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Abstract

Background: Mathematical modeling has been applied to the study and analysis of complex biological systems
for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal
transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE)
models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and
sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the
solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic
method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To
address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and
accurately is necessary.

Results: We have proposed an efficient algorithm with an adaptive step size control to compute the solution and
dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-
decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing
by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an
automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The
extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular
control system and the TNF-a signal transduction network. The results show that the extended algorithm is a
good tool for dynamic sensitivity analysis on DDE models with less user intervention.

Conclusions: By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate,
and easy to use for end users without programming background to do dynamic sensitivity analysis on complex
biological systems with time-delays.

Background
Mathematical modeling has been applied to the study
and analysis of complex biological systems for a long
time. Many mathematical models for dynamic biological
systems are formulated as nonlinear ordinary differential
equations (ODEs). Some processes in biological systems,
such as the gene expression and feedback control in sig-
nal transduction networks, involve a time delay. These

systems are represented as delay differential equation
(DDE) models. Many DDE models have been proposed
in the last decade [1-3]. Bocharov et al. [4] reviewed var-
ious applications of DDE models in population
dynamics, epidemiology, immunology, neural networks,
and cell kinetics. Sensitivity analysis can shed light on
the dynamic behavior of biological systems and assist
the modeling process by identifying the critical para-
meters that determine the essential behavior of the sys-
tem. Numerical sensitivity analysis of a DDE model by
the direct method requires to obtain the solutions of
model and sensitivity equations with time-delays. To do
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dynamic sensitivity analysis on DDE models, an efficient
and accurate approach to compute the solution of DDEs
is the basic requirement. Many sophisticated DDE sol-
vers are available recently [5-12]. The major effort is the
computation of Jacobian matrix when computing the
solution of sensitivity equations. The computation of
partial derivatives of complicated equations either by the
analytic method or by symbolic manipulation is time
consuming, inconvenient, and prone to introduce
human errors. To surmount this problem, an automatic
approach to obtain the derivatives of complex functions
efficiently and accurately is necessary.
Dynamic sensitivity analysis is an important tool for

assessing dynamic behavior of biological systems. The
common used approach for sensitivity analysis is the
numerical differentiation by finite difference approxima-
tion. The main drawback of this approach is that the
accuracy is hard to analyze. Due to the efficiency and
accuracy, a variety of direct methods are proposed
[13-15]. Rihan [16] derives a general theory for sensitiv-
ity analysis of DDE models by using adjoint equations
and direct methods to estimate the sensitivity equations
with variable and constant parameters, respectively. The
kinetic preprocessor (KPP) numerical library is a com-
prehensive set of software tools for direct and adjoint
sensitivity analysis [17]. An-other approach which can
be used to evaluate sensitivity equations is automatic
differentiation. Automatic differentiation is a non-
approximate differentiation technique that permits the
fast and accurate evaluation of partial derivatives in
Jacobian matrix. The values for the derivatives obtained
by automatic differentiation are exact if we do not take
account of the unavoidable round-off error due to the
finite precision arithmetic of a computer. The theoreti-
cal exactness of the automatic differentiation comes
from the fact that it uses the same rules of differentia-
tion as in differential calculus, but these rules are
applied to an algorithmic evaluation of the function
rather than to a formula. The implementation of auto-
matic differentiation can be divided into two different
classes: source code transformation and operator over-
loading. The most widely used source code transforma-
tion program is ADIFOR 2.0 [18]. This program, like as
the preprocessor of a compiler, accepts and analyzes
Fortran 77 source code and produces code to evaluate
the derivatives of the function in Fortran 77 standard.
The output code is optimized by eliminating unneces-
sary arithmetic operations and temporary variables and
then compiled with a standard compiler into an object
code that can simultaneously evaluate derivatives and
function values. Hwang et al. [19] demonstrated that
ADIFOR is a powerful tool for ODE models from
three aspects of performance: accuracy, efficiency, and
scaled capability. Griewank et al. [20] developed an

open-source code, automatic differentiation by overload-
ing in C++ (ADOL-C), for the automatic differentiation
of C and C++ programs. The implementation of ADOL-
C utilizes the operator overloading capability of C/C++
compilers that accept user-defined data types, operators
and functions. The implementation of either the source
code transformation or the operator overloading is a
compile-time solution. It allows one to generate deriva-
tives from complicated existing code or user-provided
model equations that expressed by user-defined data
types, operators and functions. These available codes are
implemented for ODEs and is suitable for users with
programming background.
We have proposed an efficient algorithm with an

adaptive step size control, called adaptive modified col-
location method (AMCM), to compute the solution and
dynamic sensitivities of biological systems described by
ODEs [21]. The algorithm is extended to solve the solu-
tion and dynamic sensitivities of time-delay systems
described by DDEs in this paper and named as extended
adaptive modified collocation method (EAMCM). The
EAMCM is implemented as a user-friendly program
that facilitates the dynamic sensitivity analysis of DDE
models through the implementation of adaptive direct-
decoupled method and automatic differentiation.
EAMCM requires the user to supply only the model
equations at run-time in a form of mathematical expres-
sion to compute dynamic sensitivities of DDE models.
The evaluation of sensitivity equations is done automati-
cally by automatic differentiation technique along with
the inevitable evaluation of model equations. By com-
bining the adaptive direct-decoupled AMCM algorithm
with automatic differentiation technique and extending
its usage to DDE models, the extended algorithm,
EAMCM, is efficient, accurate, and easy to use for end
users without programming background to do dynamic
sensitivity analysis on complex biological systems with
time-delays.
To evaluate the applicability of the extended algo-

rithm, it is applied to two realistic models with time-
delays: the cardiovascular control system and the TNF-a
signal transduction network. The first DDE model for
human cardiovascular control system was developed by
Fowler et al. [22] to explore the interactions between
the heart rate and blood pressure under the baroreflex
control. The time delay arises from the slow activity of
sympathetic nervous system. Sensitivity analysis is
applied to this DDE model through the EAMCM pro-
gram to identify the key parameters that could provide
useful diagnostic information about the state of the car-
diovascular system. The second DDE model for TNF-a
signal transduction network built by Rangamani and Sir-
ovich [23] considers both the NF-�B-mediated survival
pathway and the caspase-mediated apoptosis pathway
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simultaneously. Due to the delay of translocation of NF-
�B to the nucleus, the transcription processes of cIAP
and I�B in the NF-�B-mediated survival pathway were
represented by DDEs. The EAMCM is applied to this
model to analyze its dynamic sensitivities and decipher
the relationship between the NF-�B-mediated survival
pathway and the caspase-mediated apoptosis pathway.

Results and discussion
Cardiovascular disease is the major cause of human death.
A detailed understanding of cardiovascular systems is
important for the diagnosis of cardiovascular disease, ulti-
mately leading to improved treatment. The EAMCM pro-
gram can be used to do dynamic sensitivity analysis on the
cardiovascular control system to investigate the hemody-
namics and regulation control of cardiovascular systems.
Apoptosis is central to the development of cancer. In

the recent years, the prevalent model to explain why can-
cer therapies fail has been that cell resistant to or inhibi-
tion of apoptosis [24]. So now, the new treatment goal is
how to control apoptosis that brings on cell death of the
cancer cells. NF-�B is a transcription factor family that
activating numerous genes that are related to cell survival
pathways. Most commonly, NF-�B activation inhibits
apoptosis pathways, as evidenced by several knockout
mouse models [25,26]. Based on these findings, the goal
to design more effective cancer therapies can be initiated
by apoptosis induction and inhibition of NF-�B. Many
mathematical models describing the dynamics of apopto-
sis and NF-�B pathways have been published in last dec-
ade [27-31]. Most of the models to date have
concentrated on only one of signaling pathways and do
not consider the delayed transcription processes. The
EAMCM program is applied to a TNF-a-induced signal-
ing network considering both signaling pathways simul-
taneously to investigate how these two pathways work
together to regulate cell fate in response to TNF-a.

Cardiovascular control system
Mathematical models are useful to investigate the hemo-
dynamics and regulation control of cardiovascular sys-
tems. In general, cardiovascular models consist of two
major systems: the hemodynamic system and the auto-
nomic nerve control system. The hemodynamic system
is a systemic circulatory blood distribution network to
deliver oxygen, nutrients, and hormones to cells and
remove carbon dioxide and metabolic wastes. The left
ventricle pumps blood to arteries, capillaries, veins, and
back to the heart. The blood hemodynamics of this cir-
culation can be represented by the relationship between
blood pressure and heart rate in the cardiovascular sys-
tem. The control of the blood pressure is crucial to
human health due to that the blood pressure is the
energy, generated by the heart, to push blood around

the body. Although the endogenous regulation of arter-
ial pressure is not completely understood, there are evi-
dences that baroreceptors are important for minimizing
changes in blood pressure. Animal studies have shown
that blood pressure is much more variable if the influ-
ence of baroreceptors is removed [32,33]. Baroreceptors
detect changes in arterial pressure and send signals ulti-
mately to the medulla of the brain stem. The medulla,
by way of the autonomic nerve control system, adjusts
the mean arterial pressure by altering the heart rate and
the total peripheral resistance. The autonomic nerve
control system includes the sympathetic and parasympa-
thetic nervous systems. When blood pressure starting to
fall, the baroreceptor stimulation decreasing and the
reflex response causes the peripheral resistance increas-
ing and the heart to beat faster and harder by slow-act-
ing sympathetic nerves. This negative-feedback
mechanism largely restores the blood pressure. Conver-
sely, if blood pressure increases, stimulation of barore-
ceptors gives rise to nerve impulses which run to the
brain and slow down the heartbeat through the fast
activity in the parasympathetic pathway.
Fowler et al. [22] developed a lumped DDE model of

the integrated cardiovascular system combined with a
baroreflex feedback control of blood pressure to describe
the interactions between heart rate, blood pressure, and
respiration. This DDE model is a simple model without
considering the pulmonary part of the cardiovascular sys-
tem and is derived from the model introduced by Ottesen
[34] by adding an intrinsically controlled heart rate and
baroreflex control of peripheral resistance. This simple
model consists of only 2 delay differential equations
which include 16 parameters and is expressed as
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where x2(t* - 1) and x2 (t*) denote the blood pressure
with and without a time delay, respectively. The values
and definitions of system parameters are given in Table
1. The state variables are the heart rate and blood pres-
sure. A sinusoidal function is added to the model equa-
tions to mimic respiration. The Hill function gi with an
exponent n is used to model the baroreflex feedback
control of heart rate. This simple model has shown to
be able to reproduce many of the empirical observations
such as respiratory sinus arrhythmia (RSA), Mayer
waves, and synchronization [35].
The EAMCM program is used to do sensitivity analy-

sis on the lumped cardiovascular model. The non-con-
stant exponent of Hill function and sinusoidal functions
in differential model equations complicate the evaluation
of Jacobian matrix for computing the solution of sensi-
tivity equations. By the help of automatic differentiation
embedded in the EAMCM program, user can provide
the model equations only at run-time for solving the
dynamic sensitivities of the cardiovascular system. The
dynamic sensitivities of heart rate and blood pressure
with respect to all system parameters and initial condi-
tions are computed. All relative parameter sensitivities
are presented by 100% stacked column chart and shown
in Figure 1. It is easy to find which parameter makes
more effects on heart rate and blood pressure than the
others from Figure 1. The values of top five sensitivities
for the heart rate and blood pressure are shown in
Table 2. The uncontrolled average arterial blood pres-
sure (p0), breathing rate ( fr), sympathetic delay (τ), sym-
pathetic control of heart rate (b), and strength of vagal
tone (ν) are identified as the key parameters for the con-
trol of heart rate and blood pressure. The relative

sensitivities of heart rate and blood pressure with
respect to the uncontrolled average arterial blood pres-
sure are shown in Figure 2. The dynamic sensitivities of
heart rate with respect to p0 oscillate symmetrically
between positive and negative values. This result indi-
cates that the uncontrolled average arterial blood pres-
sure amplifies the variation of heart rate. In contrast,
the dynamic sensitivities of blood pressure with respect
to p0 oscillate but are all positive. This means that an
increase of the uncontrolled average arterial blood pres-
sure shifts the blood pressure to a higher value but does
not change the variation of blood pressure. As shown in
Table 2, the effect of uncontrolled average arterial blood
pressure on the variation of average heart rate is tenfold
larger than the variation of blood pressure. There is evi-
dence that the slow-acting sympathetic nerves and the
fast-acting vagal nerves compete with each other to
increase and decrease the heart rate, respectively [36].
The relative sensitivities of heart rate with respect to
parameters for slow sympathetic control (b) and fast
vagal control (ν) are investigated and shown in Figure 3.
Figure 3 shows the sympathovagal balance in physiology
and both sympathetic control and vagal control amplify
the variation of heart rate. The relative sensitivities of
blood pressure with respect to parameters for slow sym-
pathetic control (b) and fast vagal control (ν) are shown
in Figure 4. The slow-acting sympathetic control upre-
gulates the blood pressure, but does not change its var-
iation. The relative sensitivity of blood pressure with
respect to the sympathetic control is positive over the
time. In contrast, the fast-acting vagal control downre-
gulates the blood pressure and has a negative relative
sensitivity over the time.

Table 1 The value and definition of system parameters

Parameter Definition Value

h0 Uncontrolled heart rate 100 bpm

p0 Mean arterial blood pressure 100 mm Hg

a Sympathetic effect on peripheral resistance 15

b Sympathetic control of heart rate 10

ν Strength of vagal tone 9.63

δ Relaxation time 0.8 s-1

g Damping effect of vagal activity on the sympathetic tone 0.2

μ 3/(2 + a) 0.18

A1 Amplitude of the influence of respiration on blood pressure 0

A2 Amplitude of the influence of respiration on heart rate 0.003

fr Breathing rate 0.17 Hz

τ Sympathetic time delay 3 s

j Phase lag 3.14 s

n Hill exponent 8

εh Relative coefficient for heart rate 1

εp Relative coefficient for blood pressure 3

The definition of system parameters in the DDE model developed by Ottesen [34]. The parameter values are obtained from the literature [35].
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Apoptosis signal network
The TNF-a signal transduction network was developed
by Rangamani and Sirovich [23], which considers both
the NF-�B-mediated survival pathway and the caspase-
mediated apoptosis pathway simultaneously. These two
pathways involve 31 species in 19 reactions and the
schematic diagram is shown in Figure 5. The formation
of this network involves binding reactions between
ligand and death receptor, protein-protein reactions,
enzymatic reactions, translocations, and transcription
processes. The network is induced by ligation of TNF-a
to the cell surface receptor TNFR1. The ligation of
TNFR1 by TNF results in the recruitment of the adap-
tor proteins such as TNFR-associated death domain
(TRADD), TNFR-associated factor 2 (TRAF2), receptor-
interacting protein 1 (RIP1), and possibly other yet
unidentified proteins to form the early complex. In the

NF-�B-mediated transcription pathway, the inactive
inhibitor kappa B kinase (IKK) binds to the early com-
plex leads to the activation of IKK, I�B phosphorylation,
and release of NF-�B. The free NF-�B translocates to
the nucleus, binds to DNA, and leads to the transcrip-
tion of I�B and cellular inhibitor of apoptosis protein
(cIAP) that protects cells from TNF-induced apoptosis
by binding to activated caspase-3 [37]. The newly
synthesized free I�B enters the nucleus and binds to
nuclear NF-�B and this complex is exported to the cyto-
plasm [38]. This NF-�B-I�B complex is the target for
I�B phosphorylation by active IKK and the liberating
NF-�B will translocate to the nucleus again. Nelson et
al. [39] proposed that this oscillatory feedback behavior
of NF-�B regulates the expression of cIAP. In the cas-
pase-mediated apoptosis pathway, TRADD, RIP1, and
TRAF2 are dissociated from TNFR1 and recruit Fas
Associated Death Domain (FADD) and caspase-8 to
form a protein complex called the death-inducing sig-
naling complex (DISC) [40]. As a result of DISC forma-
tion, caspase-8 is cleaved at the DISC resulting in the
activation of caspase-8. The activated caspase-8 in turn
activates effector caspases, such as caspase-3, causing
the cell to undergo apoptosis.
The transcription processes of cIAP and I�B due to

the translocation of NF-�B to the nucleus are repre-
sented as delayed reactions. The delay time used for
transcription is 20 minutes as suggested by Sung and
Simon [41]. Based on material balance, this model con-
sists of 31 delay differential equations which include 29
parameters. The state variables are the concentration of
the molecules in the survival and apoptosis pathways

Figure 1 Stacked 100% column chart for individual state variables. Each column in the stack column chart shows all relative parameter
sensitivities for a state variable. The proportion of a parameter sensitivity to the total sensitivity for a state variable is displayed as a color area in
each column. The values of time-averaged relative parameter sensitivities are used as the data.

Table 2 The ranking of relative sensitivities of heart rate
and blood pressure

Rank 1 2 3 4 5

Heart rate p0 fr τ b v

10.667 4.791 4.791 1.284 1.237

39.97% 18.61% 18.61% 4.81% 4.63%

Blood pressure p0 v b fr τ

1.000 0.116 0.109 0.061 0.061

70.56% 8.18% 7.68% 4.30% 4.30%

The dynamic sensitivities of heart rate (h) and blood pressure (p) with respect
to all parameters are ranked based on the time-averaged relative sensitivities
over the response time. The values of time-averaged relative sensitivities are
shown in the second row and the corresponding ratios to the total relative
sensitivity are shown in third row.
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and the input variable is the concentration of TNF-a
that stimulates the signal transduction pathways. The
output variable is the concentration of fragmented
DNA, which can be used as a marker for apoptosis. The
fragmented DNA is defined as the fraction of DNA sites
that have been attacked by the activity of effector

caspase. The set of delay differential equations, all of the
relevant definitions of variables, and parameters appear-
ing in the DDE model, together with the nominal values
can be found in Additional file 1. The reason for repre-
senting the model equations here and not just referring
to the article by Rangamani et al. [23] is that some of

Figure 2 The relative sensitivities of heart rate and blood pressure with respect to p0. The relative sensitivities of heart rate and blood
pressure with respect to the uncontrolled average arterial blood pressure. The time is in dimensionless scale.

Figure 3 The relative sensitivities of heart rate with respect to b and ν. The relative sensitivities of heart rate with respect to parameters for
slow sympathetic control and fast vagal control. The time is in dimensionless scale.
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the parameters and state variables have different names
as that in the original model.
The EAMCM program is applied to the TNF-a signal

transduction model using the initial conditions as
described in Table S1 of Additional file 1. All dynamic
sensitivities with respect to 29 parameters and 31 initial
conditions are computed simultaneously without any diffi-
culty. All time-averaged semi-relative parameter sensitiv-
ities for each state variable are shown in Figure 6. Most of
the time-averaged semi-relative parameter sensitivities for
each state variable are too small compared with the largest
and can be ignored. It is easy to find from Figure 6 that
only some few parameter sensitivities get significant per-
centage of the total sensitivity for each state variable.
The dynamic sensitivity profiles for all species with

respect to k9, the rate constant of the formation of sur-
vival complex, are nearly identical to that with respect
to x10 (0), the initial value of IKK (data not shown here).
This is not surprising because the kinetic order is set to
one for each flux in the model. So each relative effect
on the output with respect to the rate constant is the
same as that with respect to the initial concentration of
the corresponding species. The same situation can be
found for each pair of k15 /x17(0), k18/x20 (0), etc. In the
following, we analyze the dynamic parameter sensitiv-
ities only, because the same results for the correspond-
ing dynamic initial sensitivities can be found from the
dynamic parameter sensitivities.

All of the dynamic sensitivities with respect to k9, the
rate constant of the formation of survival complex, and
k15 , the rate constant of the formation of death com-
plex, are symmetric with respect to the time axis. This
means that if we have plotted the sensitivity profile of a
species with respect to k9, the corresponding sensitivity
profile with respect to k15 can be obtained simply by
reflecting about the time axis. To elucidate the effects of
IKK (x10) and FADD (x17) on the oscillatory behavior of
NF-�B (x16) and I�B (x31) in the survival pathway, the
semi-relative sensitivities of NF-�B and I�B with respect
to the rate constants k9 and k15 , of the formation of
survival complex and death complex are shown in Fig-
ure 7. We observe, from Figure 7, the negative regula-
tion of oscillatory behavior of NF-�B and I�B when the
rate constant (k15) or the initial concentration of FADD
increases. The reverse effect is seen by increasing the
rate constant (k9) or the initial concentration of IKK.
We also investigate the responses of the apoptosis path-
way to the variances of FADD and IKK. The activation
of effector caspase-3 (x23) is the finial reaction of the
apoptosis pathway, so the concentration of the active
caspase-3 (x25) can be used as the response of the apop-
tosis pathway. The semi-relative sensitivities of active
caspase-3 with respect to k9 and k15 are shown in Figure
7. The negative values of the semi-relative sensitivities
of active caspase-3 with respect to k9 show that the
active caspase-3 decreases when the rate constant (k9)

Figure 4 The relative sensitivities of blood pressure with respect to b and ν. The relative sensitivities of blood pressure with respect to
parameters for slow sympathetic control and fast vagal control. The time is in dimensionless scale.
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or the initial concentration of IKK increases. By con-
trast, increasing the rate constant (k15) or the initial
concentration of FADD induces the increase of the
active caspase-3. These results are in agreement with
observations by mutant studies [23] and show the inter-
play of the apoptotic and survival pathways in response
to the variations of IKK and FADD. As Figure 7 shows,
a combination of increasing the initial concentration of
FADD and decreasing the initial concentration of IKK
gets more effects on the DNA fragmentation.
The fragmented DNA (x26) is the output of the sig-

nal transduction model in response to TNF-a stimulus.
Our goal is to identify the essential reactions that have
significant effect on the system output. The semi-rela-
tive sensitivities of fragmented DNA are used to
achieve this goal. Since dynamic sensitivities vary with
time, it is hard to determine the most important reac-
tion that has the largest effect on the system output.
We consider the usual used significance measure,

time-averaged semi-relative sensitivity defined similar
to equation (12), as the strength of effects on fragmen-
ted DNA for individual reactions. Table 3 shows the
ranking of dynamic sensitivities of fragmented DNA
with respect to all parameters based on time-averaged
semi-relative sensitivities. The values of time-averaged
semi-relative sensitivities and the corresponding ratios
to the total semi-relative sensitivity are shown if the
ratios are greater than 2%. Six out of the top seven key
parameters belong to the apoptosis pathway. This
means that the apoptosis pathway dominates the cell
fate in response to TNF-a. The rate constants for the
formation of phosphorylated caspase-8 (k20) and phos-
phorylated caspase-3 (k23) and the regulation of acti-
vating caspase-3 by phosphorylated caspase-8 (k21 ) are
identified as important parameters. This result indi-
cates that the activation cascades of caspase-8 and cas-
pase-3 are important reactions in the apoptosis signal
transduction pathway. Figure 8 shows the top seven

Figure 5 Schematic diagram of TNF-a signal transduction network. The solid lines indicate reversible reactions and the dash-dot lines
denote irreversible reactions. The dash lines indicate the delayed transcription processes. The reactions and components of the survival pathway
are shown in green. The reactions and components of the apoptotic pathway are shown in blue. The boxes with red border denote the
components with nonzero initial value in the network.
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semi-relative sensitivities of fragmented DNA. All key
parameters positively regulate the activity of DNA frag-
mentation except parameter k9.
The transcription factor NF-�B (x16) plays an important

role in the survival pathway. To further understand the
control of NF-�B, we analyze the semi-relative sensitivities

of NF-�B with respect to all parameters. The ranking of
parameter sensitivities of NF-�B based on the time-aver-
aged semi-relative sensitivities is shown in Table 4. A
parameter is referred to as an important parameter if the
ratio of its time-averaged semi-relative parameter sensitiv-
ity to the total parameter sensitivity of NF-�B is greater

Figure 6 Stacked 100% column chart for individual state variables. Each column in the stack column chart shows all semi-relative
parameter sensitivities for a state variable. The proportion of a parameter sensitivity to the total sensitivity for a state variable is displayed as a
color area in each column. The values of time-averaged semi-relative parameter sensitivities are used as the data.

Figure 7 The symmetry of semi-relative sensitivities with respect to k9 and k15. The solid lines are the semi-relative sensitivities with
respect to the rate constant k9 of the formation of survival complex and the short dash lines are the semi-relative sensitivities with respect to
the rate constant k15 of the formation of death complex. The semi-relative sensitivities of NF-�B (x16) are shown in red, I�B (x31) in green,
activated caspase-3 (x25) in blue, and fragmented DNA (x26) in pink.
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than 2%. Ignoring the rate constants for the reverse reac-
tions, all parameters -k9, k11, k12, k14, k28, and k29 - in the
survival pathway are identified as important parameters.
The parameter k15 is also identified as an important para-
meter, although NF-�B is negatively sensitive to it. The
top seven sensitivities of NF-�B are shown in Figure 9.
The dynamic sensitivity of NF-�B with respect to the IKK
activation (k11) is similar to that with respect to the NF-�B
activation (k14) as Figure 9 shows. This means that the
inhibitor of IKK acts the same function as the inhibitor
of NF-�B to inhibit the activity of NF-�B. The activation
of NF-�B in most types of cells leads to the inhibition of

apoptosis, accelerates cell proliferation, and promotes
tumorigenesis. To inhibit cell growth, some small-mole-
cule inhibitors targeting IKK have already been developed
to treat certain type tumors [42]. Several synthetic drugs
that are be able to inhibit the activities of IKK and NF-�B
have been shown to have the same effects on tumor devel-
opment [43,44]. Larger the rate constant for the transcrip-
tion of I�B (k29), more I�B is generated to deactivate
NF-�B and causes lower active NF-�B. A large rate con-
stant for the formation of death complex (k15) leads to less
signals to activate IKK that then phosphorylates I�B and
triggers the activation of NF-�B. Both rate constants regu-
late negatively the activation of NF-�B as shown in Figure
9. The sensitivities of NF-�B with respect to the rates of
IKK activation (k11), the formation of NF-�B/I�B/IKK*
(k12), the NF-�B activation (k14), and the deactivation of
NF-�B (k28) alternate between positive and negative
values. These oscillations of sensitivities may be caused by
the negative feedback regulation of I�B.
Following similar procedures mentioned above, we

investigate the regulation of the apoptosis pathway.
The DISC complex is essential for TNF-induced apop-
tosis and it is required for casepase-8 activation. To
investigate the regulation of apoptosis, we identify the
important reactions that regulate the formation of
DISC by sensitivity analysis. The ranking of dynamic
sensitivities of DISC based on the time-averaged semi-
relative sensitivities is shown in Table 5. The key

Table 3 The ranking of semi-relative sensitivities for
fragmented DNA

Rank Parameter Time-averaged semi-relative
sensitivity

Percentage
(%)

1 k26 51.349 25.49

2 k21 40.336 20.02

3 k20 33.558 16.66

4 k15 24.010 11.92

5 k9 23.755 11.79

6 k17 17.756 8.81

7 k23 7.492 3.72

The dynamic sensitivities of fragmented DNA (x26) with respect to all
parameters are ranked based on the time-averaged semi-relative sensitivities.
The values of time-averaged semi-relative sensitivities and the corresponding
ratios to the total semi-relative sensitivity are shown if the ratios are greater
than 2%.

Figure 8 The semi-relative sensitivities of fragmented DNA. The semi-relative sensitivities of fragmented DNA (x26) with respect to the rate
constants of the formation of survival complex (k9), the formation of death complex (k15), the formation of DISC without TNFR1 (k17), the
caspase-8 activation (k20), the cleavage of procaspase-3 (k21), the caspase-3 activation (k23), and the fragmentation of DNA (k26).
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parameters -k9, k15, k17, and k20 - are identified and the
dynamic sensitivities of DISC with respect to these
four parameters are shown in Figure 10. The reaction
of dissociation of DISC from the death receptor
TNFR1 is essential for the following caspase-8 activa-
tion and its corresponding rate constant k17 is identify
as an important parameter. This result is in agreement
with the observation in an in vitro binding assay by
Harper et al. [40].

Efficiency and accuracy
To verify the result obtained by the EAMCM algorithm,
it is compared with the finite difference method using

the dde23 as the DDE solver. The dde23 solver is avail-
able in MATLAB 6.5 and later. Forward difference is
considered in the finite difference method. The dynamic
sensitivities of these two systems mentioned above are
solved by the finite difference method with spacing ratio
0.1 and 0.01, respectively. The relative parameter sensi-
tivities of heart rate and blood pressure with respect to
b obtained by the finite difference method with spacing
ratio 0.1 and 0.01, respectively, and the EAMCM
method are shown in Figure 11 as an illustration
(another data is similar and not shown here). According
to the definition of relative sensitivity, the theoretical
value of relative sensitivity is obtained when the spacing
ratio is approaching to zero. From Figure 11, the relative
sensitivities obtained by the EAMCM are close to the
theoretical values. We analyze the performance of the
finite difference method and the EAMCM method for
computing the dynamic sensitivities by measuring the
number of evaluations of model equations. The results
are shown in Table 6. The CPU time in second running
by a 1.86 GHz Intel Xeon CPU with 4 GMB RAM is
shown in the parenthesis for reference. Based on the
comparison, the EAMCM program surely outperforms
the finite difference method using dde23 solver. The
EAMCM program can be accessed from http://www.
che.ccu.edu.tw/~bioproc/index_english.files/page00064.
htm and a brief manual can be found in the Additional
file 2.

Table 4 The ranking of semi-relative sensitivities
of NF-�B

Rank Parameter Time-averaged semi-relative
sensitivity

Percentage
(%)

1 k29 1.300E-02 23.77

2 k14 1.082E-02 19.79

3 k11 1.081E-02 19.76

4 k9 6.709E-03 12.27

5 k15 6.672E-03 12.20

6 k12 2.255E-03 4.12

7 k28 2.123E-03 3.88

The dynamic sensitivities of NF-�B (x16 ) with respect to all parameters are
ranked based on the time-averaged semi-relative sensitivities. The values of
time-averaged semi-relative sensitivities and the corresponding ratios to the
total semi-relative sensitivity are shown if the ratios are greater than 2%.

Figure 9 The semi-relative sensitivities of NF-�B. The semi-relative sensitivities of NF-�B (x16) with respect to the rate constants of the
formation of survival complex (k9), the IKK activation (k11), the formation of NF-�B/I�B/IKK* (k12), the NF-�B activation (k14), the formation of
death complex (k15), the deactivation of NF-�B (k28), and the transcription of cIAP and I�B (k29).
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Conclusions
We extend the applicability of the adaptive direct-
decoupled algorithm for ODE models to DDE models
and include the implementation of automatic differen-
tiation technique among it. The most attractive feature
of the EAMCM program is minimal user intervention
that can reduce the human effort required for solving
the dynamic sensitivities of complex biological systems
and reduce the number of human errors introduced.
EAMCM requires the user to supply only the model
equations at run-time to compute dynamic sensitivities
of DDE models. The evaluation of sensitivity equations
is done automatically by automatic differentiation tech-
nique along with the inevitable evaluation of model
equations. The computations of partial derivatives and
values of model equations simultaneously induce less

overhead cost of computer time. The exact accuracy of
the computed derivatives is achieved by the property of
automatic differentiation. By compared with direct-
coupled methods in theory, the adaptive direct-
decoupled EAMCM algorithm is efficient, accurate, and
easy to use for end users without programming back-
ground to do dynamic sensitivity analysis on complex
biological systems with time-delays.
We illustrate the use of the EAMCM program in the

sensitivity analysis of two DDE models: the cardiovascu-
lar control system and the TNF-a signal transduction
network. The parameters for sympathetical and vagal
control of heart rates are identified as key parameters in
the cardiovascular control system. From the symmetry
of dynamic effects of sympathetical and vagal control on
heart rate obtained by sensitivity analysis, it reflects the
sympathovagal balance in physiology. The TNF-a signal
transduction network is a more complicated system
than the first model and symbolic differentiation is unaf-
fordable in this case to obtain the sensitivity equations.
By using the EAMCM program, users can provide the
model equations only for solving the dynamic sensitiv-
ities of the model. The formation of survival and death
complexes are identified as the key reactions for the
fragmentation of DNA via sensitivity analysis. This
result reveals that the interplay between the components
of the survival and apoptosis pathways plays an impor-
tant role in the TNF-a signal transduction network.

Table 5 The ranking of semi-relative sensitivities of DISC

Rank Parameter Time-averaged semi-relative
sensitivity

Percentage
(%)

1 k20 0.1270 33.43

2 k15 0.0964 25.38

3 k9 0.0963 25.35

4 k17 0.0530 13.96

The dynamic sensitivities of DISC (x21) with respect to all parameters are
ranked based on the time-averaged semi-relative sensitivities over the
response time. The values of time-averaged semi-relative sensitivities and the
corresponding ratios to the total semi-relative sensitivity are shown if the
ratios are greater than 2%.

Figure 10 The semi-relative sensitivities of DISC. The semi-relative sensitivities of DISC (x21) with respect to the rate constants of the
formation of survival complex (k9), the formation of death complex (k15), the formation of DISC without TNFR1 (k17 ), the caspase-8 activation
(k20).
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Methods
Delay differential equations (DDEs) arise in either nat-
ural or technological control problems for a large and
important class of dynamical systems. This type of dyna-
mical system now occupies a place of central impor-
tance in all areas of science and particularly in the
biological sciences [45]. There are various kinds of delay
differential equations. Here, we focus on equations with
fixed, discrete delays, namely those of the form

d
d
x f x x x x
t

t t t t r= − − −( ( ), ( ), ( ),..., ( ); ),   1 2 (3)

where x(t) Î Rn is a vector of state variables, θ Î Rp

is a vector of parameters, τi are positive time-delays, and
r is the number of multiple delays. DDE models are
similar to ODE models, but their evolution involves past
values of the state variables. When giving initial condi-
tions for ODE systems, we only need to specify the
initial values of the state and input variables. In order to
solve DDE systems, we have to look back to earlier
values of x at every time step. Therefore, it is necessary
to provide an initial function to specify the value of the
solution before time t = 0. This function has to cover a

period at least as long as the longest delay since we look
back in time that far.

DDE solver
Most DDEs do not have analytic solutions, so it is gen-
erally necessary to resort to numerical methods. We
have presented an adaptive modified collocation method
(AMCM) for computing the solution of autonomous
ODE systems [21]. This method is easy to extend to
compute the solution of simple scale DDE systems. To
simplify discussion, we assume the DDE model consists
of a set of DDEs with a single delay and expressed as

d
d
x f x x
t

t t= −( ( ), ( ); ),  (4)

where the delay τ is a positive constant. The initial
function x(t) defined on the interval [-τ, 0] is set to x(0).
Equation (4) can be reduced to ODEs by introducing a
new input variable y for each delayed variablen x(t -τ) as

y t
x t

x t t
( )

( ) ,

( ) ,
=

≤
− >

⎧
⎨
⎩

0 if

if


 

and can be solved by our ODE solver in the AMCM.
The AMCM algorithm with piecewise linear polyno-
mials as the shape functions solves the ODEs trans-
formed from equation (4) for each subinterval [tj-1, tj],
ti-1 ≤ tj-1 <tj ≤ ti by

x x f x y f x y( ) ( ) { ( ( ), ( ); ) ( ( ), ( ); )},t t t t t tj j j j j j j= + +− − −1 1 1
1

2
   (5)

where hj is the step size in time tj. The adaptive ODE
solver in the AMCM controls the step size automati-
cally. The earlier values of x defined or computed on

Figure 11 The relative sensitivities obtained by the finite difference method and the EAMCM method. a) The relative sensitivities of heart
rate with respect to the uncontrolled average arterial blood pressure (b); b) The relative sensitivities of blood pressure with respect to b. The
green and red lines are obtained by the finite difference method with spacing ratio 0.1 and 0.01, respectively. The blue line is obtained by the
EAMCM method. The time is in dimensionless scale.

Table 6 The number of evaluations of model equations

System Finite difference method with
dde23 solver

EAMCM
method

Cardiovascular 441,112(160) 60,000(8)

Apoptosis 311,464(246) 177,329(175)

The number of evaluations of model equations for cardiovascular and
apoptosis systems when computing all dynamic parameter and initial
sensitivities by the finite difference method and the EAMCM method,
respectively. The CPU time in second running by an 1.86 GHz Intel Xeon CPU
with 4 GMB RAM is shown in the parenthesis.
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the interval [t - τ, t] have to be stored for y at every
computation time t. Due to the automatic step size con-
trol, the solution at time t - τ may be not computed by
the AMCM. To solve this problem, interpolation is used
to generate the solution for the input variable y as
follows:

y t x t x t
t ta
ta ta

x t x t t t ta a a a a( ) ( ) ( ) [ ( ) ( )],= − = + − −

+ −
− < − <+ +




1
1 1,, (6)

where ta is the time point that x(ta ) has been com-
puted, ta+1 is the next time point, and the step size
ta+1 - ta is determined by the AMCM automatically.

Dynamic sensitivity analysis
For a model described by equation (4), the absolute
parameter sensitivity s(xi, θj ) of dependent variable xi Î
x with respect to a change in parameter θj Î θ is
defined as

s x
xi t j j xi t j

j

xi t

j
i j

j

( , ) lim
( ; ) ( ; ) ( ; )

,
  





=

+Δ −
Δ

= ∂
∂Δ →0

(7)

where xi(t; θj + Δθj) is the ith component of the solu-
tion of equation (4) with a change Δθj on the jth para-
meter and the others fixed. The absolute parameter
sensitivity s(xi, θj ) is also defined as the first-order local
sensitivity of xi with respect to θj [46]. The term local
refers to the fact that the value of s(xi, θj ) depends on
the given set of values for the parameters θ. Under the
assumption that the system responds linearly for small
perturbations, s(xi, θj ) measures the ratio between the
effect on xi and the variation of θj. It is useful to con-
sider the ratio between the relative effect on the output
and the relative variation of a parameter when compar-
ing different parameter sensitivities with respect to dif-
ferent parameters. The relative parameter sensitivity S
(xi, θj ) of xi with respect to θj, a dimensionless quantity,
is defined as

S x
xi t

j

j
xi

s xi j i j( , )
ln ( ; )

ln
( , ).





= ∂

∂
= (8)

Sometimes the use of relative parameter sensitivities
has the difficulty of numerical instability caused by the
division by zero when xi approaching zero. To address
this problem, the semi-relative parameter sensitivity
S xi j( , ) of xi with respect to θj is used and defined as

S x s xi j j i j( , ) ( , ).  = (9)

Once the local sensitivity is known, the calculation of
the relative sensitivity is straightforward. For brevity’s
sake, we limit our explanation on the absolute sensitivity

only below. For an autonomous system describing by
equation (4), the sensitivity equations are given as

d

d

s xi t j
t

fi
xk t

s x t
fi

xk t
s

k

n

k j

k

n( ( ), )

( )
( ( ), )

( )





= ∂

∂
+ ∂

∂ −
= =

∑ ∑
1 1

(( ( ), ) ,x t
fi
j

k j− + ∂
∂

 


(10)

where fi is the ith element of f. The AMCM algorithm
is extended to compute the solution of equations (10),
i.e., dynamic sensitivities of DDE systems. When the solu-
tion of a DDE system is obtained, the absolute dynamic
sensitivity of xi with respect to θj is computed by

s x t s x t

fi t l
xk t l

s x t

i l j i l j

k

n

k l
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(11)

where hl is the step size in time tl. Same as the
AMCM algorithm, the extended algorithm (EAMCM)
determines the step size automatically when computing
the absolute dynamic sensitivity of xi.
The dynamic sensitivity in equation (8) reflects a rela-

tive relationship between the magnitudes of a parameter
and a state variable at any time. We can define the inte-
gral value for the relative dynamic sensitivity over the
whole time as a measure for ranking all sensitivities to
identify the bottleneck reactions of the system. The
time-averaged relative sensitivity is therefore defined as:

S
tf

S x tij

t

i j

f

= 1
0
 | ( , ) | , d (12)

where tf is the final time.

Automatic differentiation
The main challenge in computing the solution of equa-
tion (10) is the evaluation of partial derivatives of f with
respect to all state variables x, delay variables x(t - τ), and
system parameters θ. One way to obtain the partial deri-
vatives is to use symbolic differentiation tools, such as
Maple and Mathematica, to perform the algebra of the
differentiation. The explicit expression of the partial deri-
vatives of f can be generated automatically. This is very
useful because it saves the human effort and avoids the
human errors in the analytical differentiation process. In
principle, this approach gives exact values of the partial
derivatives of f at the expense of high computation cost.
Symbolic differentiation tools always generate lengthy
formulas containing many common subexpressions that
require considerable computation to evaluate. If only the
values of the partial derivatives rather than the explicit
expressions of the partial derivatives of f are needed, the
simplest and common used approach is the numerical
differentiation by finite difference approximation
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∂
∂

= +Δ −
ΔΔ →

f
x

f x x f x
x

lim
( ) ( )

.
x 0

(13)

The main drawback of this approach is that the accu-
racy is hard to analyze. Another approach which can be
used to evaluate partial derivatives is automatic differen-
tiation. Automatic differentiation is a numerical compu-
tation of exact values of the partial derivatives without
generating a formula for the partial derivatives and is
much more effcient than symbolic differentiation. This
approach is based on the fact that every function, no
matter how complicated, can be represented by a well-
formed expression that is a finite combination of
elementary arithmetic operators, such as addition (+),
subtraction (-), multiplication (*), division (/), and power
(^), primitives, such as a constant or a state variable,
and intrinsic functions, such as sin, cos, etc. Each ele-
mentary arithmetic operation involves at most two oper-
ands which either have been computed in a previous
step or are primitives. The chain rule can be applied to
each of elementary arithmetic operators as follows:

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

h o o h
o

o h
o

o( , )
,

1 2
1

1
2

2
x x x

(14)

where h indicates the function for each elementary
arithmetic operator and oi is the ith operand. The deri-
vative of each primitive and each intrinsic function
would have to know. By applying the chain rule recur-
sively to each elementary arithmetic operator and each
intrinsic function, the partial derivatives of a function
can be computed exactly and in a completely mechani-
cal fashion.

EAMCM algorithm
The proposed algorithm EAMCM is shown as follows:
Algorithm EAMCM
Input:

1. A set of n delay differential equations x = f (x, y)
with n dependent variables xi, i = 1, ..., n and m time-
delay variables yi ≡ xj (t - τ), i = 1, ..., m, j Î [1, n].
2. Two order sets x0 = {xi (0)|i = 1, ..., n} and F0 =
{�ij (0)|i = 1, ..., n, j = 1, ..., m}.
3. An order set T = {t1, ..., tk} of sampling points, ti,
1 ≤ i ≤ k is the sampling time of the solution of
each DDE, k is the number of sampling points.
4. A tolerance ε.

Output: The dynamic sensitivities of dependent vari-
ables at each sampling time.

• For each sampling time ti in T.
1. hj ¬ ti - ti-1, dt ¬ 0, xc ¬ x(ti-1 ), Fc ¬ F(ti-1).

2. Repeat the following steps until dt = ti - ti-1.
(a) xp ¬ xc , yp ¬ x(ti-1 + di- τ), Fp ¬ Fc .
(b) If ti-1 >τ , then Fd ¬ F(ti-1+ di - τ );
otherwise, Fd ¬ F0.
(c) Evaluate the Jacobin matrix by automatic

differentiation A f x y
x

x y
y←

⎡

⎣
⎢

⎤

⎦
⎥

∂
∂

∂
∂

( , ) ( , )p p p p
, f

.

(d) Compute the upper bound μ of the value of

||A||2 by n m n a
i j ij( ) max,
,

+ ≡Δ Δ   A A .

(e) If μ* ε ≥ 1, it means the DDEs are stiff,
then exit this algorithm.
(f) If μ* hj > 1, then hj ¬ 0.9/μ.
(g) Call the Iteration algorithm to compute
the value of xc stepped forward hj from xp .
(h) Call the IterationOfSensitivity algorithm
to compute the value of the sensitivity matrix
Fc stepped forward hj from Fp.
(i) If the Iteration and IterationOfSensitivity
algorithms succeed in computing xc and Fc

respectively, then dt ¬ dt + hj and hj ¬ ti -
ti-1- dt; otherwise exist this algorithm.

3. Save the value of the sensitivity matrix Fc as
F(ti).

• return F(ti), i = 1, ..., k.

End of Algorithm EAMCM
Algorithm Iteration
Input:

1. A set of n delay differential equations x = f (x,
y), y(t) ≡ x(t - τ ).
2. x(t), y(t), hj, and the iteration limitation.

Output: x(t + hj ).

1. Evaluate the value of f (x(t), y(t)).
2. x(t + hj) ¬ x(t) + f (x(t), y(t)) * hj.
3. y(t + hj) ¬ x(t + hj - τ).
4. Repeat the following steps until the iteration
limitation is reached or the value of x(t+ht) is
convergent.

(a) Evaluate the value of f (x(t + hj), y(t + hj )).
(b) x(t + hj) ¬ x(t) + 0.5 * hj * (f (x(t), y(t)) +
f (x(t + hj), y(t + hj))).

5. If the iteration limitation is reached, then exit this
algorithm; otherwise, return x(t + hj).

End of Algorithm Iteration
Algorithm IterationOfSensitivity
Input:

1. A set of n delay differential equations x = f (x, y),
y(t) ≡ x(t - τ).
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2. hj and the iteration limitation.
3. Two vectors of dependent variables x(t) at time t
and x(t + hj) at time t + hj.
4. Two sensitivity matrices F(x(t)) and F(y(t)).

Output: The sensitivity matrix F(x(t + hj )).

1. Evaluate A = ∂
∂

f x y
x

( ( ), ( ))t t , B f x y
y= ∂

∂
( ( ), ( ))t t

, and

C f x y= ∂
∂

( ( ), ( ))t t


by automatic differentiation.

2. Evaluate the derivative  (x(t)) = AF(x(t)) + BF
(y(t)) + C.
3. F (x(t + hj)) = F (x(t)) +  (x(t)) * hj.

4. Evaluate A = ∂ + +
∂

f x y
x

( ( ), ( ))t j t j  ,

B f x y
y= ∂ + +

∂
( ( ), ( ))t j t j 

, and C f x y= ∂ + +
∂

( ( ), ( ))t j t j 


by

automatic differentiation.
5. Repeat the following steps until the iteration lim-
itation is reached or the value of F (x(t + hj)) is
convergent.

(a) Evaluate the derivative  (x(t + hj)) = AF(x
(t + hj)) + BF(y(t + hj)) + C.
(b) Evaluate the new value of F(x(t + hj)) by

   ( ( )) ( ( )) . ( ( ( )) ( ( ))).x x x xt t t tj j j+ = + ∗ ∗ + +    50  

6. If the iteration limitation is reached, then exit this
algorithm; otherwise, return F(x(t + hj)).

End of Algorithm Iteration Of Sensitivity

Additional material

Additional file 1: TNF-a signal transduction model. This file includes
the set of delay differential equations of the TNF-a signal transduction
model, all of the relevant definitions of state variables, and the nominal
values of parameters appearing in the delay differential equations.

Additional file 2: Manual of EAMCM program. This document
provides a brief introduction to the extended adaptive modified
collocation method (EAMCM) that we implemented to compute the
solution and dynamic sensitivities of ordinal differential equation (ODE)
and delay differential equation (DDE) systems.
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