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Differentiation of two swim 
bladdered fish species using 
next generation wideband 
hydroacoustics
Sarah M. Gugele1,3, Marcus Widmer2, Jan Baer1*, J. Tyrell DeWeber1, Helge Balk2 & 
Alexander Brinker1,3

Monitoring fish populations in large, deep water bodies by conventional capture methodologies 
requires intensive fishing effort and often causes mass mortality of fish. Thus, it can be difficult to 
collect sufficient data using capture methods for understanding fine scale community dynamics 
associated with issues such as climate change or species invasion. Hydroacoustic monitoring is an 
alternative, less invasive technology that can collect higher resolution data over large temporal 
and spatial scales. Monitoring multiple species with hydroacoustics, however, usually requires 
conventional sampling to provide species level information. The ability to identify the species 
identity of similar-sized individuals using only hydroacoustic data would greatly expand monitoring 
capabilities and further reduce the need for conventional sampling. In this study, wideband 
hydroacoustic technology was used in a mesocosm experiment to differentiate between free 
swimming, similar-sized individuals of two swim-bladdered species: whitefish (Coregonus wartmanni) 
and stickleback (Gasterosteus aculeatus). Individual targets were identified in echograms and variation 
in wideband acoustic responses among individuals, across different orientations, and between 
species was quantified and visually examined. Random forest classification was then used to classify 
individual targets of known species identity, and had an accuracy of 73.4% for the testing dataset. The 
results show that species can be identified with reasonable accuracy using wideband hydroacoustics. It 
is expected that further mesocosm and field studies will help determine capabilities and limitations for 
classifying additional species and monitoring fish communities. Hydroacoustic species differentiation 
may offer novel possibilities for fisheries managers and scientists, marking the next crucial step in non-
invasive fish monitoring.

Fish communities are subject to a variety of influences and stressors, and the resulting population and stock 
dynamics may have far reaching implications for both ecosystems and fisheries1. The ability of researchers and 
fishery managers to track and understand these changes is however limited by the difficulty in achieving reliable 
assessments of fish populations with a meaningful resolution in time and space2. Monitoring fish populations 
using invasive capture methods is problematic, especially in large, deep waters due to high time, labour, and 
material costs, and the mortality of fishes3–6. For example, it is very difficult to collect sufficient data to properly 
monitor the impacts of invasive aquatic species7–10 and to identify the mechanisms driving these changes using 
conventional sampling3,11. Hydroacoustic surveying is a widely used, less invasive approach that can provide 
highly resolved data for following trends in fish abundance, biomass, and movement that are often associated 
with ecosystem changes12–16. However, monitoring multiple species with hydroacoustics usually requires con-
ventional sampling to provide species level information17–19, unless acoustic responses can be classified to species 
based on size differences or school morphological differences17,20,21. The ability to classify individual targets or 
aggregations of multiple species using only hydroacoustics would greatly expand monitoring capabilities and 
reduce the need for conventional sampling.
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Hydroacoustic fish surveys use active sonar to locate fish (and other organisms) in the water column based 
on the principle that sound travels through water and produces backscatter when fish or other objects are 
encountered. Hydroacoustic surveys are most often conducted using vertical sampling where soundwaves travel 
downward from a boat at the surface and encounter fish dorsally. Horizontal and upward facing hydroacoustic 
surveys are also possible14. The acoustic backscatter produced is then converted to estimates of fish size, density, 
and population biomass19,22,23. Trawling4,18,24 or gillnetting25–27 is conventionally used to provide species compo-
sition data when multiple species are present. While this approach provides reliable information, conventional 
sampling is invasive, causes death of sampled fish, and has a lower spatial and temporal resolution than hydroa-
coustics. There is thus substantial interest in identifying fish species using hydroacoustic data alone, but this has 
only been possible under certain circumstances.

Most hydroacoustic species classification studies have used descriptors of school morphology and environ-
mental characteristics to classify schooling pelagic species of high commercial importance14,17,20,21,28–30. Hydro-
cacoustic classification of non-schooling or partial-schooling species (such as those which school by day and 
disperse at night), will most likely rely on acoustic information obtained from individual fish echoes during 
night time surveys when fish disaggregate4,31,32. Species classification of individual fish targets typically relies 
upon vertical hydroacoustics using target strength (TS; echo amplitude created by the fish expressed as the 
logarithmic transformation of the backscattering cross section given in decibels) cutoffs to separate species 
with known size differences14,19,32–34. Species with and without swim-bladders can also be readily differentiated, 
since air in swim-bladders produces a significant acoustic response17,35. Imaging sonar has also been used for 
individual targets36, but for technical reasons is not as widely used in pelagic surveys as in narrower systems 
such as riverine corridors37,38 or trawl mouths39. It is common for similar-sized individuals of multiple species 
with swim bladders to be present during a survey, but hydroacoustic classification of individual targets has not 
yet been achieved in this case.

It is hypothesized that such classification via machine learning may be possible if morphological differences 
among species (e.g. swim bladder or body shape) result in sufficiently distinct acoustic responses when measured 
across a broad range of frequencies40–42. This hypothesis can now be more readily tested since recently developed, 
commercial wideband echosounders emit multiple frequencies across a wide frequency range of 40–50% around 
their nominal frequency, known as a chirp function, instead of only one or a few frequencies43–45. Wideband 
echosounders using pulse compression can further provide better signal to noise ratio and range resolution rela-
tive to narrowband echosounders45. Pulse compression is achieved by correlating the returned echo signal with 
a model of the emitted pulse45,46. However, single echo detection is more complicated and less reliable, and the 
matched filtering process introduces artificial side-lobe phenomena that may cause incorrect interpretation of the 
acoustic data, especially where small and large targets near boundaries, for example a lake bottom, are present. 
The side-lobes produced by wideband is a side effect caused by the pulse compression algorithm, and they occur 
as weaker peaks or shadows on each side of the main peak and can be falsely interpreted as smaller fish next to a 
big fish. Slow ramping may be applied to reduce side lobe effects but this also reduces the bandwidth for spectral 
characterization46,47. These potential limitations can however be overcome through careful processing, enabling 
a wideband echosounder to produce acoustic response curves across a wide frequency band that may provide 
information for species identification45,46.

This study explores the possibility of using wideband hydroacoustic responses to differentiate similar-sized 
individuals of two species that inhabit the pelagic zone of Lake Constance, Europe: native whitefish (Coregonus 
sp.) and invasive three-spined stickleback (Gasterosteus aculeatus, hereafter referred to as sticklebacks). The 
recent invasion of sticklebacks into the pelagic zone of Lake Constance32 has had significant negative effects on 
the endemic fish community and the whitefish fishery48. Sticklebacks display a very considerable food niche 
overlap with native whitefish (Coregonus sp.), feed on whitefish eggs and larvae49, and have been linked to white-
fish declines in recent years50. High resolution spatial and temporal data for both species are urgently needed 
to better understand and manage invasion impacts, and hydroacoustic monitoring are strongly preferred given 
the aforementioned limitations of conventional sampling in large, deep water bodies like Lake Constance. It is 
currently possible to use TS cutoffs to differentiate much larger adult whitefish from stickleback32, but similar 
sized whitefish juveniles cannot be separated from stickleback using existing tools. Differences between the two 
species, including swim bladder shape and body covering (scales for whitefish and bony plates for sticklebacks), 
could result in sufficiently different wideband hydroacoustic responses to allow species identification of simi-
lar sized individuals. To test this hypothesis, wideband hydroacoustic data were collected using a mesocosm 
experiment and the random forest machine-learning method was used to determine if individual targets could 
be classified to species.

Material and methods
Experimental design.  Data were collected in October 2018 using a mesocosm placed in a sheltered part 
of a marina of upper Lake Constance. The mesocosm comprised a 6 m high, 2.3 m diameter cylindrical net 
cage with a volume of around 25 m³ and a mesh size of 6 mm (Fig. 1). The cage was mounted with the cylinder 
length oriented vertically, suspended from buoys that ensured the top remained 10 cm below the water surface, 
attached by a rope to a pontoon to prevent drifting. Ropes attached to the bottom of the mesocosm were used to 
raise it and a zipper was used to remove and introduce fish (Fig. 1). The transducer was centered just inside the 
mesocosm, at the top, with the acoustic axis pointing down, emitting sound pulses from a depth of 20 cm. The 
EK80 wide band transceiver (Simrad, Horten, Norway) echo sounder, laptop, and power supply were located 
under cover on a boat moored next to the mesocosm (Fig. 1). 
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Experimental animals.  Fish used for the experiments were 90 wild caught juvenile and adult sticklebacks 
measuring 5.1 cm ± 0.7 cm TL (mean ± SD), the most common size for the season, and 90 hatchery-reared juve-
nile offspring of wild whitefish (7.0 cm ± 0.6 cm TL). Sticklebacks were obtained from a trawl net fishery in Lake 
Constance shortly before the experiment began and kept in 240 L flow-through basins supplied by lake water 
until the start of the experiment. Water temperature and oxygen concentration were measured twice daily and 
sticklebacks were fed once a day with chironomid larvae. The whitefish were hatchery-reared offspring of wild 
spawners obtained from the Fish Hatchery of the Stocking Commission in Langenargen, Germany. The fish 
were kept in the hatchery and fed with commercially available dry food until needed for the experiment. The 
two species differ in body covering and the shape of the swim bladder: sticklebacks have bony plates and a swim 
bladder with tapered ends while whitefish are fully scaled with a rounded swim bladder (Fig. 2). In both species 
the swim bladder length to body length ratio is similar, around 22% (± 2.5% SD) for stickleback and 24% (± 3% 
SD) for whitefish.

Figure 1.   Left: experimental setup including boat with two tanks where the EK 80 wide band transceiver and a 
laptop were stored during the experiment and the mesocosm (6 × 2.3 m) attached to a floating pontoon. Right: 
mesocosm stocked with free swimming whitefish (blue) and sticklebacks (red), which are depicted together but 
were sampled separately for data collection. The cone (in grey) represents the true to scale sound cone emitted 
by the ES-120-7C transducer with an opening angle of 7°. Note that fish are not true to scale due to their small 
size. Drawings by Leonie Kneipp, LKdraw.

Figure 2.   Juvenile stickleback (a) and whitefish (b) with abdominal cavity partly visible to expose the swim 
bladder, which is tapered in the stickleback but rounded in the whitefish. Drawings by Leonie Kneipp, LKdraw.
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Lake water temperature remained constant at 16 °C (± 0.03) and oxygen saturation was 100% (± 0.02) through-
out the experiments. By the end of each experiment, all fish were carefully captured from the mesocosm, anaes-
thetised with clove oil and measured to the nearest mm of body length. After recovering in an aerated tank 
supplied with lake water, they were then restocked into the lake.

All experiments were conducted according to the German Animal Welfare Act (TierSchG) and approved by 
the ethics committee of the Referat Tierschutz of Regierungspräsidium Tübingen (LAZ 2-18, AZ 35/9185.81-4).

Software.  Data was recorded using Simrad’s standard operating software EK80 (Ver. 1.10.1) configured to 
save .RAW files. Post-processing was carried out with Sonar5-Pro (S5) suite (Ver. 605.0) from Balk and Lindem51 
in combination with python (Ver. 3.7.3). The numerical feature descriptor in S5 and the utilized python script 
were custom developed for this study and are either available in the latest version of S5 or can be requested by the 
corresponding author, respectively. Species classification was performed in R (Ver. 3.4.052) using the randomFor-
est package (Ver. 4.6-1453), and differences in species classification methods were compared using a t-test and a 
Fisher’s exact test for count data in R.

Hydroacoustic data collection.  Hydroacoustic data were collected using an EK80 wide band echo-
sounder equipped with an ES-120-7C split beam transducer, emitting a nominal frequency of 120 kHz with 
an opening angle of 7 × 7 degrees. The transceiver was set up in FM mode with fast ramping for the envelope, 
which tapers the first and last two wavelengths of the emitted signal over a duration 0.0434 μs, 100 W emissions 
(electric power), a pulse duration set to 0.512 ms, and a ping rate of ~ 9.5 pings per second. The bandwidth of 
the chirp was set to 80 kHz, ranging from 90 to 170 kHz. This frequency range was chosen because it is centered 
around 120 kHz, which is commonly used in fish hydroacoustics54,55. A short pulse duration was used to allow 
sampling of clean echoes from single targets under the high density mesocosm conditions. Prior to data col-
lection the system was calibrated using a 23 mm copper sphere and the calibration option in Simrad’s standard 
operating software EK80 (Ver. 1.10.1). Data collection started as soon as fish were introduced to the net cage and 
stopped just before they were taken out.

At midday, 30 live sticklebacks were introduced carefully into the net cage. After three hours the sticklebacks 
were removed from the mesocosm, and 30 live whitefish were introduced for another three hours, after which 
data collection was stopped and all fish were removed from the mesocosm. The experiment was repeated on the 
subsequent 2 days.

Individual, fully sonified, fish targets were identified in the echograms and ten frequency responses were 
extracted from each target to accommodate possible intra fish variation. Each frequency response was linearized 
and normalized, which produced a frequency response curve (FRC) consisting of 656 amplitude samples along 
the frequency-axis from 90 to 170 kHz (referred to as TSu(f) in45). The frequency spectra were normalized to 
be able to compare the relative spectra without influence of echo intensity. For species with clear difference in 
echo size, classification based on TS is simple. For sticklebacks and whitefish, however, there are overlapping size 
classes with similar TS distributions. Moreover, with normalized spectra we could extract signals from the targets 
directly without including complicated single echo detections and off-axis compensation. This full FRC was used 
for classification, and was also used to develop a subset of features thought to support classification, referred to 
as the numerical feature descriptor (NFD). More details on hydroacoustic data processing and development of 
the NFD are given in the “Supplementary Information”.

Frequency responses were extracted from 101 free swimming sticklebacks and 86 free swimming whitefish. Of 
these, 1400 frequency responses resulting from 10 observations of 74 sticklebacks and 66 whitefish targets from 
experimental days one and three were used to train the model. The 470 frequency responses from the remain-
ing 27 sticklebacks and 20 whitefish targets collected on experimental day two were used as the testing dataset.

Orientation or target aspect angles has been shown to greatly alter narrowband hydroacoustic responses of 
individual targets and is likely to affect wideband frequency responses. Seen from the dorsal aspect a targets 
echo will be strong and short. Tilting the target will cause the echo to be weaker and longer with smoother flanks 
relative to the echo from the dorsal aspect. According to Fourier theory, this change will influence the frequency 
response as energy from the high end of the frequency spectra is shifted towards the lower end. S5 was used 
to track fish and measure aspect angles, using the average aspect method (see “Supplemental Information” for 
further details). The absolute orientation angle was measured relative to the surface (i.e., horizontal was 0° and 
vertical was 90°). Orientation or aspect angle was then classified as having a low (0–20), medium, (20–40) or 
high (> 40) angle. The effect of orientation on hydroacoustic responses was visually assessed and its effect on 
classification accuracy was inspected as described in the section below.

Classification of fish species.  Species classification was done using random forest, which is an ensem-
ble of classification trees developed through feature subsampling and bootstrapping across training data56. The 
random forest classifier was used because it has shown good performance for diverse classification and regres-
sion problems in ecology57,58 and no dimensionality reduction was necessary for using the FRC. In addition, 
random forest is able to estimate feature importance among a set of highly correlated features, such as those 
from the FRC, by subsampling m features at each split, provided that m is not too large and a sufficient number 
of classification trees is fit so that all features are subsampled multiple times56,57. The default value for m is the 
square root of the total number of predictors rounded to the nearest integer, which was used since preliminary 
analyses showed that it provided optimum classification accuracy. Since a sufficient number of classification 
trees is needed for accurate estimate of variable importance and forests do not become overfit with too many56, 
5000 trees were trained in each forest instead of the default 500. Default values were used for all other tuning 
parameters.
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Random forests were fit using both FRCs and NFDs to see which approach provided better accuracy. Since 
the ten observations were taken from each fish target are correlated, the simple random splitting procedure 
of random forest would likely have overestimated classification accuracy for new fish. To accurately estimate 
the accuracy of classifying observations from new fish during model training, cross validation was performed 
using all ten observations from 90% of fish selected at random from the training data set to fit the model, then 
using the remaining observations from the withheld fish to assess accuracy. The cross validation procedure was 
repeated 30 times using the train function of the caret package in R (version 6.0–8159). Species classification of 
observations from new fish was assigned based on majority voting across all trees in the forest. The final random 
forest was then fit using all training data and accuracy was assessed for the testing data. To better understand 
the contribution of specific NFD features or FRC frequencies for species differentiation, feature importance was 
measured as the average decrease in node impurity as measured by the Gini index across all trees in the forest53,60.

To determine the effect of orientation on classification accuracy, training and testing datasets were first com-
bined to increase sample size. Classification accuracy with random forest was then calculated within each of the 
orientation classes using cross validation as described above. There were insufficient numbers of both species in 
the high orientation group to assess accuracy (see “Results”).

The intra- and inter-individual variation in frequency responses was quantified for each species to enable 
comparisons. The normalized FRC was first logit transformed to enable calculation of unbounded deviations. 
The intra-individual deviations at each frequency were calculated as the difference between the values at each 
of the ten responses and the individual target’s mean values. The inter-individual deviations were calculated as 
the difference between each individual’s mean value and the species’ mean value. The mean absolute deviation 
was then calculated for each species and frequency, as well as summarized across all frequencies to give a grand 
mean absolute deviation.

Results
There was a high degree of variation in FRCs within a single target, among targets, and between species. Com-
bined plots of FRCs from three randomly selected sticklebacks and whitefish also show that the frequency 
response can vary greatly over the ten responses taken for a single target, as the interquartile range is often 
quite large (Fig. 3). A similar plot comparing FRCs of both species reveals a large overlap at lower frequencies 
(< 120 kHz) but greater differences in the 135–170 kHz range (Fig. 4).

The intra- and inter-individual variation summarized across all frequencies were of a similar magnitude for 
whitefish (MAD = 0.94 and 0.99, respectively), but differed for stickleback (MAD = 0.81 and 1.33, respectively). 
Intra-individual variation was slightly higher at both ends of the frequency range for both species, but otherwise 
showed no clear trends. Inter-individual variation showed an increasing trend from 110 to 160 kHz for stickle-
back, and a similar trend from 120 to 160 for whitefish. From 160 to 170 kHz the trend tended to decrease for 
both species (Fig. S6).

Classification accuracy from the training data was slightly but significantly higher for the FRC compared to 
the NFD method (t-test, 1400 frequency responses, t-value = 3.03, df = 57.7, p-value = 0.0036; Table 1). Classifica-
tion accuracy for the testing data set was also significantly higher for the FRC method (Fisher’s exact test, 470 

a

b

Figure 3.   Variation in relative frequency response curves (FRC) from three individual sticklebacks and 
whitefish. The bold line is the median and the shaded polygon region includes the 25–75 percentiles for 
observations from each fish, where overlapping regions are shown by the combined colours.
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frequency responses, p-value = 0.027). Frequency responses for whitefish were correctly classified more often 
than those for sticklebacks, using both the FRC (Fisher’s exact test, p-value < 0.001) and NFD (Fisher’s exact 
test, p-value < 0.001; Table 2). The positive predictive value for whitefish was 83% (166/200) using the FRC, but 
only 70% (140/200) using the NFD. Positive classification of sticklebacks differed only slightly between FRC 
and NFD (Table 2). Higher frequencies of the acoustic band showed the greatest potential for acoustic species 
identification using random forests, with a relatively narrow range between 140 and 155 kHz receiving most of 
the variable importance as measured by the Gini index (Fig. 5).

Stickleback and whitefish targets had similar orientation angles and were most often low or medium, with 
only eight sticklebacks and six whitefish targets having high orientations (Table 3). The frequency responses of the 
two species within the low and medium orientation were similar to those from all fish (“Supporting information”, 
Figs. S3–S5). Frequency responses appeared somewhat different in the high orientation group, but low sample 
sizes of stickleback and whitefish make these comparisons tenuous. Cross validation based estimates of classifica-
tion accuracy within the low (79.0 ± 7.9%) and medium (76.7 ± 10.3) orientation group were similar and within 
the expected accuracy range estimated using the training dataset across all orientations (78.1 ± 6.8%). There 
were too few targets in the high orientation groups to provide an accurate assessment of classification accuracy.

Figure 4.   Comparison of the relative frequency response curves (FRCs) for stickleback (red) and whitefish 
(blue). The bold line is the median and the shaded polygon region includes the 25–75 percentile observations 
from all individuals of both species, and overlapping regions are shown by combined colours.

Table 1.   Overall accuracy of the random forest models developed for classifying stickleback and whitefish 
using numerical feature descriptors (NFD) and the frequency response curves (FRC) estimated for training 
data through cross validation (CV accuracy) and for test data (Test accuracy). For CV accuracy, the mean 
accuracy and standard deviation was estimated through tenfold cross validation with three repeats.

Prediction approach Train accuracy (SD) Test accuracy (%)

NFD 73.8% (7.6) 66.6

FRC 78.1% (6.8) 73.4

Table 2.   A confusion matrix showing species classification of targets from the testing data set using two 
prediction approaches, frequency response curve (FRC) and numerical feature descriptor (NFD). Each cell 
contains the number of known stickleback or whitefish responses (rows) that were predicted to belong to either 
stickleback or whitefish (columns).

Predicted identity

Frequency response curve (FRC)
Numerical feature descriptor 
(NFD)

True identity Stickleback Whitefish Stickleback Whitefish

Stickleback 179 91 173 97

Whitefish 34 166 60 140
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Discussion
This study shows the potential for wideband hydroacoustics to enable species differentiation of similar-sized, 
swim-bladdered individuals. A recent study45 described wideband acoustic responses for schools of several 
species encountered during trawls, and concluded that differentiation of multiple species with swim bladders 
would be challenging due to similarities in acoustic responses. Acoustic responses of whitefish and stickleback 
individuals were also similar in this study, but classification was achieved using random forests with reasonably 
high accuracy. Most previous efforts to classify species using hydroacoustic monitoring have focused on dif-
ferentiating schooling species with morphometric and bathymetric descriptors of school behaviour (reviewed 
in14,45). For example, single species schools of anchovy, sardine, and round herring were differentiated using 
morphometric, energetic, and bathymetric traits derived from echograms with discriminant function analysis61 
and artificial neural networks20. The ability to identify the species identity of individual targets with wideband 
hydroacoustics could expand these capabilities to the much larger number of species that do not display strong 
schooling behaviours. In addition, single-species aggregations in mesocosms were successfully differentiated 
by hydroacoustic data collected using custom-designed wideband echosounders in previous studies29,62. This 
would suggest that schooling or shoaling species may also be differentiated using widely available commercial 
wideband echosounders, but this remains to be tested.

The model developed in this study, once verified with field data, will expand monitoring capabilities so that 
both populations of stickleback and whitefish can be better monitored in Lake Constance. The likely invasion tim-
ing and potential abundance of sticklebacks was estimated through hydroacoustics by Eckmann and Engesser32 
by assuming that the abundance of other small pelagic fishes did not increase. Classifying small fish targets with 
the tool developed in this study will provide more accurate estimates of stickleback and juvenile whitefish abun-
dance to help inform species spatial overlap, interspecific competition, abiotic preferences (e.g. temperature), and 
foraging. Information pertaining to the seasonal distribution of stickleback could help to better define spawning 
migration into near-shore areas63, and this information might be utilized to alter the timing of larval whitefish 
stocking in order to limit predation49,64. Abundance estimates for juvenile whitefish provided by hydroacoustics 
may also help improve estimates of natural recruitment and stocking success.

The mesocosm experiment was carefully designed to collect data of free swimming individuals within a lake 
environment to enable its transferability to the lake environment. Previous studies have shown that orientation 
of targets can affect acoustic responses and TS measurements, as well as population estimates65. Orientation of 
targets could also alter the FRC and classification accuracy if unaccounted for. In this study, individuals of both 
species were mostly found with orientations below 40° relative to the water surface, with a few individual targets 
at higher angles. Classification accuracy of individuals that exhibited low and medium orientations was similar 
to the expected bounds of accuracy estimated for all orientations. The results suggest that classification accuracy 
does not differ greatly with orientation, but additional data collected on individuals with high orientations is 
needed to determine the limits of this conclusion. It is expected that juvenile whitefish and sticklebacks have 
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Figure 5.   Relative importance (measured by the Gini index) of the different frequencies from 90 to 170 kHz for 
random forest classification of stickleback and whitefish.

Table 3.   Number of stickleback and whitefish in each of the orientation different orientation classes, measured 
as absolute degrees relative to the water surface.

Orientation class Stickleback Whitefish

Low (< ± 20°) 67 48

Medium (≥ 20° & < 40°) 26 32

High (≥ 40°) 8 6
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similar orientations in the lake environment to those free-swimming in the mesocosm, but this will also need 
to be considered in field applications.

Orientations of targets was estimated using tracked motions, which requires that fish are actively swimming 
to give precise measurements. Since only targets entering and leaving the narrow acoustic beam were used in this 
study, all included fish had to be actively swimming. Some targets, however, moved too little between individual 
observations to give reliable orientation estimates. This was most profound for stickleback. Since classification 
accuracy was similar for almost all fish regardless of orientation, it is not expected that this uncertainty would 
greatly affect our general conclusions. Future studies investigating the effect of orientation on wideband acoustic 
responses would benefit from using paired cameras or other methods to more accurately measure orientation.

In addition to potential variation from orientation, there was substantial intratarget variation among hydroa-
coustic responses within an individual fish target that stemmed from extracting data from different parts of the 
fish echo. This study has not attempted to determine the underlying reasons, but these could presumably be due 
to how much swim bladder area is sampled, the presence of plating on some parts of the body in stickleback, 
or other morphological differences along a single fish. Accuracy for whitefish was higher than for sticklebacks, 
which could reflect greater morphometric variation in the latter which is indeed shown for Lake Constance 
sticklebacks66. This study used wild caught sticklebacks with different plate arrangements that are largely rep-
resentative of those in the lake. For these reasons it is expected that the model will have similar accuracy across 
fish of different orientations, sizes and stickleback plating patterns in field tests.

Previous studies have used other machine learning and statistical classification approaches, including artificial 
neural networks (e.g.20,21,28), support vector machines (e.g.21), and discriminant analysis (e.g.62) for hydroacoustic 
classification. Random forests were used in this study because of its superior performance in tackling a diverse 
range of classification and regression problems in ecology57,58. In addition, random forests could be trained 
using the full FRC without the pre-processing of data or the dimensionality reduction required for these other 
methods. This ability was important as the FRC were shown to generate greater classification accuracy than the 
NFD in this study. Other features or a subsample of frequencies may provide similar classification accuracy37, 
but these summaries could not include more information than the FRC and the effort to select such features 
seems unnecessary when used with random forests or related approaches.

While wideband hydroacoustic classification may have great potential for monitoring multiple species, there 
are difficulties in collecting the data needed to develop classifiers for individual targets. This is especially true in 
a mixed species experiment or under field conditions, since the species identify of individual targets needs to be 
known. A mixed species experiment was also attempted in the current study in which sticklebacks and whitefish 
were held together in the mesocosm overnight, and video cameras were used to record individual fish location 
and identity. However, the data from this experiment could not be used to further test the classifier due to poor 
visibility below 3 m depth, which prevented species identification. One potential solution for future mesocosm 
or field studies is to use unique fluorescent marks so that species can be identified using video, and possibly also 
using hydroacoustic tracking to ensure that the correct individual is identified in the echogram. Another solu-
tion with sufficiently large fish would be to tag one or more species, identify tagged individuals using acoustic 
data, and then filter out the acoustic response from the tag. In the current study a relatively small amount of the 
mesocosm was covered by the acoustic cone to avoid interference from mesocosm sidewalls, which reduced the 
likelihood of recording individual targets and limited data. Future mesocosm experiments may benefit from 
increasing cone coverage to maximize data collection, provided that interference is avoided.

It is expected that further studies will determine the extent to which wideband hydroacoustics can be used 
to identify other fish species. Such studies could enable species classification and greatly improve monitoring of 
fish community dynamics through noninvasive sampling. When combined with the real-time data processing 
capabilities of software, such as Sonar5-Pro, classification algorithms may also facilitate species-specific fishing 
in order to reduce bycatch and maximize the sustainability of fisheries14,61.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
request.
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