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Abstract. The protein product of the proto-oncogene 
c-src is a membrane-associated tyrosine kirmse of un- 
known function. Identification of pp60 "-'~ target mem- 
branes may elucidate the function of the c-src protein. 
The available evidence indicates that pp60 ~-'r~ associ- 
ates with distinct membranes within single cell types 
and has different distributions in different cell types. 
Our experiments demonstrate targeting of pp60 csrr to 
an isolatable and biochemically identified membrane 
fraction in the neuroendocrine cell line PC12. The 
c-src protein was found to be specifically associated 
with synaptic vesicles since: (a) the pp60 "-~r~ im- 

munofluorescent pattern overlapped with a synaptic 
vesicle marker, synaptophysin; (b) a significant 
proportion (44%) of the pp60 ~-'r~ from PCl2 but not 
fibroblast postnuclear supernatants was recovered in a 
small vesicle fraction; (c) an anti-synaptophysin cyto- 
plasmic domain antibody immunodepleted all of the 
pp60 ~-s~ vesicles in this fraction, and (d) pp60 ~-*r~ 
copurified during a 100-fold purification of PC12 syn- 
aptic vesicles. These results suggest a role for the 
c-src protein in the regulation of synaptic vesicle 
function. 

T 
HE gene responsible for the transforming activity of 
Rous sarcoma virus was derived from a normal cel- 
lular gene, c-src (Stehelin et al., 1976). Both genes 

encode membrane-associated tyrosine kinases. The c-src 
protein, pp60~-s% has been well characterized but its physi- 
ological function remains unknown. Although pp60 ~-~ is 
expressed in all cell types of the mouse, loss of the gene by 
targeted disruption does not lead to a defect in general cell 
viability (Soriano et al., 1991). The presence of other tyro- 
sine kinases related to src may make pp60 ~-*~ function un- 
essential except in unusual circumstances. 

Most tyrosine ldnases are localized to the plasma mem- 
brane, whether they are integral membrane proteins such as 
the growth factor receptors, or peripheral membrane pro- 
teins that complex with integral plasma membrane proteins. 
This makes sense for proteins that are signaling receptors 
themselves or transducers for cell surface receptors. The 
c-src protein is also associated with the plasma membrane. 
In fibroblasts, for example, pp60 "-'~ is recovered in subcel- 
lular fractions enriched in plasma membrane markers (Court- 
neidge et al., 1980) and it or its substrates may interact with 
gap junction components (Azarnia and Loewenstein, 1987; 
Azarnia et al., 1988). In some cell types, pp60 c-~ is as- 
sociated with the attachment of the actin-based cytoskeleton 
to the cell surface, for example at adherens junctions (Tsuldta 
et al., 199D and at growth cones of extended neurites (Maness 

et al., 1988; Sobue, 1990). The location of pp60~-~ is not 
restricted exclusively to the cell surface, however. In plate- 
lets and chromaflin cells pp60 ~'s~ is associated with secre- 
tory granules in addition to the plasma membrane (Ferrell 
et al., 1990; Parsons and Creutz, 1986; Grandori and 
Hanafusa, 1988), and in neurons, fractions enriched in syn- 
aptic vesicles contain pp60 ̀ -~ (Hirano et ai., 1988; Bar- 
nekow et al., 1990). In fibroblasts pp60 ~-sr~ is recovered 
from intracellular membranes associated with the nuclear 
envelope (Resh and Efikson, 1985), and if pp60 ~-'= is over- 
expressed it shows both plasma membrane localization and 
accumulation in puncta throughout the cytoplasm (Kaplan 
et al., 1990; David-Pfeuty and Nouvian-Dooghe, 1990). 
The colocalization of pp60 "~ and endocytosed Con A in 
fibroblasts overexpressing the c-src protein suggests that 
pp60 c-~ may be associated with endosomes (David-Pfeuty 
and Nouvian-Dooghe, 1990). It is possible that the intracel- 
lular localization reflects mis-sorting of a protein intended 
for the cell surface. If, on the contrary, pp60 "-,r~ is selec- 
tively targeted to the intracellular organelles it becomes less 
likely that pp60 ~-s~ is exclusively part of a conventional sig- 
naling receptor. 

Specific targeting of pp60 ~-~ to intracellular organelles 
could require an interaction with a component enriched in 
that organelle. Membrane association of both the viral and 
cellular forms of the src gene product is dependent in part 
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on covalent attachment of the 14-carbon fatty acid myristate 
to the amino terminus of the sre proteins (Buss et al., 1986; 
Garber et al., 1985; Cross et al., 1984; Kamps et al., 1985). 
However, certain deletions of amino-terminal sequences re- 
sult in myristylated but nonmembrane-associated pp6@ s~ 
(Garber et al., 1985; Krueger et ai., 1982; Kaplan et al., 
1990). These observations suggest that sequence elements 
within the amino-terminal portion of the protein function to- 
gether with the myristyl moiety in membrane association. 
That the membrane association may be mediated by interac- 
tion with a membrane receptor is further suggested by the 
finding that membrane fractions contain saturable binding 
sites for myristylated src protein (Resh, 1989). Furthermore, 
a 32-ki) polypeptide present in fibroblast membrane frac- 
tions and several proteins present in platelet membrane frac- 
tions can be specifically cross-linked to myristylated amino- 
terminal src peptides (Resh and Ling, 1990; Feder and 
Bishop, 1991). 

To learn if the c-src protein is indeed targeted to intracetlu- 
lar organelles and to estimate the selectively of targeting, we 
have quantified the enrichment of pp6@ -sr~ in synaptic vesi- 
cles isolated from the neuroendocrine cell line, PC12. We 
chose synaptic vesicles because pp6(F -s~ is naturally en- 
riched in neural tissue (Cotton and Brugge, 1983; Brugge 
1985). A previous attempt to examine the subcellular distri- 
bution of pp60 ~-s~ activity in the brain found similar levels 
of enzymatic activity associated with ail membrane fractions 
(Hirano et ai., 1988). Enrichment was found in crude 
microsomal and crude synaptic vesicle fractions but the tyro- 
sine kinase activity in these fractions was only 30 % greater 
than the starting homogenate. Brain synaptic vesicles puri- 
fied by glass bead chromatography contain pp6@ "~ which 
causes the in vitro tyrosine phosphorylation of the synaptic 
vesicle protein, synaptophysin (Barnekow et al., 1990). Al- 
though the highest kinase activity is reported to be in the syn- 
aptic vesicle fraction, no comparison with other membra- 
nous organeUes was given. If pp60 .... is present on all 
membranes its receptor must be widely distributed in the 
ceil. If pp6@ "s~ is preferentially targeted to synaptic vesi- 
cles, then they should be enriched in a putative receptor for 
pp6tY "s~ membrane association. Synaptic vesicles have a 
relatively simple biochemical composition, a feature that 
could facilitate identification of such a receptor if it is vesicle 
specific. Our experiments quantitate the distribution of 
pp60 ~'~ in PC12 cells, a cell line that contains endocrine 
synaptic vesicles (Navone et al., 1986; Wiedenmann et al., 
1988) that have a composition similar to that of brain synap- 
tic vesicles (Clifl-O'Grady et al., 1990). We show that these 
PC12 synaptic vesicles are enriched in pp60c-~% which 
should facilitate identification of both the receptor and the 
domains involved in targeting. 

Materials and Methods 

Immunofluorescence 
PC12 cells were grown in media containing nerve growth factor (100 ng/ml; 
Calbiochem Corp., La Jolla, CA) for at least 5 d before plating on coverslips 
coated with poly-v-lysine and laminin. The cells were fixed with 3% 
paraformaldehyde for 30 rain, washed two times with PBS, and two times 
with PBS-glycine (20 raM), and then permeabilized for 20 rain with PBS- 
glycine-saponin (0.1%) (Schweizer et al., 1988). The coverslips wore then 
inverted on 15 ~1 PBS-saponln containing either none, one, or both of the 
primary antibodies for 30 min. The primary antibodies used were 327 (anti- 

src mouse mAb) (Lipsich et al., 1983) at 5 t~g/ml and an anti-synaptophysin 
rabbit polyclonal serum at 1:500 (Linstedt and Kelly, 1991). After five 
washes with PBS-saponin the coverslips were inverted on 15 #1 PBS- 
saponin containing one or both of the following antibodies: F1TC-labeled 
sheep anti-rabbit (dilution 1:400) (Cappel Laboratories, West Chester, 
PA), or biotinylated horse anti-mouse antibody (dilution 1:40) (Vector 
Laboratories, Burlingame, CA). The biotinylated antibody was detected 
with streptavidin-rhodamine (dilution 1:100) (Molecular Probes, Inc., Eu- 
gene, OR). After five final washes with PBS-saponin the coverslips were 
rinsed with water and mounted on glass slides. 

Differential Centrifugation 
Cells were removed from the plates by scraping in buffer A (150 mM NaCI, 
1 mM EGTA, 1 mM MgC12 and 10 mM Hepes, pH 7.4) and collected by 
centrifugation at 300 g for 7 rain. Homogenization was in buffer A, usually 
0.8 ml, containing a protease inhibitor cocktail (pepstatin, chymostatin, 
leupeptin, and aprotinin at 10 ng/ml; 1 mM PMSF; 1 pg/ml o-phenan- 
throline; 10 pM benzamidine) using a Cell Cracker (European Molecular 
Biology Laboratory) with 10 strokes and a 12-pro clearance. The homoge- 
nate was separated into a nuclear pellet (P1) and postnuclear superuatant 
(S1) by centrifugation at 1,000 g for 5 rain in a SS34 rotor (Sorvall Instru- 
ments, Newtown, CT). The S1 was centrifuged at 2%000 g for 35 rain in 
the SS34 rotor to obtain a pellet of large membranes (P2) and a high speed 
supernatant ($2). The $2 was fractionated into small membranes (P3) and 
cytosol ($3) by centrifugation at 12%000 g for 60 rain in an air centrifuge 
(Beckman Instruments, Palo Alto, CA). Pellets were resuspended and as- 
sayed for pp60 c-src and synaptophysin by immunoblotting, protein content 
by Pierce assay (Pierce Chemical Co., Rockford, IL) with BSA as a stan- 
dard, and membrane protein content by Pierce assay after extraction with 
Triton Xql4 as described (Bordier, 1981). 

OrganeUe Immunoisolation 
Aliquots of 20 mg of Dynabeads M-450 (DYNAL, Inc., Great Neck, NY), 
magnetic polystyrene beads coated with sheep anti-mouse IgG1, were in- 
cubated with 20/~g of either anti-synaptophysin (SY38) or mouse 7-globulin 
(Pel-Freez Biologicals, Rogers, AFt) overnight at 4~ then rinsed with 
buffer A. Three aliquots of the $2 fraction prepared from two 15-cm plates 
of PC12 cells were used. One aliquot was added to the SY38 beads, one 
was added to the control beads, and the final was left untreated. Each sample 
was rotated for 60 rain at 4oC. Using a magnet to retain the beads, the S2 
fractions were removed and centrifuged for 60 min at 12%000 g in the air 
centrifuge. The resulting pellets (P3) were lysed and analyzed by immuno- 
blotting for pp60 c's~ and synaptophysin. The isolated beads were subjected 
to sequential washes in buffer A and after each wash a fraction was extracted 
with 1% SDS and the extract was assayed for the presence of pp6(F s~ by 
immunoblotting. 

Velocity and Flotation Gradients 
For velocity gradient analysis, the S1 fraction from either unlabeled or 
metabolically labeled cells was layered on 4.4 ml linear 5-20% sucrose, or 
5-25% glycerol gradients in buffer A underlayered with a 0.4 ml 50% su- 
crose pad and centrifuged in a SW55 rotor (Beckman Instruments) at 4"C 
for 60 rain at 48,000 rpm. For flotation gradient analysis samples pooled 
from the sucrose velocity gradients were adjusted to 50% sucrose with a 
70 % sucrose solution and underlayered on 4 ml linear 20--40% sucrose gra- 
dients containing 10 mM Hepes, pH 7.4, and I mM EGTA and centrifuged 
in the SW55 rotor at 4~ overnight at 48000 rpm. All gradients contained 
the protease inhibitor cocktail (see above). Fractions were collected from 
the bottom of the tube. Protein content in fractions from unlabeled cells was 
determined with BSA as a standard using either the Pierce assay or the 
Quantigold assay (Diversified Biotech, Newton Centre, MA). Scintillation 
counting was used to determine protein content in fractions from labeled 
cells. Antigen content was assayed by imm-unoblotting from unlabeled cells 
or immunoprecipitation from labeled cells. 

Labeling and Immunoprecipitation 
For metabolic labeling, cells wore incubated overnight in DME-H21 media 
depleted of cysteine and methionlne but supplemented with 2% FCS and 
[35S]Translabel (ICN K&K Laboratories Inc., Irvine, CA) at 100/~Ci/ml. 
Synaptophysin immunoprecipitations wore carded out in buffer containing 
1% NP-40, 0.4% deoxycholate, 0.3% SDS, 66 mM EDTA, 10 mM "lYis, pH 
7.4, with an anti-rat brain synaptic vesicle serum that recognizes synap- 
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tophysin (Clift-O'Grady et al., 1990). Immunoprecipitation of pp60 r  
was in RIPA buffer with mAb 327 as described previously (Kaplan et al., 
199o). 

lmmunoblotting 

Proteins were separated by SDS-PAGE (10% gels) and transferred to 
nitrocellulose using a semi-dry electrotransfer apparatus (E&K, Saratoga, 
CA). Proteins were visualized by staining in Ponceau S for several minutes 
followed by rinses with water. Blocking was for 60 rain followed by incuba- 
tion with SY38 (20 ng/mi) and 327 (3 /~g/ml) for 60 min, three 5-min 
washes, incubation with 125I-goat anti-mouse IgG (Cappel Laboratories) 
for 60 min and three final washes. All incubations were in PBS containing 
5 % non-fat dry milk and 0.05 % Tween 20. The nitrocellulose was exposed 
to x-ray film at -70"C with an enhancing screen. Autoradiograms were 
quantitated using a phosphorimager (Molecular Dynamics). 

Results 

pp60 ~~ and Synaptophysin Immunofluorescent 
Patterns Overlap in PC12 Cells 

Analysis of the intracellular localization of pp60 ~-s~ in PC12 
cells by immunofluorescence microscopy revealed a punc- 
tate distribution of immunoreactivity. The cells shown in 
Fig. 1 were grown for 5 d in nerve growth factor (to promote 
neurite extension) and plated on poly-D-lysine and laminin- 
coated Coverslips, then fixed with formaldehyde, saponin 
permeabilized and double stained for pp60 ~-~ (Fig. 1 B) 
and synaptophysin (Fig. 1 C). Puncta of pp60 ~-*~ immuno- 
reactivity were scattered throughout the cytoplasm (Fig. 1 
B). Intense staining of the plasma membrane was not appar- 
ent, which contrasts with the staining pattern seen in fibro- 
blasts overexpressing pp60 ~-~ (Kaplan et al., 1990; David- 
Pfeuty and Nouvian-Dooghe, 1990). Staining was present in 
neuritic processes, particularly in the growth cone area, 
consistent with previous reports of pp60 ~-~ localization to 
growth cones (Sobue, 1990). This pattern was very similar 
in overall appearance to the synaptophysin pattern (Fig. 
1 C). Synaptophysin staining was more intense overall, 
and slightly more intense throughout the processes. Many 
pp60 ~-s~ puncta, particularly in the processes and growth 
cone areas, were in alignment with synaptophysin puncta. 
Similar antibody-specific distributions were obtained using 
other monoclonal or polyclonal antibodies directed against 
either antigen. The coincidence of pp60 ~-sr~ and synaptophy- 
sin staining suggested that pp60 ~-~ may be localized to 
membranes that participate in synaptic vesicle recycling 
(such as endosomes or synaptic vesicles or both). 

pp60 ~~ Is Highly Enriched in Fractions Containing 
Small Vesicles 

To begin to test whether pp60 ~-~ associates with PC12 syn- 
aptic vesicles we used a simple differential centrifugation 
scheme that has proved useful for studying the distribution 
of synaptophysin-containing membranes (Clift-O'Grady et 
al., 1990; Linstedt and Kelly, 1991). Synaptophysin is recov- 
ered in both the pellet (P2) and supernatant of a 27,000-g 
centrifugation of PC12 lysates. The synaptophysin in the su- 
pernatant, which can be concentrated in a 127,000-g pellet 
(P3), is mostly in synaptic vesicles, while that in the P2 is 
present in larger membranes (Clift-O'Grady et al., 1990; 
Linstedt and Kelly, 1991). In contrast, an endosome marker, 
the low density lipoprotein receptor, is recovered in the P2, 

Figure 1. Localization of pp60 .... (B) and synaptophysin (C) in 
PC12 cells by double label immunofluorescence. Both pp61Y -s~ 
and synaptophysin immunoreactivity are dispersed throughout the 
cytoplasm and processes in very fine puncta. A Nomarski image 
of the stained cells is also presented (A). 

with only minor amounts remaining in the supernatant (Lin- 
stedt and Kelly, 1991). 

Paralleling the distribution of synaptophysin, a substantial 
amount of the sedimentable pp60 ~-~ present in the post- 
nuclear supernatant was recovered in both the P2 and P3 
fractions (Fig. 2 A). The pp60 ~-~ recovered in the P3 frac- 
tion accounted for 44 + 9 % while in the same fraction 40 
+ 10% of the synaptophysin was recovered (n = 4). In 
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Figure 2. Presence of ppt0 ~-~ in a slowly sedimenting fraction 
from PC12 but not CHO cells. PC12 (g) and CHO (t3) cells were 
separated by differential centrifugation and each fraction was as- 
sayed for pp60 c-~ by immunoblotting. The recovery of pp6(F -~ in 
the P2 and P3 fractions is shown: (A) as percentage of the total 
sedimentable pptlY -'~ in the post nuclear supernatant (P2 + P3); 
(B) as recovery when normalized by the total amount of protein in 
each fraction; and (C) as recovery when normalized by the amount 
of membrane protein in each fraction. The data are averages + SD, 
n = 3 for CHO, n = 4 for PCl2. P1, P2, and P3 centrifugations 
were 1,000 g for 5 min, 27,000 g for 30 min, and 125,000 g for 
60 min, respectively. Soluble pp60~-~% and pp60 .... that was re- 
covered in the nuclear pellet are not shown. Membrane protein was 
determined by recovery in the detergent phase of Triton X-I14. 

marked contrast, only an insignificant amount of pp60 "-'~, 
3 + 3 % (n = 3), was recovered in the equivalent P3 fraction 
from CHO fibroblast cells (Fig. 2 A). The absence of small, 
pp60~-'~-containing vesicles in fibroblasts correlates with 
their lack of synaptic vesicles. Synaptophysin in transfected 
fibroblasts is targeted to endosomes and recovered primarily 
in the P2 fraction (Linstedt and Kelly, 1991). The distribu- 

tion of pp60 .... between P2 and P3 fractions was no differ- 
ent in CHO cells transfected with synaptophysin. Therefore, 
a substantial portion of pp60 ~-'~ cosediments with a slowly 
sedimenting membrane population present in PC12 cells, but 
presumably absent in CHO cells. 

The enrichment of pp60 "-'~ in the PC12 P3 fraction was 
twice that of the P2 fraction when compared with total pro- 
tein present in each fraction (Fig. 2 B). Consistent with the 
absence of synaptic vesicles in CHO cells, pp60 ~-'~ was not 
enriched in the CHO P3 fraction after normalization to pro- 
tein content. When the PC12 P3 fraction was analyzed on a 
flotation gradient very little protein (<5%) was associated 
with membrane fractions. The amounts of membrane pro- 
tein in the P2 and P3 fractions were compared directly by 
measuring the amount of protein that could be extracted into 
the detergent phase of Triton X-114. Since almost all of the 
total membrane protein in the postnuclear supernatant was 
recovered in the P2 fraction (data not shown), the protein in 
the P3 fraction must be due largely to nonmembranous com- 
plexes. When normalized to membrane protein rather than 
total protein, the pp60 ~-'~ associated with the P3 fraction 
was *75-fold more enriched than the pp60 .... in the P2 
fraction (Fig. 2 C). 

Isolation of  pptO ~'~ Vesicles with an 
Anti-synaptophysin Antibody 

To test directly for association of pp6(F -'~ with PC12 synap- 
tic vesicles, vesicle immunoisolation experiments were car- 
ried out using magnetic immunobeads, coated with a mAb 
that recognizes an epitope in the cytoplasmic tail of synap- 
tophysin, at concentrations sufficient to deplete the mem- 
branes containing synaptophysin (Fig. 3). After removal of 
the immunobeads, membranes remaining in the supernatants 
were collected by centrifugation and assayed for the presence 
of p p t ~  -'~ and synaptophysin by immunoblot. As a con- 
trol for nonspecific adsorption, beads coated with mouse 
gamma globulin were used. A comparison of the recoveries 
of pp60 r or synaptophysin membranes in nontreated (N) 
and control bead-treated (C) supernatants indicated that 
there was no significant depletion by the control beads (Fig. 
3, compare lanes I and 2). In contrast, treatment of a PC12 
27,000 g supernatant with the anti-synaptophysin beads (S) 
depleted all synaptophysin-containing membranes (Fig. 3, 
lane 3). Immunoblots of this same material with antibodies 
against ppt0 ~-~ demonstrated that removal of synaptophysin 
membranes depleted membrane associated ppt0 ~-'~ (Fig. 3, 
lane 3). The isolated beads were extracted under conditions 
that allowed recovery of ppt0  ~-'~ but prevented solubiliza- 
tion of the mouse antibodies coating the beads. This allowed 
an immunoblot assay of the bead fraction using a mouse 
mAb against pp60 ~-'~ that demonstrated that pp60 ~-'~: was 
recovered from the isolated anti-synaptophysin beads (Fig. 
3, lane 5), but not from the control beads (Fig. 3, lane 4). 
Analysis of synaptophysin recovery in the bead fraction 
required solubilization conditions that disrupted antibody 
binding and thus also solubilized the mouse antibodies that 
coat the magnetic beads. In parallel experiments using a rab- 
bit polyclonal antibody that recognizes synaptophysin, the 
bead fraction was assayed by immunoblot and synaptophysin 
recovery was shown to be quantitative and specific (Linstedt 
and Kelly, 1991). 
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Figure 3. Immtmodepletion of 
ppC=~ containing membranes 
with anti-synaptophysin im- 
munobeads. $2 fractions were 
either nontreated (N), treated 
with control antibody beads 
(C), or treated with anti-synap- 
tophysin beads (S). After 
removal of the beads the mem- 
branes remaining in each su- 
pernatant were collected in a 
pellet (P3) and analyzed for 
pp(,0'-~ and synaptophysin by 
immunoblotting (lanes 1-3). 
The isolated immunobeads 
were extracted with 1% SDS 
and these extracts were ana- 
lyzed for pp60 r by immu- 
noblotting (Beads, lanes 4 and 
5). The similarity of the protein 
patterns (lanes 6--7) observed 
with Ponceau S staining of the 
nitrocellulose (photocopied 
before immunoblotting) indi- 
cated that immunobead treat- 
ment did not significantly de- 
plete major proteins recovered 
in the P3 fraction. 

The Triton X-114 partition assays presented in the previous 
section indicated that of the total protein in the P3 fraction 
most was not membrane protein. Consistent with this find- 
ing, removal of synaptophysin membranes by immunodeple- 
tion did not significantly reduce the amount of total protein 
recovered in the P3 fraction (Fig. 3, compare lanes 7 and 8). 
The depletion of pp60 ~-~r~ by the anti-synaptophysin bead 
treatment indicated that pp60 ~-~r~ in the P3 fraction was 
membrane associated (not part of a cytosolic protein com- 
plex) and that the membranes in the P3 were highly enriched 
in pp60 "-~. Furthermore, since a large fraction of the syn- 
aptophysin present in the PC12 27,000-g supernatant is in 
synaptic vesicles, the depletion of pp60 ~-*~ by removal of 
synaptophysin-contalning membranes suggested that pp60 c-~ 
in this fraction is associated with the synaptic vesicles. These 
data verify that pp60 "-*~ must be highly enriched in PC12 
synaptic vesicles. Based on the enrichment presented above 
(Fig. 2 C) a unique membrane population (e.g., plasma 
membrane) in the P2 would have to comprise <2 % of the 
total membranes present to contain pp60 ~-~ with the same 
enrichment as PC12 synaptic vesicles. 

Copuriflcation of  pp60 "s'~ with Endocrine 
Synaptic Vesicles 

Since the experiments presented above indicated that the 
pp60 ~-~ was associated with the PC12 synaptic vesicles we 
sought to purify the vesicles with the src protein associated. 
We first analyzed the behavior of pp60~-s~:-containing vesi- 
cles on velocity gradients. When the postnuclear supernatant 
was analyzed, synaptic vesicle membranes were clearly de- 
tectable as a peak of synaptophysin (Fig. 4 A, fraction 8) dis- 
tinct from the larger membranes that collected on a pad at the 
bottom of the tube (Fig. 4 A, fraction 2). Coincident with 
the synaptic vesicles was a peak of pp60 c-*~. Comparison of 

the recovery of pp60 ~-~ associated with small and large 
membranes after velocity gradient analyses reproducibly in- 
dicated that the enrichment of pp60 c-~ in small vesicles was 
greater than that for synaptophysin (e.g., compare fractions 
2 and 8 in Fig. 4 A). Separation of RatlA fibroblast post- 
nuclear supernatants yielded a peak of pp60 "-~ only at the 
bottom of the gradient (data not shown). This finding, con- 
sistent with the results shown in Fig. 2, suggests that the 
pp60~-s~ association with synaptic vesicle-sized membranes 
found in the neuroendocrine PC12 cells does not occur in 
fibroblasts. 

Fractions encompassing the synaptic vesicle-sized mem- 
branes on sucrose velocity gradients were pooled and ana- 
lyzed on sucrose flotation gradients. A peak of pp60 ~-sr, and 
synaptophysin antigenicity co-migrated with a peak of pro- 
tein at a density of 1.13 grn/cc (Fig. 4 B). It was observed 
that nearly 100% of the synaptophysin was recovered in the 
fractions containing buoyant membranes, while only 60-80 % 
of the pp60 ~-srr was similarly recovered. We assume that the 
pp60 ~-~ that did not float together with the synaptic vesicles 
was the result of dissociation from the synaptic vesicles for 
the following reasons. The recovery of pp60 ~-~r~ with synap- 
tic vesicles on density gradients varied depending on which 
isolation conditions were used. The pp60 ~-sr~ did not co- 
migrate with soluble proteins on the flotation gradients, but 
trailed from the synaptic vesicle peak toward the position 
where the sample was applied, suggesting dissociation dur- 
ing sedimentation. Also, up to 50% of the pp60 ~-~ as- 
sociated with synaptic vesicles isolated on immunobeads 
slowly dissociated during prolonged buffer washes (data not 
shown). 

Comparative SDS-PAGE of the pooled fractions at each 
purification step is presented in Fig. 5. The position of 
pp60"-~ and synaptophysin was determined by irnmuno- 
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Figure 4. Cosedimentation of pp60 .... and PC12 synaptic vesicles. 
(A) PC12 postnuclear supernatant separated on a linear 5-20% su- 
crose gradient underlaid with a dense sucrose cushion and cen- 
trifuged at 48,000 rprn for 60 min. (B) Material from the peak of 
the sucrose velocity gradient (fractions 7and 8 in A) was adjusted 
to 50% sucrose and applied under a linear 20-40% sucrose gra- 
dient and centrifuged at 48,000 rpm for 12 h. Each fraction was as- 
s~ed for protein (~), synaptophysin (--~), and pp60 .... (-o--) as 
described in Materials and Methods. 

blotting a separate lane from the same gel (Fig. 5, lane 5). 
Several bands showed enrichment in the flotation peak rela- 
tive to the starting material including bands at the same posi- 
tion as pp60 .... and synaptophysin (compare lanes 1 and 4). 

Quantitation of the recovery of total protein, pp60 .... and 
synaptophysin in the postnuclear supernatant, velocity peak, 
and flotation peak for four independent experiments is 
presented in Table I. Quantitation of experiments carried out 
on unlabeled material using protein assays and immunoblots 
was in agreement with quantitation of experiments carried 
out on labeled material using scintillation counting and im- 
munoprecipitation. The enrichment of pp60 ~~ calculated 
for purified synaptic vesicles was similar to that found in the 
P3 fraction when normalized by membrane protein (com- 
pare Fig. 2 C with Table I). 

Figure 5. Polypeptide composition of subcellular fractions. Mate- 
rial from the homogenate (lane 1 ), S1 (lane 2), velocity peak (lane 
3), and density peak (lane 4) was subjected to SDS-PAGE (2.4 t~g 
protein/lane; 10% gel) and stained with silver. Part of the gel was 
subjected to immunoblotting to determine the position of pp60 c-~ 
and synaptophysin (lane 5). The position of molecular weight 
markers (205, 116, 97.4, 66, 45, and 29 kD) is indicated. 

Discussion 

We have studied the distribution of pp60 ~s~ in PC12 cells 
and compared it with that of a synaptic vesicle membrane 
protein, synaptophysin. In PC12 cells pp60 ~-sr~ was found to 
be specifically associated with the endocrine synaptic vesi- 
cles. In cells simultaneously stained with antibodies that 
recognize either pp60 .... or synaptophysin the pp60 .... im- 
munofluorescence pattern extensively overlapped with the 
synaptophysin pattern. Nearly 50 % of the membrane-asso- 
ciated pp60 ~-s~ was recovered in a slowly sedimenting frac- 

Table L Copurification of PC]2 Synaptic Vesicles and pp60 . . . . .  

Protein Synaptophysin pp600-,~ 

Percent total Percent total Enrichment Percent total Enrichment 

Postnuclear supernatant 100 100 1 100 1 

Velocity pool 5 • 1 34 + 8 6.8 36 + 3 7.2 
Flotation pool 0.2 + 0.1 24 5 : 6  120 19 + 2 95 

The numbers indicate average + SD of four independent experiments. 
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tion enriched in synaptic vesicles and containing very little 
membrane protein. When this fraction was prepared from a 
fibroblast cell line only an insignificant amount of pp6(Y -~ 
was present. All of the pp60 ~-~ recovered in the PC12 small 
vesicle fraction was removed by immunodepletion of the en- 
docrine synaptic vesicles using antibodies directed against 
synaptophysin. Furthermore, pp60 ~-~ copurified with the 
endocrine synaptic vesicles through a 100-fold purification. 

Our experiments demonstrate targeting of pp60 ~-~ to an 
isolatable and biochemically identified membrane fraction. 
A straightforward hypothesis, as suggested by the work of 
Resh and Ling (1990) on fibroblasts and Feder and Bishop 
(1991) on platelets is that the targeting of ppt0 ~-~ to PC12 
synaptic vesicles is mediated by a specific membrane pro- 
tein. Cross-linking and co-immunoprecipitation experiments 
using the purified synaptic vesicle fraction may identify such 
a protein. Since pp6(Y -~o is associated with other mem- 
branes, including endosomes, in addition to synaptic vesi- 
cles in PC12 cells (our own unpublished observations) it may 
be that PC12 cells express more than one "src receptor." 
Kaplan et al. (1990) have suggested that different domains 
within the src amino terminus may mediate targeting to 
different cellular compartments, This could be tested in 
PC12 by comparing the targeting to the synaptic vesicle 
membrane of transfected proteins lacking or containing dif- 
ferent pp60 ~-~o domains. 

As the integral membrane proteins cycle from synaptic 
vesicles through plasma membrane and endosome, synaptic 
vesicle-specific peripheral membrane proteins can associate 
and dissociate. The synapsins, major substrates in the nerve 
terminal for cAMP-dependent and calcium-calmodulin- 
dependent protein kinases, are phosphorylated during exocy- 
tosis, which promotes their dissociation (Schiebler et al., 
1986; Sihra et al., 1989). If exocytosis is stimulated by the 
venom oMatrotoxin in the absence of extracellular calcium, 
the synapsins are found in association with the plasma mem- 
brane (Torri-Tarelli et al., 1990) suggesting that dissociation 
comes after exocytosis. The small GTP-binding protein, rab 
3A, which is restricted to synaptic vesicles (Fischer von 
MoUard et al., 1990a; Mizoguchi et al., 1990), also dissoci- 
ates from synaptic vesicles on exocytosis (Fischer von Mol- 
lard et al., 1990b). 

Although pp60 ~-~ association with PC12 synaptic vesi- 
cles was somewhat unstable in vitro, we recovered equal 
amounts of pp60 ~-~ in synaptic vesicle fractions from cells 
unstimulated and those stimulated with either high potas- 
sium, phorbol esters, or nerve growth factor (data not 
shown). These experiments are hard to interpret since it is 
not known what conditions are required to stimulate the exo- 
cytosis of PC12 synaptic vesicles. A comparison of pp60 ~-~'~ 
and synaptophysin distribution across a velocity gradient 
of the postnuclear supernatant (Fig. 4 A) suggested that 
pp60 "-~ is even more enriched in the synaptic vesicle frac- 
tions than synaptophysin. The compartment other than syn- 
aptic vesicles in which large amounts of synaptophysin are 
recovered is the endosome (Johnston et al., 1989; Linstedt 
and Kelly, 1991). If most of the synaptophysin membranes 
that collect at the sucrose pad are indeed endosomes, then it 
would be necessary to postulate that synaptic vesicle mem- 
branes lose their pp60 ~-~r~ as they cycle through the endo- 
some. At present, therefore, it is plausible that association and 
dissociation of the known synaptic vesicle-enriched periph- 

eral membrane proteins, rab3A, synapsin, and pp60 ~-~, is 
regulated by, or regulate the exocytotic cycle. 

Synaptic vesicles contain •7 % of the protein in the brain 
(Siidhof and Jahn, 1991). If pp60 ~-~ is a major component 
of brain synaptic vesicles as it is of endocrine synaptic vesi- 
cles, then it is easy to explain the enrichment of pp60 ~-s~ in 
neuronal tissues. Tyrosine kinase activity, however, is gener- 
ally associated with plasma membrane receptors and cell 
signaling. The conventional view therefore is difficult to 
reconcile with an association between pp60 ~-s~ and an intra- 
cellular organelle. One intriguing possibility, given the as- 
sociation between pp60 ~-~ and the actin cytoskeleton men- 
tioned earlier, is that pp60 ~-~ regulates the interaction 
between membranes, including secretory vesicles, and the 
actin-based cortical cytoskeleton. Synaptic vesicle mem- 
branes are associated with cortical cytoskeleton and serine/ 
threonine kinases are already known to regulate this associa- 
tion during exocytosis. Perhaps tyrosine protein kinases also 
play a role in disassembling the cortical cytoskeleton to al- 
low exocytosis, or the recovery of membrane by endocytosis. 
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