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Abstract 

Directional movement of cells in the human body is orchestrated via chemokines. This migration 
was initially identified in pathological and immunological processes but quickly extended to ho-
meostatic cell trafficking. One such chemokine is the ubiquitous CXCL12 (initially called SDF1-α) 
which signals via the chemokine receptors CXCR4 and CXCR7. In the last decade CXCL12 was 
recognized to participate not only in embryonic development and homeostatic maintenance, but 
also in progression of inflammation. A role for CXCL12 and its receptors CXCR4 and CXCR7 in 
inflammatory bowel diseases was recently shown. The current review discusses up to date 
knowledge of CXCL12 in inflammation, focusing on the involvement of CXCL12 and its receptors, 
CXCR4 and CXCR7, in inflammatory bowel diseases. 
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Introduction: chemokines in homeostasis 
and inflammation 

Movement of leukocytes from peripheral blood 
into and within tissues is critical for proper immune 
functions. This is mainly regulated by chemokines, 
and specific chemokine receptors. The large majority 
of approximately 50 human chemokines fall into the 
group of either CXC or CC chemokines on the basis of 
their N-terminal cysteine residues as reviewed exten-
sively elsewhere [1]. In addition to chemoattraction, 
chemokines participate in tissue homeostasis, em-
bryonic development, haematopoiesis, and angio-
genesis. They assist in the development of inflamma-
tory responses; growth and survival of cancer cells, 
and the development of inflammatory responses [2-4]. 
Although still a matter of debate[5], chemo-attraction 
occurs via a concentration gradient of a specific solu-

ble chemokine which binds to its specific chemokine 
receptor leading to a coordinated cascade of signal 
transduction resulting, in addition to chemotaxis, a 
wide range of functions required for host defense, 
including adhesion, respiratory burst, degranulation, 
and lipid mediator synthesis [6].  

CXCL12 (formerly Stromal-cell derived fac-
tor-alpha, SDF1-α) is a pleiotropic chemokine [7, 8] 
previously believed to be a homeostatic chemokine 
due to its ubiquitous expression in the bone marrow, 
lymph nodes, liver, lung, brain, heart, kidney, thy-
mus, stomach and most abundantly in the pancreas, 
spleen, ovary and small intestine [9]. Its role was 
thought to be exclusively as a regulator of normal 
leukocyte recirculation [8, 10], hematopoiesis [11] and 
infection of the HIV virus [12]. However, more re-
cently CXCL12 was discovered to be a participant in 
homing of progenitor leukocytes into the marrow 
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microenvironment [13], as well as adaptive immune 
processes - for example, costimulation of CD4+ T cells 
activation and survival [14, 15]. The current review 
will focus on the role of the chemokine CXCL12 and 
its receptors, CXCR4 and CXCR7, in inflammation, 
specifically intestinal, such as the one occurring in 
inflammatory bowel disease (IBD). 

The CXCR4/CXCR7/CXCL12 axis in in-
flammation 

CXCL12 binds to two known receptors, CXCR4 
and CXCR7 [10]. The fundamental importance of this 
chemokine and its receptors CXCR4 and CXCR7 was 
shown when both CXCL12 [16] and CXCR4 [17] 
‘knock-out’ mice exhibited critical defects in leukocyte 
generation and hematopoiesis, leading to embryonic 
and neonatal fatalities. The phenotype and function of 
the CXCR4/CXCR7/CXCL12 trio in several immu-
nological and auto-immune disorders was recently 
explored. 

In rheumatoid arthritis (RA), increased amounts 
of CXCL12 mRNA were found in RA synoviocytes 
[18, 19] and elevated CXCR4 expression by synovial 
memory T cells was reported [19, 20] suggesting that 
CXCL12/CXCR4 play a role in the recruitment of in-
flammatory cells to the joint. Noteworthy is the fact 
that although synovial [21] and plasma [22] CXCL12 
levels were increased in RA, this did not correlate 
with disease activity nor with anti-inflammatory 
treatment, such as Methotrexate [22]. Functionally, in 
both humans and a mouse model of arthritis, CXCR4 
and CXCL12 were found to exert pro-inflammatory 
properties [23, 24]. Furthermore, CXCR4 was a requi-
site for these pro-inflammatory effects, as observed by 
both the use of small molecule antagonists [24] and 
CXCR4 knock-out mice [25], both exhibiting reduced 
joint inflammation. The mechanism via which 
CXCR4-CXCL12 acts is still not entirely elucidated. 
However, data suggest that the influence of CXCR4 in 
RA is via accumulation of CD4+ T cells in synovio-
cytes [19, 23].  

CXCL12/CXCR4 interactions are also implicated 
in chronic lung inflammatory processes. In these dis-
orders, CXCR4/CXCL12 were found to operate simi-
larly to their mode of action in RA. CXCL12 was up-
regulated in the lung in both humans and animal 
models of lung inflammation [26, 27]. It exhibits 
pro-inflammatory influence [26, 28] as observed by 
increased influx of CXCR4+ cells from the bone mar-
row to the lung. Small molecule inhibitors or neutral-
izing antibodies of CXCR4 attenuated lung inflam-
mation [28, 29], highlighting its critical involvement in 
the pathology of this disorder.  

However, in contrast to RA, mouse models of 

lung inflammation, induced either by aerosolized 
OVA or cockroach allergen, suggest CXCR4 mediates 
its influence via neutrophil recruitment to the lungs, 
and not T cells [26]. Data in humans are still conflict-
ing [30-32].  

Several other (auto)-immune disorders, such as 
systemic lupus erythematosus [33, 34], uveitis [35], 
and multiple sclerosis [36, 37], exhibit aberrant 
CXCR4/CXCL12-mediated inflammatory responses. 

Chemokines in IBD  
IBD, comprised of ulcerative colitis (UC) and 

Crohn’s disease (CD), are chronic inflammatory dis-
eases of the gastrointestinal tract that arise out of 
dysregulated immune system response to environ-
mental triggers in genetically susceptible individuals 
[38].  

Growing body of evidence suggests that the 
chronic intestinal inflammation results from defects in 
the ability to properly regulate the immune system in 
response to enteric microbiota. These defects include 
alterations in chemokine and pattern recognition re-
ceptors expressed by epithelial cells. Thus, in addition 
to proper recognition of the gut microbiota, disease 
pathogenesis probably reflects defects in regulation of 
influx of inflammatory cells, mediated via chemo-
kines [39, 40].  

Several chemokines and chemokine receptors are 
reported to be differentially regulated during active 
UC and CD  

For example, CXCL8, and its receptors, CXCR1 
and CXCR2, exhibit increased expression by intestinal 
epithelial cells (IECs), macrophages, fibroblasts and 
neutrophils in the mucosa of IBD patients [41]. In ex-
perimental mice models of IBD, the expression of the 
mouse homologs for CXCL8, CXCL1 and CXCL2, are 
increased and associated with pro-inflammatory ac-
tivity [42] and CXCR2 antagonists inhibited intestinal 
inflammation in murine IBD models [43, 44]. 

Another example is CCR9, expressed on in-
traepithelial and lamina propria T cells. CCR9 is in-
volved in intestinal infiltration in IBD [45], probably 
by responding to CCL25, expressed by epithelial cells, 
specifically in the small intestine [46]. Results from a 
phase II clinical trial using a CCR9 antagonist in CD 
patients resulted in reduced disease severity [47]. The 
suggested mode of this antagonist is via inhibition of 
influx of IL17-secreting T cells. 

Another chemokine which is targeted in a clini-
cal trial for the treatment of IBD is CXCL10 [48]. In 
this phase II study, patients with active UC received 
either a fully human, monoclonal antibody to CXCL10 
or placebo. After 8 weeks, patients receiving an-
ti-CXCL10 exhibited improved clinical and histologi-
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cal responses, suggesting anti-CXCL10 is a potentially 
effective therapy for moderately-to-severely active 
UC. 

Other chemokines such as CXCL9, CXCL11, 
CCL2, CCL3, CCL4, CCL5, CCL7, CCL8 and CCL20 
were also reported to be increased in IBD [41, 48] and 
are summarized in Table 1. 

CXCR4/CXCR7/CXCL12 in IBD 
 CXCR4 and CXCL12 are expressed by IECs in 

the normal intestinal mucosa [49-51], contributing to 
IEC migration, barrier maturation, and restitution 
[52], via cAMP-mediated cellular functions [53]. 
However, only recently has CXCR4/CXCL12's pres-
ence in intestinal tissue been extended to resident 
CXCR4+ lamina propria T cells (LPTs), and to the 
pathogenesis of IBD. We have recently reported that 
CXCL12 is expressed by normal IECs [54], and that 
CXCL12 was upregulated in IBD IECs (figure 1). 
Moreover, autologous biopsies of non-inflamed and 
inflamed UC mucosa, revealed upregulated CXCL12 
in inflamed IECs. Ubiquitous CXCR4 expression by 
the intestinal mucosa, on both IECs and lamina pro-
pria mononuclear cells, was also demonstrated (figure 
2). Although CXCR4 was constitutively expressed by 
both PBT and LPTs, we were able to find upregulated 
CXCR4 in IECs of IBD patients. Of note, Mikami et al. 
[55] suggest that CXCL12 is expressed by perivascular 
cells. These authors did not show epithelial CXCL12 
expression, described by us and others in humans and 
by several groups in mice (49-54). This may be due to 
the different experimental approach, reagents and 
model system-specifically murine vs. human, Differ-
ences in mouse and human chemokines are widely 

reported. These differences might reflect either evolu-
tionary pattern changes, or differing biological func-
tions. 

Moreover, we showed that CXCL12 is a potent 
chemoattractant of Th1-biased, memory CD45RO+ 
peripheral blood T cells (PBTs) and LPTs, without 
differences between cells from either normal or IBD 
source [56]. An accumulation of CXCR4+ cells in the 
vicinity of CXCL12-expressing IECs was observed. 
Taken together our findings suggest that 
CXCL12/CXCR4 interactions contribute to mucosal 
deregulation, specifically of memory CD45RO+ LPTs. 
Our findings suggest that therapeutic intervention 
targeting the CXCR4/CXCL12 axis could alleviate 
inflammation in IBD. Indeed, the potential of CXCR4 
antagonists as a therapeutic modality in animal mod-
els and human disease was reported by several 
groups [41, 57, 58]. 

Remarkably, in two different mouse model of 
colitis, a CXCR4 antagonist reduced the colonic in-
flammation as observed by decreased production of 
pro-inflammatory cytokines, and improved colonic 
pathology [58, 59].    

A third participant in the CXCL12 axis is the 
newly-discovered receptor CXCR7 [60]. However, 
despite a tenfold higher affinity of CXCL12 to CXCR7, 
than to CXCR4 [60, 61]; the precise role of CXCR7 in 
immune processes is yet unknown. We recently re-
ported that in contrast to the ubiquitous expression of 
CXCR4 on T cells, only a small percentage of PBTs 
and LPTs express CXCR7 [56]. However, PBTs, but 
not LPTs, exhibited upregulated levels of CXCR7 in 
IBD (figure 3). 

Table 1. Chemokines implicated in IBD, and their distribution in intestinal mucosa. IECs: intestinal epithelial 
cells; Mo: monocytes/macrophages; F: fibroblasts; N: neutrophils; NK: natural killers; Eo: Eosinophils; DC: dendritic cells; Ba: 
Basophils. * denotes weak interaction. 

Chemokine Previous name Receptor Secreted by Cells attracted 
CXCL8 IL8 CXCR1, CXCR2 IECs, Mo, F, N IECs, Mo, F, N 
CXCL9 MIG CXCR3 DC, B, Mo T, B, NK, Eo 
CXCL10 IP10 CXCR3 DC, B, Mo T, B, NK, Eo 
CXCL11 ITAC CXCR3, CXCR7 DC, B, Mo T, B, NK, Eo 
CCL2 MCP1 CCR2, CCR4* F, Neurons T, NK, Mo, DC 
CCL3 MIP1α CCR1, CCR3, CCR5 N, T, Mo, NK Mo, T, DC, NK, Eo 
CCL4 MIP1β CCR5, CCR8* B, T, NK Mo, T, DC, NK 
CCL5 RANTES CCR1, CCR3, CCR5 Mo, IECs, T, platelets Mo, T, DC, NK, Eo 
CCL7 MCP3 CCR1, CCR2, CCR3 F, Mo Mo, T, NK, Eo, Ba 
CCL8 MCP2 CCR1, CCR2, CCR3, CCR5 F, Mo, IECs Mo, Eo, T, NK, Ba 
CCL20 MIP3α CCR6 IECs, F DC, T 
CCL25 TECK CCR9 IECs, DC DC, Mo, T, B 
CCL28 MEC CCR2, CCR3, CCR10 IECs T, Eo, B 
CX3CL1 Fractalkine CX3CR1 IECs, F, endothelial NK, Mo, T 
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As CXCR7 was reported to regulate 
CXCL12-mediated transendothelial migration [62], it 
is possible that the increased expression of CXCR7 in 
the peripheral blood of IBD patients could foster in-
creased influx of T cells to sites of mucosal inflamma-
tion. Of note, this hypothesis was not supported when 
small molecule inhibitors of both these receptors were 
used to block migration towards CXCL12, and only 
CXCR4-, but not CXCR7-mediated migration was 
observed. In accordance with our findings, when 
CXCL12 was investigated in a mouse model of uvei-
tis, CXCR4, but not CXCR7, was found to be the crit-
ical player in induction of remission of the uveitis [35]. 
Possible roles which have been suggested for CXCR7 
are either as a decoy receptor for CXCL12, or as a 

CXCR4-independent CXCL12 receptor, with a role in 
cell survival, or integrin activation [61, 63, 64]. Of 
note, reports in other organ systems emphasized the 
importance of CXCR7 in CXCL12-mediated immune 
responses, as a small molecule inhibitor of CXCL12 
interaction with both CXCR4 and CXCR7 inhibited 
chemotaxis of cells and possessed anti-inflammatory 
activity in the airways. [65]. 

In conclusion, we reviewed the involvement of 
CXCL12 in IBD. We delved into the role of 
CXCR4/CXCR7/CXCL12 in inflammatory diseases, 
as well as their interactions and effects in IBD. These 
promising data will hopefully pave the way for future 
therapeutic interventions for the treatment of IBD. 

 
 

 
Figure 1. CXCL12 is expressed by IECs and upregulated in IBD. CXCL12 expression in tissue sections from IBD and normal 
mucosa (generated from patients undergoing bowel surgeries due to reasons other than IBD, such as colonic tumors or diverticular 
disease), was evaluated by imunohistochemistry. Paraffin-embedded histopathologic slides were fixed in formalin and stained with primary 
monoclonal antibody against CXCL12. (A) Low magnification (x4) of normal control (NL), UC, and CD intestine. (B) Distribution along 
the crypts. (C) Transition zone from less (thin arrow) to more (thick arrow) inflamed mucosa in UC. 
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Figure 2. CXCR4 in the intestinal mucosa is expressed by both IECs and mononuclear cells and is upregulated in IBD. 
(A) Low magnification (x4) slides from normal control (NL), and IBD (UC and CD) mucosa. (B) Representative transitional zone between 
a non-inflamed (small arrow) to an inflamed (big arrow) area in a UC patient. (C) Intensity of CXCR4 expression by IECs and mononuclear 
cells was arbitrarily graded by a blinded pathologist from 0 to 3 according to intensity of the CXCR4 staining (0 = lowest and 3 = highest 
intensity), averaging 3 randomly selected high-power fields. *P ≤0.03, **P≤0.01, and ***P≤0.05 all compared to normal. 

 
 

 
Figure 3. PBTs from IBD patients express more CXCR7 than normal PBTs. PBTs and LPTs from normal (NL), CD, and UC 
subjects were isolated. CXCR4 and CXCR7 expressions were assessed by flow cytometry. CXCR4 was highly expressed by PBTs and 
LPTs (>90% expression). CXCR7 was uniformly expressed by LPTs (~20% expression), but PBTs from IBD patients expressed more 
CXCR7 than normal PBTs. *P≤0.05 vs. normal PBTs. 
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