameters.53 On the other

hand, PLS has shown to be very effective in neural decoding as it is capable of handling high dimensional inputs and can linearly decode the

target variables with high accuracy. Our results show that PLS method significantly outperforms MLR in both active and passive tasks. The

accuracies of decoding kinematic and kinetic parameters, in terms of R2, using these two methods are summarized in Table 2. As the PLS

transforms the neural and movement-related parameters and performs the estimation on latent variables, higher accuracy obtained by

this model may indicate that studies focusing on the encoding of these parameters in S1 can develop more accurate models by exploiting

these latent variables.

In addition, a state-basedmethod in which the direction of movement is detected using a classifier, and then continuous decoding is done

using a decoder trained by data of the detected direction is developed, and its results are compared with the conventional method. In this

method, four specialized decoders are trained for each movement-related parameter to decode the parameter in each condition. As ex-

pected, this method significantly outperformed the conventional method, in which a decoder is trained with all data in all conditions, in active

mode in almost all parameters except for shoulder adduction (see Figure 4B). However, the accuracy obtained by the conventional method

was significantly higher in passive mode for most of the parameters (see Figure 4D). As the direction classification accuracy is not different in

these two modes, this difference in performance may solely be due to the distinct encoding of movement in different directions in the active

mode which could be captured by the decoding model. This may mean that a portion of the information conveyed by the motor circuits dur-

ing the active task describes the details of movement in each direction in a particular and distinct manner. Furthermore, the continuous

decoder in activemode reaches its maximumperformance with far fewer PLS components than in the passivemode, indicating that the latent

variables of PLS can more effectively explain the neural activities related to movement parameters during active mode.

Figures 8A and 8C show the classification and regression accuracies obtained by using only one neuron as the predictor and Figure 8B

show the contribution of each neuron in classification. The classification accuracy decreases as we move from the anterior medial side of

the array to the posterior lateral side in monkey H. However, this pattern was not observed in monkey C, which may be due to the lower

number of detected single units. This pattern is also observable in the contribution of neurons in maximizing the classification accuracy

(Figure 8B). On the other hand, by analyzing the regression accuracy of each neuron (Figure 8C), in terms of correlation coefficient, a rela-

tion between the location of neurons and their regression accuracy was not observed.We further investigated the relationship between the

receptive field of neurons and their ability to decode, either continuously (Figure 8H) or discretely (Figures 8D and 8F), handmovements. In

the active task, neurons with shoulder, elbow, and hand receptive fields had the highest continuous decoding accuracies, respectively.

However, shoulder, elbow, and torso neurons had the highest accuracies in the passive task, respectively. Hand, shoulder, and humerus

neurons had the highest classification accuracies and contribution in both active and passive tasks. In addition, neurons with deep recep-

tive fields, which respond to joint movement or muscle palpation, were more informative than cutaneous ones, which respond to being

brushed or stretched, as expected (Figure 8E). These results show that neurons with proximal deep receptive fields provide more infor-

mation for decoding than distal ones, except for hand in discrete decoding, which may be surprising. In fact, we expected neurons

with hand, wrist, and forearm receptive fields to contribute more than the torso and shoulder in decoding. These results may show that

the activities of neurons in area 2 of S1 can provide more proprioceptive information about the configuration of arm than a specific

part of the arm, which is consistent with the results of Chowdhury et al.30 It is also worth noting that the number of electrodes with

each receptive field may affect the results (Figure 8J).

Figure 6. Sample decoding results for hand movement parameters during passive movement

Segments of actual (blue) and neural state-based regression-estimated (red) kinematics/kinematics during COT active task. Here, R2avg stands for the average

coefficient of determination of each kinematic parameter in all trials of all recorded sessions.
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In this study, we focused on investigating the decoding of movement-related parameters using MLR, as a basic decoding method, and

PLS, as a high performancemethod. PLS regression is well known for its ability in avoiding over-fitting and handling high dimensional features

and has been used in BCI studies with promising results for both offline and online decoding.16,54–56 In addition, we compared our results

using PLS with other decodingmethods, namely Kalman filter, iterative reweighted least squares (IRLS) regression, support vector regression

(SVR), and decision tree regression. Thesemethods are widely used inmachine learning anddecoding studies. PLS significantly outperformed

other methods in the active task. However, in the passive task for monkey C, Kalman filter, IRLS, and SVR performed either better than or with

no significant difference with PLS in different parameter categories (position and velocity, force andmoment, and joint angle). The difference

between decoding accuracies obtained by PLS and other methods is significantly higher for monkey H data which contains more detected

single units, which highlights the capabilities of PLS regression method in working with high-dimensional predictors.

Decoding kinematic parameters of hand movement using somatosensory cortex signals has been investigated in several studies. Weber

et al.,41 decoded hand position, velocity, and acceleration byWiener filter using area 2 of S1 neural activities with relatively high accuracies in

terms of R2. Glaser et al.,57 compared the decoding accuracy of several decoding methods using motor cortex, area 2 of S1, and hippocam-

pus. The best accuracy for area 2 of S1 dataset, for which they decoded the hand velocity, was obtained by long short-term memory neural

network (LSTM) and the ensemble decoder, which combined the predictions of eight decoders, with peak accuracy as high as 0.86 andmean

accuracies less than 0.8 (in terms of R2). Gallego et al.,58 investigated the robustness of cortical population dynamics and used latent variables

for decodingmovement parameters usingM1, PMd, and area 2 of S1 neural activities. They decoded hand velocity using latent variables and

Wiener filter and obtained high decoding accuracies in the area 2 of S1 dataset. Keshtkaran et al.,59 also decoded hand movement param-

eters fromM1, area 2 of S1, and dorsomedial frontal cortex signals using latent variables. Their decoding accuracy in the area 2 of S1 dataset

was also high. Our results are higher than the decoding accuracies obtained in these studies, which may demonstrate the effectiveness of

state-based decoders and latent variables of PLS in decoding studies. It is worth mentioning that decoding movement parameters was

not the main focus of the mentioned studies, except for Glaser et al.57 Additionally, it is worth noting that the decoding of kinetic and kine-

matic parameters of hand movement in active and passive tasks was not investigated in previous studies.

Previous studies investigated the decoding of hand movements using neural activities recorded from motor areas. Wessberg et al.60 de-

coded three-dimensional hand position using PMd, M1, PPC, and ipsilateral PMd, M1, and PPC (in one monkey) with mean correlation coef-

ficients as high as 0.76. Our results in the active task also outperform the results obtained by Flint et al.61 in which the position of the hand in the

COT was decoded using neural activities of PMd and M1 with mean R2 values of 0.80, and 0.62 with spikes and local field potentials,
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Figure 7. Comparison of decoding accuracies

(A and B) Comparison of the kinematic versus kinetic parameters decoding. The correlation coefficient of position, velocity, force, andmoment in twodimensions,

the x axis in active, and (B) passive task.

(C and D) Comparison of the y axis kinematic versus kinetic parameters decoding in active, and (D) passive task.

(E and F) Decoding accuracy broke down by movement parameter groups in state-based versus conventional decoder in active, and (F) in the passive task.

(G) The result of decoding using the state-based decoder in active vs. passive tasks.

(H) The result of decoding using the conventional decoder in active vs. passive tasks.
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respectively. It is worth noting that the COT in this study was 8-directional, but it was 4-directional in our study. Carmena et al.22 compared the

kinematic and kinetic information available in different areas of the cortex—namely PMd, supplementary motor area (SMA), M1, S1, and PPC—

bydecoding hand position, velocity, andgrip force. They concluded that theM1 spikeswere the best predictors for hand position, velocity, and

grip force. The results of this study show that S1 neural activities are far less informative about the aforementioned parameters thanM1 in terms

of decoding accuracy. Barra et. Al.,62 conducted a study on the decoding of hand movement parameters during reach and grasp task, utilizing

the Kalman filter to analyzeM1 and S1 neural activities. They decoded continuous arm andhand kinematics withmean R2 values of 0.83 and 0.65

from M1 and S1 areas, respectively, for one monkey and 0.68 and 0.67 from M1 and S1 areas, respectively, for the other monkey. Their results

show that M1 outperforms S1 in decoding these parameters. Our results on decoding kinematic and kinetic parameters using area 2 of S1 neu-

ral activities are far higher than the results obtained in these studies, and show that both kinematic and kinetic parameters of hand movement

canbedecoded fromneural activities in this area.Overall, the results of our studymay highlight the richness of information providedby neurons

in the area 2 of S1, the effectiveness of utilizing state-based decoders, and the capacity of PLS method in decoding studies.

Limitations of the study

This study has some limitations. The number of isolated single-units recorded varied significantly across different recording sessions. This

variability makes it difficult to draw a general and definitive conclusion about the information available in sub-regions of area 2 of S1. In addi-

tion, as there was a significant difference in the number of neurons with similar receptive fields, it was challenging to accurately infer the rela-

tionship between receptive field and contribution in decoding. There are several factors which can affect the difference between our results

and the results of other studies, in which decoding from S1 neural activities has been investigated, namely the implantation site, the number of

electrodes, the difference in task, and decoding methods. These factors may limit the generalizability and extensibility of the results. We did

not compare our methods and results with data recorded from other areas which could be beneficial but was not possible due to the dataset

used in this study. Furthermore, as we used a previously recorded data, we did not test our results in S1 stimulation experiments to evaluate

the conclusions about stimulation in practice, which can be addressed in future studies.

Conclusion

In this study, decoding kinematic and kinetic parameters of active and passive hand movement during the COT using area 2 of S1 neural

activities has been investigated in conventional and state-based decoders. The results of this study show that the neuronal activities in area 2

Table 2. Decoding coefficient of determination (R2) obtained in different scenarios for state-based PLS and state-based MLR decoders in active and

passive tasks

parameters name

Active Passive

PLS MLR PLS MLR

Position X 0.96 0.84 0.83 0.72

Position Y 0.97 �0.09 0.8 �0.75

Average Position 0.965 0.38 0.82 �0.06

Velocity X 0.84 0.70 0.60 0.47

Velocity Y 0.76 0.63 0.20 �0.27

Average Velocity 0.80 0.67 0.40 0.10

Force X 0.73 0.46 0.46 0.12

Force Y 0.65 0.35 0.16 �0.30

Force Z 0.75 0.46 0.47 0.06

Moment X 0.64 0.38 0.35 0.05

Moment Y 0.78 0.55 0.34 �0.05

Moment Z 0.72 0.58 0.45 0.20

Average Force and moments 0.71 0.46 0.37 0.01

Shoulder adduction 0.75 0.56 0.62 0.38

Shoulder rotation 0.94 0.72 0.78 0.60

Shoulder flexion 0.93 0.91 0.77 0.64

Elbow flexion 0.94 0.19 0.77 �0.45

Radial pronation 0.66 0.21 0.37 �0.91

Wrist flexion 0.73 0.14 0.54 �0.24

Wrist abduction 0.38 �0.30 0.14 �0.70

Average Angles 0.76 0.35 0.57 �0.097
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of SC can be used to decode the position, velocity, forces, moments, and joint angles of hand with very high accuracies. Decoding accuracy

was higher for kinematic parameters, and the hand position was decoded more accurately than other parameters. Generally, active trials

were better decoded than passive ones, and most of the assessed parameters were decoded more accurately using the state-based

decoder in active trials. However, in passive trials, the conventional decoder outperformed the state-based decoder in most of the

parameters.
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Table 3. The correlation coefficient (R) and coefficient of determination (R2) in XYmode state-based decoder and using conventional PLS decoder in the

active and passive task

Parameters name

R R2 RMSE

Active Passive Active Passive Active Passive

Position X 0.93 0.88 0.87 0.76 1.62 2.07

Position Y 0.95 0.86 0.9 0.72 1.91 2.02

Average Position 0.94 0.87 0.89 0.74 1.77 2.05

Velocity X 0.88 0.76 0.75 0.53 7.56 9.66

Velocity Y 0.84 0.5 0.67 0.01 9.96 10.34

Average Velocity 0.86 0.63 0.71 0.27 8.76 10

Force X 0.78 0.59 0.57 0.19 0.34 0.46

Force Y 0.75 0.54 0.5 0.08 0.41 0.58

Force Z 0.81 0.69 0.61 0.39 1.81 1.82

Moment X 0.74 0.65 0.48 0.29 0.06 0.05

Moment Y 0.8 0.59 0.6 0.18 0.05 0.05

Moment Z 0.82 0.68 0.63 0.37 0.02 0.02

Average Force and moments 0.78 0.62 0.56 0.25 0.45 0.5

Shoulder adduction 0.77 0.77 0.55 0.53 2.64 2.32
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Figure 8. Contribution of neurons in decoding

(A) Single unit accuracy in discrete and continuous decoding. The classification accuracy was obtained by using only one neuron to classify the movement

direction. Best classification accuracy is demonstrated in cases where more than one single unit was detected from one recording channel. Squares with dot

patterns demonstrate non-recording sites.

(B) The contribution of neurons of each electrode in the selected features (MI feature selection method) for classification. In the color map, one means that the

features of a neuron in the respective electrode were present in selected features in all folds/runs and zero indicates that features from the respective electrode

were not selected in any folds/runs.

(C) The correlation coefficient of continuously decoding x-position using only one neuron.

(D) The mean classification accuracies obtained by single neurons in each receptive field are shown for each subject, session, and task. The red dotted line

indicates the chance level.

(E) The performance of neurons with the modality of each receptive field. The mean classification accuracies obtained by single neurons in each modality field

(deep or cutaneous). The red dotted line indicates the chance level.

(F) The contribution of neurons of each receptive field in maximizing the classification accuracy.

(G) The contribution of neurons of each modality field in maximizing the classification accuracy.

(H) The mean correlation coefficient of continuously decoding x-position using each neuron in each receptive field.

(I) The mean correlation coefficient of continuously decoding x-position using each neuron in each modality field.

(J) Number of channels in each receptive field and modality field.
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METHOD DETAILS

Data description

This public dataset was introduced by Chowdhury et al. and the procedures for intracortical array implantation, behavioral task, and neural

signal recording are explained in detail in.30 Here, we present details associated with the present study to support data analysis. First, we will

explain the behavioral task and neural signal recording from monkeys. Then we will explain the methods used for decoding the behavioral

states (hand-moving directions), and we will finally demonstrate the approach of integrating the discrete state decoder into the continuous

parameter decoder.

Three Rhesusmacaquemonkeys were used in the experiment and neural signal recording, but only twomonkeys performedCOT which is

investigated in this study. All surgical and experimental procedures were conducted with the guide for the care and use of laboratory animals

and approved by the institutional animal care and use committee of Northwestern University under protocol #IS00000367.30 The Micro-elec-

trode arrays (100 electrodes, Blackrock Microsystems) implanted in the arm representation of two monkeys’ area 2 of S1 were used for neural

signal recording. In surgery, the implantation site was confirmed using a recording from the cortical surface while the hand and arm were

manipulated. For neural data recording, the Cerebus recording system (96 electrodes, 30 kHz, Blackrock) was used. In the recording sessions,

after detecting spikes using a threshold (-5x signal RMS) and sorting the spikes using features like waveform shape and inter-spike interval

(Plexon Offline Sorter), the firing rate of neurons in 10 ms bins was used as input for the decoding algorithm.

Behavioral task

Neural activity from twomonkeys’ area 2 of S1 was recorded while they used themanipulandum to reach targets presented on a screen work-

space (20 cm3 20 cm). The monkeys performed a center out reaching task in 2 conditions, active and passive. In the active task, the monkey

held a target at the center of the workspace, after while one of four targets (0, 90, 180, and 270) was presented.When themonkey reached the

target correctly, the trial was completed successfully; otherwise, the trial was considered invalid. In passive trials, when the monkey held a

target at the center of the workspace, the manipulandum was used to supply 2N perturbation to the monkey’s hand in the direction of

one of the targets. After each passive trial, the monkey returned to the center. In this study, only successful trials were considered. Movement

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB (2019a) MathWorks RRID:SCR_001622

GraphPad Prism http://www.graphpad.com/ RRID:SCR_002798

Custom software code This paper GitHub: https://github.com/

AlavieMirfathollahi/S1-COT-Decoding

Deposited data

Data from: Area 2 of primary somatosensory

cortex encodes kinematics of the whole arm

Chowdhury et al.30 Dryad: https://doi.org/10.5061/dryad.
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onset in the passive task was determined by looking for a peak in the handle acceleration after themotor pulse. In the active task, after 200ms,

the post-go cue and sweeping backward in time until the acceleration was less than 10% of the peak. After each successful passive or active

trial, a pulse of water or juice was given as a reward. The position of the handle (x axis and y axis), the velocity of the handle (x axis and y axis),

the interaction forces between the monkey’s hand and the handle (x axis, y axis, z axis), and the location of the ten markers of four different

colors painted on the outside of the monkey’s arm were used to track joint parameters (shoulder adduction, shoulder rotation, shoulder

flexion, elbow flexion, radial protonation, wrist flexion, wrist abduction).

Movement direction states classification

As pointed out in the data acquisition section, the intracortical signal was recorded from area 2 of the S1. The procedures for state-based

continuous decoding of movement parameters in the training and test phases are depicted in Figure 1. After the online recording, the spikes

were identified, sorted, and the firing rate of each neuron in 10 ms bins was calculated. The data used in this study was the firing rate signal. In

the preprocessing step, the firing signal was smoothed with a Gaussian kernel as below:

WðtÞ = e
� 1

2

�
a t
ðL� 1Þ=2

�2

whereW is theGaussian kernel, L is window length (L = 11), and a is thewidth factor (here a = 2:5). These parameters have been achievedby

cross-validation. In the classification step, a 200mswindow from the firing rate data (from the start of themovement onset) was separated, and

themedian firing rate of each neuron was calculated in two 10ms windows as features. Linear discriminant analysis (LDA) with a pseudo-linear

discriminant analysis type classifier was used to classify the movement direction. The large number of features that are extracted from the

firing rate information poses a challenge to the classification algorithms because it lengthens training time and causes overfitting, which re-

duces classification accuracy. This issue can be solved using feature selection techniques. Themutual information (MI) method was employed

to sort features in this study. This criterion expresses the amount to which two variables depend on each other.63 The mutual information was

obtained from Equation 2:

MI =
X
x˛X

X
l˛ L

pðx:lÞ log
�

pðx:lÞ
pðxÞpðlÞ

�
where x represents the feature and l represents the class label. The mutual information between each feature and class label was calculated

during the feature selection step. Large values ofMI indicate a high degree of dependency between the feature and class labels; thus, their

greater applicability for the classification procedure. The optimum number of sorting features was determined by 5-fold cross-validation on

training data, and features were sorted according to their MI with class labels. As a result, the most discriminatory features were selected and

fed into a classifier. To select the most discriminative features, features were ranked based on mutual information, and an optimized number

of features was selected in train data using cross-validation. The top-ranked features were chosen as the LDA classifier’s input. The classifi-

cation accuracy was calculated using a 5-fold cross-validation method repeated ten times after the order of trials was shuffled.

State-based continuous movement decoding

In this phase, seventeen continuous parameters related to hand movements including hand position (x axis and y axis), hand velocity (x axis

and y axis), force (x axis, y axis, and z axis), and angle of seven joint parameters (Shoulder adduction, Shoulder rotation, Shoulder flexion,

Elbow flexion, Radial protonation, Wrist flexion, Wrist abduction) were decoded continuously from the firing rates signal using partial least

square (PLS) regression algorithm64 and Multiple linear regression (MLR).65 The firing signal was smoothed with a gamma kernel in the pre-

processing step for continuous decoding, as shown below:

RðtÞ =

� ðt � tsÞa� 1 � ba � exp ð � bðt � tsÞÞ
.
GðaÞ if tR ts

0 if tR ts

The shape (a = 1.5) and rate parameter (b = 11) were chosen to achieve a small delay. This procedure ensured that the resulting firing rate

was smooth, continuous, and causal, meaning that the value at any time point was only influenced by spikes that occurred prior to that point in

time, but not afterward.66 So the convolution of the gamma kernel in the firing rate of each neuron was computed to produce regression

features, and N features were obtained for N neurons recorded in each session. After these steps, two categories of features were removed

to reduce the computational load: 1) zero variance Features (because some neurons fired very sparsely, and this activity as features do not

contain information). 2) redundant features. To remove redundancy, a correlation test was used, and features with more than 0:98% similarity

were eliminated. The remaining features are fed into the PLS model. PLS is an appropriate algorithm for solving high-dimensional regression

problems. By maximizing the covariance between the projected input and output data, both input and output data are projected into a new

low-dimensional subspace. As a result, PLS captures not only the input and output components that maximize covariance but also ignores

non-output related components due to noise. The features corresponding to each movement direction were concatenated during the

training stage, and a PLS model was obtained between the input neural features and the output parameters (seventeen outputs) of this di-

rection. Similarly, the features corresponding to the other movement directions were concatenated separately, and each class obtained a

different PLS model based on the input neural features and output parameters. During the testing phase, the continuous output signal
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was decoded by selecting the corresponding PLS model based on the LDA’s identified class (4 hand movement directions). This decoder is

called a state-based decoder, and it demonstrates how a state decoder can be combined with PLS regression:

YiðtÞ =
XN
j = 1

biðjÞSiðjÞ

where YiðtÞ represents the output signal associated with the state i. PLS algorithm optimization was used to determine the regression coef-

ficient bi for each state.64 The input feature matrix Si is multiplied by their corresponding bi for each neuron j (j = 1:2.:N).

The MLR method, in addition to the PLS algorithm, was considered to investigate the effect of combining state detectors with continuous

regression strategies.

bY = b0 +b1X1 +b2X2 +.+bNXN

Where bY ðtÞ is the decoded output or expected value of the dependent variable, X1 through XN are N distinct independent or predictor

variables, b0 is the value of Y when all of the independent variables (X1 through XN) are equal to zero, and b1 through bN are the estimated

regression coefficients. Each regression coefficient represents the change in Y relative to a one-unit change in the respective independent

variable. In the case of multiple regression situations, b1, for example, is the change in Y relative to a one-unit change in X1, holding all other

independent variables constant (i.e., when the remaining independent variables are held at the same value or are fixed). Again, statistical tests

can be performed to assess whether each regression coefficient is significantly different from zero.

Pearson’s correlation coefficients (R) and the coefficient of determination (R2) between the actual and decoded parameters were calcu-

lated to evaluate the performance of the decoder:

R =

PT
t = 1

ðY ðtÞ � Y Þð bY ðtÞ � Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t = 0

ðY ðtÞ � Y Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t = 0

ð bY ðtÞ � Y Þ2
s

R2 = 1 �
PT
t = 0

ðY ðtÞ � bY ðtÞÞ2
PT
t = 0

ðY ðtÞ � Y ðtÞÞ2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t = 0

ðY ðtÞ � bY ðtÞÞ2
T

vuuut
where YðtÞ, and bY ðtÞ are the actual and decoded output at time sample t, respectively. Y and Y are the average of the actual and decoded

output signal in a test fold with T time samples. We used a 5-fold cross-validationmethodwith ten repetitions after shuffling the order of trials

to evaluate our decoder under different data combinations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of the obtained results was performed using GraphPad Prism 9 (GraphPad Software Inc., San Diego, CA) software to

perform statistical tests on the output of repeated ten times 5-fold cross-validation. The Wilcoxon signed rank test was used to compare

the results of prediction using two decoding approaches, namely conventional and state-based decoders, in each movement parameter.

The False Discovery Rate (FDR) method was used as the multiple comparisons correction. The significance level was considered P = 0:005.

ll
OPEN ACCESS

18 iScience 26, 107808, October 20, 2023

iScience
Article


	ISCI107808_proof_v26i10.pdf
	Decoding hand kinetics and kinematics using somatosensory cortex activity in active and passive movement
	Introduction
	Results
	Neuronal population activity patterns are different during active and passive movements
	Movement direction classification
	Continuous movement decoding using state-based decoder and conventional method
	Decoding kinematic and kinetic parameters in active and passive tasks
	State-based decoder using MLR regression and PLS regression

	Discussion
	Limitations of the study
	Conclusion

	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Data description
	Behavioral task
	Movement direction states classification
	State-based continuous movement decoding

	Quantification and statistical analysis




