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Abstract: Chronic kidney disease is one of the most important causes of mortality worldwide, but a
shortage of nephrology pathologists has led to delays or errors in its diagnosis and treatment. Im-
munofluorescence (IF) images of patients with IgA nephropathy (IgAN), membranous nephropathy
(MN), diabetic nephropathy (DN), and lupus nephritis (LN) were obtained from the General Hospital
of Chinese PLA. The data were divided into training and test data. To simulate the inaccurate focus of
the fluorescence microscope, the Gaussian method was employed to blur the IF images. We proposed
a novel multi-task learning (MTL) method for image quality assessment, de-blurring, and disease
classification tasks. A total of 1608 patients” IF images were included—1289 in the training set and
319 in the test set. For non-blurred IF images, the classification accuracy of the test set was 0.97, with
an AUC of 1.000. For blurred IF images, the proposed MTL method had a higher accuracy (0.94 vs.
0.93, p < 0.01) and higher AUC (0.993 vs. 0.986) than the common MTL method. The novel MTL
method not only diagnosed four types of kidney diseases through blurred IF images but also showed
good performance in two auxiliary tasks: image quality assessment and de-blurring.

Keywords: multi-task learning; deep learning; immunofluorescence images; kidney

1. Introduction

Chronic kidney disease (CKD) is a non-communicable disease that contributes to high
morbidity and mortality worldwide, including in China [1,2]. Recent studies have shown
that air pollution significantly increases the risk and mortality of CKD [3,4]. Diabetes is the
leading cause of CKD in developed countries, whereas glomerulonephritis predominantly
causes CKD in Asia and developing countries [5-7]. Membranous nephropathy (MN)
and IgA nephropathy (IgAN) are the most common forms of primary glomerulonephritis,
whereas lupus nephropathy (LN) and diabetes nephropathy (DN) are the most common
secondary types of glomerulonephritis in China [6,8]. These four pathological types con-
tribute to more than 60% of all cases of CKD [9]. Therefore, it is imperative to identify and
diagnose these four kidney diseases. Immunofluorescence (IF) is one of the most important
methods used for the diagnosis of these four kidney diseases. By 2017, there were only 3.94
and 4.81 pathologists per 100,000 people in the United States and Canada, respectively [10].
This implies that many hospitals lack experienced pathologists to diagnose kidney diseases.
Thus, it is necessary to develop an automatic classification system for kidney IF images
that can identify the diagnosis of interest from a bank of IF images.
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Digital pathology refers to the assemblage of digital workflow and imaging solutions
that are geared towards creating a digital image-based practice environment [11]. Deep
learning has been widely used in all aspects of social life, and the emergence of convolu-
tional neural networks (CNN) has further expanded the application of artificial intelligence
in digital pathology [11-14], which is expected to reduce delays or errors in diagnosis and
treatment caused by insufficient pathologists [15]. Moreover, in some cases, the image
diagnosis capabilities of CNN are far beyond that of humans [16,17]. A study showed that
deep learning could diagnose DN based on only six types of IF staining [18]. There have
also been studies that predicted systemic conditions and clinical metrics based on fundus
photographs, suggesting that deep-learning algorithms can detect subtle associations that
are undetectable to human observers [19,20].

In the image acquisition stage, the acquired images may be blurry due to human
or instrumental factors, which makes image recognition and analysis difficult in most
cases [21]. Most existing works were trained on non-blurred IF images [18,22]. Therefore,
in this study, we proposed a novel multi-task learning (MTL) method to handle multiple
tasks including the image quality assessment, de-blurring, and classification of blurred
IF images. MTL is a learning paradigm in machine learning used to leverage the shared
information and handle multiple correlated tasks. The effectiveness of MTL with CNN
methods has recently been demonstrated in the medical field. The commonly used MTL
method simply cascades tasks hierarchically. Notably, it only minimizes the mean square
error (MSE) between the reconstructed and clear images in the de-blurring task, and it pays
less attention to image semantic information that is beneficial for classification tasks [23,24].
To overcome this drawback, we proposed a novel MTL method named the MTL-IF method.
We leveraged the well-trained classification subnet to guide the training stage of the de-
blurring subnet. The results demonstrated that the MTL-IF method can improve the clinical
diagnosis based on blurred IF images.

The main contributions of this study are as follows. (1) Novel image quality assessment
and de-blurring methods are proposed to enhance the IF image quality, improve the
accuracy, and improve the reproducibility of the classification model. (2) The proposed
method has superior performance, as evidenced by its total accuracy of 0.94 and area
under the receiver operating characteristic curve (AUC) score of 0.993 for blurred IF image
classification.

2. Materials and Methods
2.1. Renal IF Image

Kidney specimens were obtained from patients undergoing renal biopsy treatment
in the People’s Liberation Army General Hospital, Beijing, China. Tissue samples were
quickly placed in liquid nitrogen, and the frozen tissue was cut into 34 um thick sections
in a cryostat. The corresponding mouse anti-human IgG, IgA, IgM, C3, C4, Clq, and
Fibrinogen (Fib) fluorescein isothiocyanate antibody was used for labeling and staining. A
fluorescence microscope (Olympus, Tokyo, Japan) was used to obtain IF images (200x).
All images were taken following a standardized protocol and a 200 ms fixed exposure time.

2.2. Patients Data

We retrospectively collected IF images of patients with IgAN, MN, DN, and LN in
our hospital from June 2003 to November 2013. Seven types of IF images—IgG, IgA, IgM,
C3, C4, Clq, and Fib—were collected for each patient. The IF images of each patient were
analyzed by two professional renal pathologists with over five years of work experience.
When there were discrepancies in diagnosis, a third senior pathologist with over ten
years of work experience intervened to make the correct diagnosis. The final diagnosis
of kidney disease was made by nephrologists based on the patient’s medical history,
examination results, and pathology including IF images, light microscopy images, and
electron microscopy images. The inclusion criteria were: (1) primary IgAN, (2) primary
MN, and (3) all DN and LN. The exclusion criteria were: (1) patients under 18 years old
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and (2) patients with two or more kidney diseases. We divided the data into training
and test data in a ratio of 8:2. Meantime, in order to build a blurred IF image database
to simulate the defocusing scene of microscope, all the IF images were blurred via the
Gaussian method [25].

2.3. Image Quality Assessment and De-Blurring

The image quality assessment (IQA) tasks take images as input and aims to regress the
exacted feature into quality score. Specifically, our IQA subnet was composed of several
convolutional layers for extracting features and linear layers for generating image quality
scores. We set quality scores of 0 and 1 to represent blurred and non-blurred, respectively,
a binary which is commonly adopted in the IQA tasks. Since the image quality assessment
task was aimed to serve the de-blurring task, it did not need to assess the exact quality score
of image; instead, it sonly roughly graded the IF image quality as blurred or non-blurred.
Then, IF images needed to be de-blurred if the quality was judged as blurred. Otherwise,
an image could be directly used for classification without de-blurring. The performance
of image quality assessment was measured by the Pearson product-moment correlation
coefficient (PLCC). The PLCC measures the correlation between predicted quality scores
and ground truth scores, and it is commonly used in IQA tasks. Note that larger values
indicate higher prediction correlations between IQA results and corresponding ground-
truth. Specially, the PLCC metric can be formulated as follows:

COV(X,Y)

PLCC =
CcC Sxdy

In the above equation, X and Y denote the predicted quality results and the corre-
sponding ground-truth quality scores vectors. dx,dy and COV (X, Y) denote the standard
deviation and covariance of X and Y, respectively.

To de-blur blurred IF images judged by the image quality assessment subnet, we used
a de-blurring subnet inspired by Zhao H et al. [26]. The main architecture of the de-blurring
subnet contained five major components (shown in Figure 1A): shallow feature extraction,
residual dense blocks (RDB), global feature fusion, global residual learning, and up-scaling.
The forward process of the entire network can be briefly described as follows.

First, two convolutional layers are used to extract the shallow features, and then the
extracted shallow features go through four RDB blocks. Each RDB block includes dense
connection, local feature fusion, and local and residual connection. Dense connection refers
to a direct connection of each convolutional layer to subsequent layers, which enhances
local transmission and optimally uses features from all preceding layers. All local features
are concatenated together and pass through a 1 x 1 convolutional layer to achieve local
feature fusion. Global residual learning combines shallow features and global fusion
features. Finally, the image is restored through up-scaling. The minimum mean square
error mean square error (MSE) was used as the loss function, and Adam was used as
the optimizer.
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Figure 1. The framework of the network: (A) deblurring subnet, (B) classification subnet, (C) the common MTL method, and
(D) the novel MTL-IF method. IQA: image quality assessment; IgAN: IgA nephropathy; MN: membranous nephropathy;

DN: diabetic nephropathy; LN: lupus nephritis.

2.4. IF Image Classification Based on CNN

The fundamental AlexNet [27] was utilized as the main framework for classifying the
IF images of four types of kidney diseases: IgAN, MN, DN, and LN. The framework of the
AlexNet method consisted of convolutional layers for extracting features and linear layers
for classifying (shown in Figure 1B). Due to the need for multiple stains when diagnosing
per instance, we applied a multi-channel input mechanism. We leveraged the cross-entropy
function as the loss function and Adam as the optimizer. The network was trained for
150 epochs with a batch size and learning rate of 64 and 0.0002, respectively.

2.5. Blurred IF Image Classification Using the Common MTL Method

The common MTL method simply cascaded the three aforementioned subnets by
order. First, the IF images were input into the image quality assessment subnet to evaluate
the image quality. If the images’ quality was judged as blurred, the images were input to
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Blurred IF image Common MTL method de-blurred IF image  MTL-IF method de-blurred IF image

De-blurrNet for de-blurring; otherwise, they were directly input to the classification subnet,
and all IF images were input into the classification subnet in the end (shown in Figure 1C).

2.6. Classification of Blurred IF Image Using the Proposed MTL-IF Method

Since our ultimate goal was to improve the classification accuracy and clinical diagno-
sis of kidney diseases, we proposed the MTL method, which uses downstream high-level
to guide low-level tasks. With the guidance of the classification task, the de-blurring subnet
effectively focused on important regions in the classification task and paid less attention
to unimportant regions or background. The main framework of the proposed multi-task
learning model is shown in Figure 1D.

To highlight the regions that were focused on by the classification task, we leveraged
the Grad-CAM method proposed by Selvaraju et al. [28]. The Grad-CAM method uses
class-specific gradient information flowing into the final convolutional layer of a CNN
to produce a coarse localization map of the important regions in an IF image to guide
de-blurring. Figure 2A shows the heat map of an IF image.

Figure 2. (A) The heat maps of IF images. (B) The de-blurred images generated by the common MTL method and the
MTL-IF method, including the blurred IF image, common MTL method de-blurred IF image, and MTL-IF method de-blurred

IF image.
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In the training phase, only the weights of the de-blurring subnet were updated by
the error back-propagated, while the well-trained classification subnet based on clear IF
images remained unchanged. First, the Grad-CAM method was used to visualize the
feature map when blurred IF images were applied as input to the well-trained classification
subnet. Second, the input blurred IF images combined with the corresponding feature
maps in the channel-concatenate manner. Subsequently, the input images were deblurred,
and MSE loss was used for updating de-blurring network. Finally, the deblurred images
were re-entered into the AlexNet for classification. As a result, we updated the de-blurring
network with an attention distribution that paid more attention to regions essential for
clinical classification diagnosis.

2.7. Assessment of CNN Classification Performance

We tested some metrics, including recall, precision, and F1 score, to assess the classi-
fication performance of CNN. Finally, the receiver operating characteristic (ROC) curve
was drawn, and the AUC was calculated. The chi-square test was used to compare the
accuracy of different models. A p-value <0.05 was considered statistically significant. The
aforementioned metrics are defined as follows.

Accuracy = (True Positives + True Negatives)/(True Positives + True Negatives + False
Positives + False Negatives).

Accuracy is the ratio between the correct predictions and the total predictions.

Recall = (True Positives)/(True Positives + False Negatives).

Recall has the same statistical meaning as sensitivity.

Precision = (True Positives)/(True Positives + False Positives).

Precision has the same statistical meaning as the positive predictive value.

F1 score = 2 (Precision x Recall)/(Precision + Recall).

The F1 score is an indicator used in statistics to measure the accuracy of a classification
model. The F1 score can be regarded as a weighted average of precision and recall. Its
maximum value is 1, and its minimum value is 0.

3. Results
3.1. Image Data

We included 1608 patients’ IF images as the classifier dataset. Our IF diagnosis was
jointly determined by three experienced doctors. If the IF images had no noticeable charac-
teristics, our doctors combined light microscopy, electron microscopy, medical history, and
our results to diagnose the diseases. There were 655, 348, 201, and 404 cases of IgAN, MN,
DN, and LN, respectively. We divided the training and the test data into a ratio of 8:2. The
training set had 1289 cases, with 523 cases of IgAN, 281 cases of MN, 162 cases of DN, and
323 cases of LN.

3.2. Image Quality Assessment and De-Blurring

The performance of the MTL-IF method was compared to that of the common method
in two auxiliary tasks: image quality assessment and de-blurring. For the de-blurring task,
the MSE metric was used to evaluate the performance. A lower MSE value indicated better
de-blurring performance. The MSE of the proposed MTL method was decreased to 0.00115,
whereas that of the common MTL method was decreased to 0.00147. Figure 2B shows the
de-blurred images generated by the MTL-IF method.

3.3. Classification of Subnet Performance Based on Non-Blurred and Blurred IF Images

The classification subnet was trained to identify [IgAN, MN, DN, LN, and other kidney
diseases. Table 1 shows the ability of the classification subnet to independently diagnose
four diseases based on non-blurred IF images. The overall accuracy rate was 0.97, and the
AUC was 0.995. For blurred IF images, the overall accuracy rate was 0.91 and the AUC
was 0.982 (shown in Table 2). The ROC curve is shown in Figure 3. The accuracy of using
blurred IF images to diagnose kidney disease significantly decreased.
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Table 1. Classification subnet performance in disease diagnosis based on non-blurred IF images.

Diseases Numbers Accuracy Recall Precision F1 Score AUC
IgAN 132 0.98 0.98 0.98 0.98 0.997
MN 67 0.97 0.97 0.96 0.96 0.994
DN 39 0.95 0.95 0.93 0.94 0.992
LN 81 0.95 0.95 0.98 0.96 0.990
Total 319 0.97 0.96 0.96 0.96 0.995

IF: immunofluorescence; IgAN: IgA nephropathy; MN: membranous nephropathy; DN: diabetic nephropathy;
LN: lupus nephritis; AUC: area under the curve.

Table 2. Classification subnet performance in disease diagnosis based on blurred IF images.

Diseases Numbers Accuracy Recall Precision F1 Score AUC
IgAN 132 0.87 0.87 0.98 0.92 0.992
MN 67 0.97 0.97 0.82 0.89 0.983
DN 39 0.92 0.92 0.86 0.89 0.983
LN 81 0.93 0.93 0.93 0.93 0.974
Total 319 0.91 0.92 0.90 091 0.982

IF: immunofluorescence; IgAN: IgA nephropathy; MN: membranous nephropathy; DN: diabetic nephropathy;
LN: lupus nephritis; AUC: area under the curve.
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Figure 3. The ROC curve of each method. (A) ROC curve of non-blurred IF images test classification subnet; (B) ROC curve
of blurred IF images test classification subnet; (C) ROC curve of blurred IF images test with the common MTL method;
(D) ROC curve of blurred IF images test with the MTL-IF method. ROC: receiver operating characteristic; IgAN: IgA
nephropathy; MN: membranous nephropathy; DN: diabetic nephropathy; LN: lupus nephritis.
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3.4. Performance of the Two Methods in Disease Diagnosis Based on Blurred IF Images

The common MTL method improved the classification accuracy when applied to
blurred IF images, with an overall accuracy rate of 0.93 and an AUC of 0.986 (shown in
Table 3). The ROC curve is shown in Figure 3. The proposed MTL-IF method was more
accurate than the common MTL method in diagnosing kidney disease when applied to
blurred IF images. Its overall accuracy rate was 0.94 (p < 0.01), and the AUC was 0.993. The
ROC curve is shown in Figure 3. Additional details regarding the performance of the two
methods are shown in Tables 3 and 4. Each disease was diagnosed at an average testing
time of 0.57 s.

Table 3. Common MTL method performance in disease diagnosis based on blurred IF images.

Diseases Numbers Accuracy Recall Precision F1 Score AUC
IgAN 132 0.90 0.90 0.98 0.94 0.993
MN 67 0.97 0.97 0.87 0.92 0.993
DN 39 0.92 0.92 0.90 091 0.983
LN 81 0.94 0.94 0.93 0.93 0.977
Total 319 0.93 0.93 0.92 0.92 0.986

IF: immunofluorescence; IgAN: IgA nephropathy; MN: membranous nephropathy; DN: diabetic nephropathy;
LN: lupus nephritis; AUC: area under the curve.

Table 4. MTL-IF method performance in disease diagnosis based on blurred IF images.

Diseases Numbers Accuracy Recall Precision F1 Score AUC
IgAN 132 0.87 0.87 0.98 0.92 0.992
MN 67 0.97 0.97 0.82 0.89 0.983
DN 39 0.92 0.92 0.86 0.89 0.983
LN 81 0.93 0.93 0.93 0.93 0.974
Total 319 091 0.92 0.90 091 0.982

IF: immunofluorescence; IgAN: IgA nephropathy; MN: membranous nephropathy; DN: diabetic nephropathy;
LN: lupus nephritis; AUC: area under the curve.

4. Discussion

Al has been widely used in the recognition of renal pathology [29], such as the
recognition of cortical or medulla, glomeruli, renal tubules, and renal arteries [30,31], as
well as the recognition of internal glomerular structures, such as the podocytes, mesangial
cells, and mesangial area [32]. However, in the final diagnosis of kidney disease, the type,
location, and shape of immune complex deposits are still important bases and have distinct
characteristics, especially in IgAN and MN. The diagnosis of LN relies on medical history
and autoantibody testing but cannot be directly diagnosed using light microscopy and
IF unless the IF shows “full house”. The IF of DN has no noticeable characteristics, and
its diagnosis depends on light microscopy, medical history, and peripheral small vessel
disease, such as fundus vascular disease. However, deep learning can extract features
that cannot be detected by human eyes. In our study, we used deep learning to mine
the specific features of IF images to directly diagnose four types of kidney diseases. We
utilized non-blurred IF images to train and test the classification subnet. The accuracy
of diagnosing kidney disease using seven types of IF images was as high as 0.97, which
suggested that CNN might identify not only distinctive IF images but also image features
that the human eye misses. LN-V also manifests as the diffuse thickening of the glomerular
basement membrane, similar to primary MN. Our method could distinguish these two
diseases, indicating that the network captured features that the human eye did not pay
attention to.

The non-standardization of image quality is major problem of Al classification and
recognition, and it has led to the poor reproducibility of model. Any medical imaging tech-
nology involving human reports is subject to important explanatory subjectivity constraints.
Poor reproducibility has been confirmed numerous times in previous renal histopathology
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studies [33], and the application of deep learning in renal pathology recently also con-
firmed it [22,31,34]. Several studies have incorporated multi-center pathological images to
increase the range of model recognition images [35]. However, multi-center studies can
only include as many types of pathological images as possible; they cannot include all types
of pathological images. Additionally, multi-center research is often time-consuming and
laborious. Therefore, it is particularly important to standardize the quality of images. In
our study, to avoid the impact of different personnel and equipment on the image quality,
we included an image quality assessment and de-blurring subnet. Our results showed that
the de-blurring subnet significantly improved the clarity of blurred images. We believe that
standardized pre-processing of IF images can be further utilized in the future, especially in
retrospective designs.

The common MTL method, which simply cascades tasks by order, has been used to
solve the problem of de-blurring and classification [36]. However, though this method
minimizes the MSE between the reconstructed and non-blurred images, it does not address
the semantic information that is beneficial to the classification tasks. It has been reported
that using semantic information from high-level vision tasks to guide low-level vision
tasks could achieve potential gains in high-level tasks [37]. Inspired by this strategy, we
proposed the MTL-IF method. Compared with the common MTL method, the MTL-IF
method significantly increased diagnosis accuracy when applied to blurred IF images
and achieved comparable performance in two auxiliary tasks: image quality assessment
and de-blurring. This demonstrated potential gains when applying the high-level task
guidance. Moreover, the diagnosis speed of the proposed model was significantly faster
than that of human eye recognition. According to reports, pathologist takes about 7.3 s to
recognize and diagnose an IF image [22]. The time to recognize seven IF images is about
51.1 s. The MTL-IF model was found to be able to diagnose seven IF pictures in 0.57 s, so
the MTL-IF model needs less time to recognize seven IF images than a pathologist.

5. Conclusions

This study shows that the MTL model can evaluate the quality of IF images of kidney
disease and enhance the quality of low-quality images. It can also accurately classify and
diagnose four types of kidney disease based on IF images. In the future, we hope to apply
this model to identify other types of IF images of kidney diseases.
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