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Abstract

Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it

is unknown if antibodies elicited by infection with these variants target the same or different

regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the

specificities of polyclonal antibodies produced by humans infected with early 2020 isolates

versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains

mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elic-

ited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike

receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are

more focused on the “class 3” epitope spanning sites 443 to 452, and neutralization by

these antibodies is notably less affected by mutations at residue 484. Our results show that

SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance

hierarchies.

Author summary

SARS-CoV-2 has circulated among humans for approximately two years, and mutations

in emerging variants can erode immunity elicited by prior infection or vaccination. Our

understanding of the antibody response elicited by these new variants is still limited. For

other viruses, such as influenza, antigenically drifted variants can elicit antibodies that tar-

get different sites. Here, we find that this principle also applies to SARS-CoV-2. While the

“class 2” RBD antibody epitope is immunodominant for sera from donors infected with
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SARS-CoV-2 in early 2020, antibodies elicited by infection with the B.1.351 (Beta) variant

are more focused on the “class 3” epitope. Notably, the class 3 epitope is conserved

between the early 2020 and B.1.351 viruses, but is mutated in the Delta variant, which rose

to high frequency globally in mid-2021. As SARS-CoV-2 continues to circulate among

humans, individuals’ prior infection and vaccination histories may partially determine

their susceptibilities to viral mutants in new variants.

Introduction

Over the past year, SARS-CoV-2 viral variants have emerged with mutations that alter the anti-

genicity of spike and erode neutralization of the virus by infection- and vaccine-elicited poly-

clonal antibodies [1–13]. While it is well established that many SARS-CoV-2 variants are less

susceptible to antibody immunity generated by early 2020 infections, it is unknown if the anti-

bodies elicited by infection with these variants have different specificities and epitope immu-

nodominance hierarchies. For influenza virus, it has been demonstrated that

immunodominance of different epitopes changes over time as the virus evolves antigenically

[14–16]. If a similar phenomenon occurs for SARS-CoV-2, then the sites of important anti-

genic mutations will change over time.

Here we address this question by combining serology and deep mutational scanning to

compare the specificity of the polyclonal antibody response elicited by infection with early

2020 viruses versus the B.1.351 variant (also referred to as Beta or 20H/501Y.V2). The B.1.351

variant was first detected in Nelson Mandela Bay, South Africa and likely emerged in August

2020 after the country’s first epidemic wave [17]. B.1.351 was the dominant lineage in South

Africa by the end of 2020, although it has subsequently been displaced by the B.1.617.2 (Delta)

lineage [18]. B.1.351 has mutations throughout the spike protein, including at key epitopes in

both the RBD and NTD [1,2,6,9]. The B.1.351 variant has among the largest reductions in neu-

tralization by convalescent plasmas of any SARS-CoV-2 variant to date [7,8,19–21]. Addition-

ally, prior work has demonstrated that B.1.351 convalescent plasmas can neutralize early 2020

viruses better than early 2020 plasmas can neutralize B.1.351 viruses [1,22], suggesting that

there may be a shift in the specificity of the antibody response. Our results described below

expand this understanding by showing that while neutralization by B.1.351-elicited plasma

antibodies is still heavily focused on the RBD, their site-specificity within the RBD is somewhat

shifted compared to antibodies elicited by early 2020 viruses. Specifically, within the RBD,

B.1.351-elicited sera is relatively more targeted to the class 3 epitope (in the classification

scheme of [23]) and relatively less targeted to the class 1 and 2 epitopes.

Results

The B.1.351 SARS-CoV-2 variant lineage has mutations in multiple spike

epitopes

The B.1.351 spike used in our experiments contained the following mutations relative to the

Wuhan-Hu-1 strain: D80A, D215G, del242–244, K417N, E484K, N501Y, D614G, and A701V

(Fig 1); note that some B.1.351 viruses also contain L18F. Three of these mutations are in the

RBD (K417N, E484K, and N501Y). K417N and E484K strongly disrupt binding of class 1 and

class 2 antibodies, respectively [24]. N501Y is in or proximal to the class 3 epitope, but does

not strongly affect the binding or neutralization of polyclonal convalescent or vaccine-elicited
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The escape fraction measured for each mutation in

S3 Data and also at https://github.com/jbloomlab/

SARS-CoV-2-RBD_B.1.351/blob/main/results/

supp_data/B1351_raw_data.csv. All raw

sequencing data are available on the NCBI Short

Read Archive at BioProject PRJNA770094,

BioSample SAMN22208699, SAMN22208700. The

neutralization titers of vaccine- and infection-

elicited sera against the tested RBD point mutants

is at https://github.com/jbloomlab/SARS-CoV-2-

RBD_B.1.351/blob/main/experimental_data/

results/neut_titers/neut_titers.csv.
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antibodies [8,23], although it enhances the RBD’s affinity for its receptor, angiotensin convert-

ing enzyme 2 (ACE2) [11,25,26].

Convalescent plasma samples from individuals infected with B.1.351 or an

early 2020 virus

We obtained plasma samples collected approximately 30 days post-symptom onset (mean 33,

range 27–40 days) from 9 individuals infected with SARS-CoV-2 during the “second wave” of

COVID-19 in South Africa from late December 2020 through late January 2021 (Table 1).

During this timeframe, B.1.351 virus accounted for >90% of sequenced infections in the area

[1,17,18]. None of the individuals had evidence of prior SARS-CoV-2 infection, so we presume

these individuals experienced a primary B.1.351 infection.

To enable comparison of B.1.351-elicited antibodies to those elicited by infection with an

early 2020 virus, we reexamined a set of convalescent plasma samples collected approximately

30 days post-symptom onset (mean 32, range 15–61 days) from 17 individuals with symptom

onset on or prior to March 15, 2020 in Washington State, USA (Table 1) [27,28]. At that time,

most sequenced viral isolates in Washington State had spike sequences identical to Wuhan-

Hu-1, although D614G viruses were also present at a low level [29,30]. No other spike muta-

tions were present at appreciable frequencies at that time.
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https://doi.org/10.1371/journal.ppat.1010248.g001
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Infection with B.1.351 elicits a neutralizing antibody response at least as

RBD-focused as early 2020 viruses

Early 2020 viruses induce a neutralizing antibody response that largely targets the RBD

[28,31,32], although some neutralizing antibodies also bind the NTD [9,33–35]. Because

B.1.351 has mutations in both the RBD and NTD, it is important to determine if the specificity

of the neutralizing antibody response elicited by this virus is similarly RBD-focused.

We depleted plasmas from B.1.351-infected individuals of B.1.351 RBD-binding antibodies,

or performed a mock depletion, and measured neutralization of B.1.351 spike-pseudotyped

lentiviral particles (Figs 2A and S1 and S1 Data). The median neutralization titer (NT50) of

these plasmas against the B.1.351-spike-pseudotyped lentiviral particles for the mock depletion

was 2,459 (range 259–5,081). For 7 out of 9 samples, greater than 90% of neutralizing activity

was ablated by removal of RBD-binding antibodies (Fig 2A).

We compared these B.1.351 results to previous measurements of the RBD-focused neutral-

izing activity of plasmas from individuals infected with early 2020 viruses. These prior mea-

surements were made using Wuhan-Hu-1 RBD depletions and D614G spike-pseudotyped

lentiviral particles [28]. The neutralizing activity of the B.1.351 plasmas was at least as RBD-

focused as the early 2020 virus plasmas, with most neutralizing activity of most plasmas from

both cohorts attributable to RBD-binding antibodies (Fig 2B and 2C). There was a slight

trend for the neutralizing activity of the B.1.351 plasmas to be more RBD-focused than the

early 2020 plasmas, but the difference was not statistically significant (Fig 2C). One caveat is

that all neutralization assays were performed in 293T cells overexpressing ACE2, which tend

to emphasize the effect of RBD-binding, ACE2-competitive antibodies more than assays per-

formed on cells with lower levels of ACE2 expression [7,35,36].

Complete mapping of mutations in the B.1.351 RBD that reduce binding

by polyclonal plasma antibodies elicited by B.1.351 infection

To determine how mutations within the RBD affect plasma antibody binding, we used a previ-

ously described deep mutational scanning approach. Briefly, this approach involves generating

comprehensive mutant libraries of the RBD, displaying the mutant RBDs on the surface of

yeast, and using fluorescence-activated cell sorting (FACS) and deep sequencing to quantify

how mutations impact antibody binding [28,37].

Previously, we have performed such deep mutational scanning using the RBD from the

Wuhan-Hu-1 isolate to map mutations that affect binding by polyclonal antibodies elicited by

infection or vaccination that involves a RBD identical to that in Wuhan-Hu-1 [24,28,38]. How-

ever, for the current work we wanted to determine the specificity of antibodies elicited by

B.1.351 infection to the B.1.351 RBD. Therefore, we generated new duplicate libraries contain-

ing 99.7% (3,807 of 3,819) of the possible single amino-acid mutations in the B.1.351 RBD. We

displayed these libraries on the surface of yeast, and measured the effects of mutations on RBD

expression and binding to ACE2 (S2 Fig and S2 Data [25]). We used computational filters

based on these measurements as well as a pre-sort of the library for RBDs that bind ACE2 with

at least 1% the avidity of the unmutated B.1.351 RBD to filter spurious antibody-escape muta-

tions that were highly deleterious or led to gross unfolding of the RBD.

Table 1. Information on cohorts of individuals infected with early 2020 or B.1.351 viruses.

Infecting Virus Time Period Location Days Post-Symptom Onset Number of Individuals

Early 2020 Prior to March 15, 2020 Washington State, USA mean 32 (range 15–61) 17

B.1.351 Late December 2020 to late January 2021 South Africa mean 33 (range 27–40) 9

https://doi.org/10.1371/journal.ppat.1010248.t001
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We then measured how all the single RBD mutations affected the binding of polyclonal

antibodies in the B.1.351 convalescent plasmas to the B.1.351 RBD. To do this, we incubated

the yeast-displayed B.1.351 libraries with each plasma and used fluorescence-activated cell

sorting (FACS) to enrich for RBD mutants with reduced antibody binding as measured using

an IgG+IgA+IgM secondary antibody (S3A–S3C Fig). FACS selection gates are set to capture

the approximately 5% of cells with the lowest amount of antibody binding for their amount of

RBD expression. This involves some subjectivity, which may affect which mutations are
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Fig 2. The neutralizing activity of plasma antibodies elicited by B.1.351 infection is heavily focused on the RBD. (A) The neutralizing titer (NT50) of

plasmas from B.1.351-infected individuals against B.1.351 spike-pseudotyped lentiviral particles, following mock depletion or depletion of B.1.351 RBD-

binding antibodies. (B) Comparison of neutralization titer following mock depletion or depletion of B.1.351 RBD-binding antibodies for early 2020 (n = 17)

[28] and B.1.351 convalescent plasmas (n = 9). The pink dashed line in A, B indicates the limit of detection (NT50 of 25 for B.1.351 plasmas, and 20 for early

2020 plasmas). (C) Percent loss of neutralization after removal of RBD-binding antibodies for early 2020 and B.1.351 convalescent plasmas. The difference is

not significant (Cox proportional-hazards test, accounting for censoring, p = 0.12). Experiments with B.1.351 infection-elicited plasmas were performed with

B.1.351 RBD proteins and spike-pseudotyped lentiviruses, and experiments with early 2020 plasmas were performed with Wuhan-Hu-1 RBD proteins and

D614G spike-pseudotyped lentiviruses. The data for the early 2020 viruses are reprinted from [28]. Neutralization titers are in S1 Data and at https://github.

com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/experimental_data/results/rbd_depletion_neuts/RBD_depletion_NT50_b1351_haarvi.csv. Full

neutralization curves for the B.1.351 plasmas are in S1 Fig, and the full curves for the early 2020 plasmas are shown in the supplement of [28].

https://doi.org/10.1371/journal.ppat.1010248.g002
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identified as antibody-escape variants. We deep sequenced the pre- and post-enrichment pop-

ulations to quantify each mutation’s “escape fraction”. These escape fractions range from 0 (no

cells with the mutation in the escape bin) to 1 (all cells with the mutation in the plasma-escape

bin) (S3 Data). The escape fractions measured for independent biological replicate libraries

were well-correlated (S3D Fig), and in the sections below we report the average across the two

replicate libraries. We represent the escape maps as logo plots, where the height of each letter

is proportional to its escape fraction (Figs 3 and S3A).

B.1.351-elicited antibodies focus on different epitopes than early 2020

convalescent samples

We examined the sites and epitopes to which mutations had the greatest effect on antibody bind-

ing. We use the Barnes, et al. [23] antibody epitope classification scheme, in which there are anti-

body classes 1 through 4 (Fig 3A). The class 1, 2, and 3 antibodies are often potently neutralizing,

while the class 4 antibodies are usually less potently neutralizing in vitro [31–33,39,40]. Relative to

Wuhan-Hu-1, B.1.351 contains mutations in or proximal to the class 1, 2, and 3 epitopes (K417N,

E484K, and N501Y, respectively) (Fig 3A), although the N501Y mutation has little effect on poly-

clonal convalescent antibody binding or neutralization for Wuhan-Hu-1-like viruses [7,8,41].

For the B.1.351 plasmas, in 4 of 9 cases, mutations to site 484 within the class 2 epitope had

the largest effects on antibody binding and the K484E reversion mutation had little effect (Fig

3B and S3 Data). In 3 of 9 cases, mutations to the class 3 epitope (sites 443–450, 498–501,

shown in cyan) and the class 2 site 484 had comparably large effects on antibody binding. In

two cases, no mutation had a particularly large effect on binding. Mutations to the class 1 and

4 antibody epitopes did not have large effects on plasma binding.

There are clear differences in the RBD epitope targeting of the B.1.351 plasmas versus previ-

ously characterized plasmas from a cohort of individuals (n = 11) infected with early 2020

viruses in Washington State, USA [28]. These 11 samples are a subset of the 17 whose RBD-

targeting neutralizing activity is described above, chosen to cover a range of serum binding

and neutralizing potencies and degrees of RBD-directed neutralization potencies (Fig 2B and

2C) [28]. Specifically, binding of the early 2020 plasmas were most affected by mutations to

the class 1 and 2 epitopes, with mutations to sites 456, 486, and 484 having some of the largest

effects on binding to the RBD (Figs 4 and S4 and S4 Data), although mutation to site 456 have

little effect on neutralization in vitro reflecting the common hyperfocusing of neutralizing anti-

body responses [28,38]. While the B.1.351 plasmas were also strongly affected by mutations to

the class 2 epitope and site 484, mutations to the class 1 epitope had little effect. Moreover,

while both groups of plasmas are affected by class 3 epitope mutations, the relative importance

of class 3 mutations is greater for the B.1.351 plasmas (Fig 4A and 4B).

There is also heterogeneity among the antibody-escape maps within each of the two cohorts

as well as similarities between cohorts. For instance, the antibody-escape map for participant

C of the early 2020 cohort qualitatively resembles that of the “484-focused” B.1.351 cohort

samples, and the maps for participants G and H qualitatively resemble the “484 and class

3-focused” group. Thus, the trends observed here must be interpreted with the caveat that the

two cohort sizes are relatively small.

Class 3 epitope mutations have a larger effect on neutralization for B.1.351

plasmas, while mutations at the class 2 site 484 have a larger effect for early

2020 plasmas

To test if the differences in plasma antibody binding specificity described above lead to differ-

ent effects of mutations on neutralization, we performed neutralization assays on key mutants
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using spike-pseudotyped lentiviral particles. For these experiments, we chose the eight B.1.351

samples with the highest neutralizing potency (there was not enough residual sample volume

to perform neutralization assays with the lowest-potency sample). We also chose four early

2020 samples with substantial RBD-focused neutralizing activity and with antibody-binding

escape maps representative of the early 2020 cohort as a whole (S4 Fig). In all assays, we tested

neutralization by B.1.351 and early 2020 plasmas against point mutants in the homologous

B.1.351 or D614G spikes.

Mutations to site 484 had strikingly different effects on neutralization by B.1.351 versus

early 2020 plasmas. For the early 2020 plasmas, both E484K/Q mutations, as well as the

K417N-E484K-N501Y triple mutation, reduced neutralization by>10-fold, which is compara-

ble to the reduction caused by removing all RBD-binding antibodies from the plasmas (Fig 5).

Therefore, the neutralizing activity of early 2020 plasmas is often highly focused on site 484, as

has been described previously [2,7,8,28,38,41–44]. In contrast, mutations to site 484 had much

smaller effects on neutralization by B.1.351 plasmas. The K484E reversion had little effect on

neutralization by B.1.351 plasmas, which was striking given the large effect of E484K on early

2020 plasma neutralization. While the K484Q mutation had the largest effect on B.1.351 plas-

mas of any of the single mutations we tested (geometric mean of 3.0-fold change), the effect

was smaller than that for the early 2020 plasmas (geometric mean of 18.3-fold change).

is shown as a gray ribbon diagram. (B) Escape maps for B.1.351 convalescent plasmas. The line plots at left indicate the sum of effects of all

mutations at each RBD site on plasma antibody binding, with larger values indicating more escape. The logo plots at right show key sites

(highlighted in purple on the line plot x-axes). The height of each letter is that mutation’s escape fraction; larger letters indicate a greater

reduction in binding. For each sample, the y-axis is scaled independently. RBD sites are colored by epitope as in (A). Sites 417, 484, and 501 are

labeled with red text on the x-axis. All escape scores are in S3 Data and at https://github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/

results/supp_data/B1351_raw_data.csv. Interactive versions of logo plots and structural visualizations are at https://jbloomlab.github.io/

SARS-CoV-2-RBD_B.1.351/.

https://doi.org/10.1371/journal.ppat.1010248.g003
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The class 3 epitope was a slightly more important target of neutralization for the B.1.351

plasmas than for early 2020 plasmas, consistent with the deep mutational scanning escape

maps. The G446V mutation to the class 3 epitope had a slightly larger, but still modest, effect

on neutralization for the B.1.351 plasmas than for most of the early 2020 plasmas (Figs 5 and

S5). No tested mutation, nor the 417-484-501 triple mutant, reduced neutralization by the

B.1.351 plasmas as much as removing all RBD-binding antibodies (Fig 5), a result in stark con-

trast to that observed for the early 2020 plasmas.

Discussion

We found that a SARS-CoV-2 variant induces antibody responses with different immunodo-

minance hierarchies than early SARS-CoV-2 viral isolates. Changes in immunodominance hier-

archies over time and asymmetric antigenic drift have also been observed for influenza virus [14–

16,45]. Such changes can have important consequences, as they can contribute to individuals with

different exposure histories having different susceptibilities to viral mutants [46,47]. Although the

changes in immunodominance we have observed here are relatively modest, they could become

larger as the virus continues to evolve and different individuals accumulate increasingly disparate

exposure histories through infection and vaccination [48,49].

We suggest several speculative hypotheses about several reasons why B.1.351 might elicit dif-

ferent hierarchies of antibodies. Although the B.1.351 spike protein has multiple mutations in key

antigenic sites in the RBD and NTD [1,2], the neutralizing antibody response elicited by B.1.351

infection is at least as RBD-focused as for early 2020 infections, suggesting that none of the RBD

mutations have reduced the antigenicity of that spike subdomain. But within the RBD, site 484

may be less immunodominant for B.1.351-elicited plasmas. Specifically, the E484K and E484Q

mutations, which have large effects on early 2020 plasmas, have more moderate effects on
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and against the indicated point mutants in their respective parental backgrounds. The y-axis indicates the fold-change in neutralization caused

by the mutations, with larger values indicating less neutralization. Each point is the average of two technical replicates for one individual. The

crossbars indicate the group geometric mean. The dashed gray line is at 1 (i.e., mutation causes no change in neutralization). Sites 417, 484, and

501 differ between B.1.351 and early 2020 viruses, and so mutations are tested in each background that changes the identity to that in the other

virus (e.g., E484K in early 2020 viruses, and K484E in B.1.351). Full neutralization curves and effects of mutations for each individual are shown

in S5 Fig, and the numerical values and IC50s are given in S5 Data and at https://github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/

main/experimental_data/results/neut_titers/neut_titers.csv.

https://doi.org/10.1371/journal.ppat.1010248.g005
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neutralization by B.1.351-elicited plasmas. Infection with early 2020 viruses frequently leads to the

development of neutralizing class 2 antibodies that target an epitope containing site 484

[24,42,50,51], and are derived from common antibody germline genes (e.g., IGHV3-53/66,

IGHV3-30, IGHV1-2 [23,52,53]. We speculate that viruses containing K484 rather than E484

(such as B.1.351) might less readily elicit such neutralizing antibodies [54], or might elicit antibod-

ies that draw less of their binding energy from site 484. Furthermore, if the class 2 epitope (con-

taining site 484) is less immunogenic in B.1.351, that could lead to relatively stronger targeting of

the class 3 epitope for B.1.351-elicited sera. Note that such phenomena could be human-specific,

since the class 2 epitope containing site 484 is not as immunodominant in other species with dif-

ferent germline antibody genes (i.e., rhesus macaques) [55].

Changing immunodominance hierarchies could explain previous reports that polyclonal

antibodies elicited by infection with different SARS-CoV-2 variants can have differing neutral-

izing breadths and specificities [4,56–58]. For instance, prior studies of individuals infected

with B.1.351 demonstrated that the convalescent plasmas from B.1.351-infected individuals

neutralized early 2020 viruses better than early 2020 convalescent plasmas neutralized B.1.351

viruses [1,22]. Our results help mechanistically explain this finding by showing that one of the

key epitopes that differs between early 2020 viruses and B.1.351 (the class 2 epitope centered

on site 484) is more immunodominant for early 2020 infections. Such changes in immunodo-

minance hierarchies could also explain recent results suggesting that polyclonal antibodies

elicited by B.1.351 infection are less effective at neutralizing the Delta (B.1.617.2) variant than

antibodies elicited by early 2020 viruses [4,59].

Our study has several limitations. The cohorts of individuals infected with early 2020 and

B.1.351 viruses are small, and are geographically and temporally distinct. Specifically, the early

2020 samples were collected in early 2020 in Washington State, USA, and the B.1.351 samples

were collected in December 2020–January 2021 in South Africa. Nevertheless, the two cohorts

are relatively well-matched with respect to age, sex, and days-post symptom onset of sample

collection (Table 1) and assays were performed under comparable conditions. But host factors,

including antibody germline gene alleles, immune history, and prior exposures to endemic

coronaviruses may contribute to the differences observed in the specificity of the SAR-CoV-2

antibody response. Our deep mutational scanning measured binding to yeast-displayed RBD,

which may not capture all relevant features of full-length spike in the context of virus. Finally,

our neutralization assays used pseudotyped lentiviral particles and ACE2-overexpressing cells,

and some recent works suggest that the relative importance of different spike epitopes for neu-

tralization can depend on the viral system and target cell line used [7,35,36,60].

Although the B.1.351 variant has now been displaced, our results illustrate the need to

understand immunity elicited by different SARS-CoV-2 variants. As population immunity

due to infection or vaccination increases, preexisting immunity is becoming an increasingly

important driver of SARS-CoV-2 evolution [61], as has shown to be the case for seasonal coro-

naviruses [62,63]. Moreover, as individuals begin to accumulate more complex SARS-CoV-2

immune histories due to multiple infections and/or vaccinations, the effects of immune

imprinting or original antigenic sin [64,65] may start to interact with the variant-specific

immunodominance hierarchies we have described to create increasingly diverse antibody

specificities in the human population.

Methods

Ethics statement

Samples were collected from participants enrolled in a prospective cohort study approved by

the Biomedical Research Ethics Committee (BREC) at the University of KwaZulu–Natal
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(reference BREC/00001275/2020) or a prospective longitudinal cohort study in Seattle, WA,

approved by the University of Washington Institutional Review Board (protocol

#STUDY00000959). Written informed consent was obtained from each participant.

Materials availability

The SARS-CoV-2 RBD mutant libraries and unmutated parental plasmid are available upon

request with completion of an MTA. The plasmid encoding the SARS-CoV-2 spike gene used

to generate pseudotyped lentiviral particles, HDM_Spikedelta21_D614G, is available from

Addgene (#158762) and BEI Resources (NR-53765). The HDM_Spikedelta21_B.1.351 plasmid

is available upon request. Further information and requests for reagents and resources should

be directed to and will be fulfilled by Jesse Bloom (jbloom@fredhutch.org) upon completion of

a materials transfer agreement.

Description of cohort

Samples were collected from participants enrolled in a prospective cohort study approved by

the Biomedical Research Ethics Committee (BREC) at the University of KwaZulu–Natal (ref-

erence BREC/00001275/2020). Written informed consent was obtained from each participant.

The mean age was 54 years (median 53; range 26–78 years). Four were males and 5 were

females. All participants had symptomatic SARS-CoV-2 infection and a positive SARS-CoV-2

qPCR from a swab of the upper respiratory tract, and all participants required hospitalization.

All 9 participants were HIV-negative. None of the participants had evidence of prior SARS-

CoV-2 infection. Blood was sampled approximately 30 days post-symptom onset (mean 32.9,

range 27–40 days) from 9 individuals infected with SARS-CoV-2 during the “second wave” of

infections in South Africa from late December 2020 through late January 2021, when the

B.1.351 virus was detected in>90% of sequenced infections in the area [1,17,18]. B.1.351 infec-

tion was corroborated by the experimental findings in this paper that all plasmas bound to

B.1.351 spike and RBD, had reduced binding to DMS library variants with mutations to site

484, and better neutralized B.1.351 spike-pseudotyped lentiviral particles relative to D614G

particles. All participant samples had detectable antibody binding and neutralizing titers

against B.1.351 SARS-CoV-2 spike.

Early-2020 convalescent plasma samples were previously described [27,28] and collected as

part of the prospective longitudinal Hospitalized or Ambulatory Adults with Respiratory Viral

Infections (HAARVI) cohort study of individuals with SARS-CoV-2 infection in Seattle, WA,

between February and July 2020. Written informed consent was obtained from each partici-

pant. The plasma samples from 17 individuals were examined here (8 of 17 females; age range

23 to 76 years, mean 51.6 years, median 56 years). These samples were collected approximately

30 days post-symptom onset (mean 31.6 days, median 29 days, min 15 days, max 61 days).

Five cases were hospitalized, 2 were asymptomatic, and the remainder were symptomatic non-

hospitalized. The neutralization activity of plasma samples before and after depletion of RBD-

binding antibodies in Fig 2 and RBD binding-escape maps in S4 Fig were previously reported

[28], but neutralization assays for all 30-days post-symptom onset plasmas in Figs 5 and S5

were newly performed in this study. The neutralization assays on the 100-day early 2020 sam-

ples in S5 Fig were previously reported [38]. This work was approved by the University of

Washington Institutional Review Board (protocol #STUDY00000959).

Plasma separation from whole blood

Plasma was separated from EDTA-anticoagulated blood by centrifugation at 500 rcf for 10

min and stored at −80˚C. Aliquots of plasma samples were heat-inactivated at 56˚C for 30 min
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and clarified by centrifugation at 10,000 rcf for 5 min, after which the clear middle layer was

used for experiments. Inactivated plasma was stored in single-use aliquots to prevent freeze–

thaw cycles.

Construction of B.1.351 RBD yeast-displayed DMS library

Duplicate single-mutant site-saturation variant libraries were designed in the background of

the spike receptor binding domain (RBD) from SARS-CoV-2 B.1.351 (identical to that from

Wuhan-Hu-1, Genbank accession number MN908947, residues N331-T531, with the addition

of the following amino-acid substitutions: K417N, E484K, N501Y), and produced by Twist

Bioscience. The Genbank map of the plasmid encoding the unmutated SARS-CoV-2 B.1.351

RBD in the yeast-display vector is available at https://github.com/jbloomlab/SARS-CoV-

2-RBD_B.1.351/blob/main/data/plasmid_maps/3021_pETcon-SARS-CoV-2-RBD_K417N_

E484K_N501Y.gb. The site-saturation variant libraries were delivered as double-stranded

DNA fragments by Twist Bioscience. The final unmutated DNA sequence delivered is:

tctgcaggctagtggtggaggaggctctggtggaggcggCCgcggaggcggagggtcggctagccatatgAATATCACG

AACCTTTGTCCTTTCGGTGAGGTCTTCAATGCTACTAGATTCGCATCCGTGTATGC

ATGGAATAGAAAGAGAATTAGTAATTGTGTAGCGGACTACTCTGTACTTTATAA

CTCCGCCTCCTTCTCCACATTCAAGTGTTACGGTGTATCTCCCACCAAGTTGAATG

ATCTATGCTTTACAAACGTTTACGCCGATAGTTTCGTAATTAGAGGCGATGAAG

TGCGTCAGATCGCACCAGGCCAGACGGGCAACATAGCAGACTATAATTATA

AGCTGCCTGATGACTTCACCGGCTGTGTGATAGCTTGGAACTCAAATAATCTAGA

TTCCAAGGTGGGAGGCAATTACAATTATTTGTACCGTCTGTTCCGTAAAAGCAA

TTTGAAACCATTTGAAAGAGACATTAGCACTGAAATTTATCAAGCAGGGTCCAC

CCCGTGCAACGGCGTAAAGGGCTTTAACTGTTATTTCCCATTACAGTCTTATG

GTTTCCAACCTACGTACGGAGTCGGGTATCAGCCGTACAGGGTTGTGGTTCTTTC

ATTTGAACTGCTGCACGCGCCCGCAACCGTATGCGGGCCGAAGAAATCAACGctcga

ggggggcggttccgaacaaaagcttatttctgaagaggacttgtaatagagatctgataacaacagtgtagatgtaacaaaatcgactt

tgttcccactgtacttttagctcgtacaaaatacaatatacttttcatttctccgtaaacaacatgttttcccatgtaatatccttttctatt

tttcgttccgttaccaactttacacatactttatatagctattcacttctatacactaaaaaactaagacaattttaattttgctgcctgccatat

ttcaatttgttataaattcctataatttatcctattagtagctaaaaaaagatgaatgtgaatcgaatcctaagagaatt

This sequence has 5’ and 3’ flanking sequences that are unmutated in the variant libraries

(lower case). The uppercase portion is the RBD coding sequence, amino acids N331–T531

(Wuhan-Hu-1 spike numbering). The libraries were designed to contain all 19 amino acids at

each site in the RBD, without stop codons, with no more than one amino-acid mutation per

variant. The variant gene fragments were PCR-amplified with these primers: 5’-tctgcaggc-

tagtggtggag-3’ and 5’-agatcggaagagcgtcgtgtagggaaagagtgtagatctcggtggtcgccgtatcattaattctcttag-

gattcgattcacattc-3’. (primer-binding regions underlined in the sequence above). A second

round of PCR was performed using the same forward primer (5’-tctgcaggctagtggtggag-3’) and

the reverse primer 5’-ccagtgaattgtaatacgactcactatagggcgaattg-

gagctcgcggccgcnnnnnnnnnnnnnnnnagatcggaagagcgtcgtgtag-3’ to append the Nx16 barcodes

and add the overlapping sequences to clone into the recipient vector backbone as described in

[25,66].

Failed positions in the Twist-delivered library (sites 362, 501, and 524 in Wuhan-Hu-1

numbering) were mutagenized in-house using a PCR-based method with NNS degenerate

primers and cloned into the unmutated wildtype backbone plasmid using NEB HiFi assembly,

exactly as described in [66]. These were then PCR-amplified using the same 5’-tctgcaggctagt

ggtggag-3’ and 5’-ccagtgaattgtaatacgactcactatagggcgaattggagctcgcggccgcnnnnnnnnnnnnn

nnnagatcggaagagcgtcgtgtag-3’ primers to pool with the barcoded Twist library gene fragments.
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The barcoded variant gene fragments were cloned in bulk into the NotI/SacI-digested

unmutated wildtype plasmid, as described in [25,66]. The Genbank plasmid map for the fully

assembled, barcoded B.1.351 RBD libraries (with the unmutated B.1.351 RBD sequence) is

available at https://github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/data/

plasmid_maps/pETcon-SARS-CoV-2-RBD-B1351_lib-assembled.gb. The pooled, barcoded

mutant libraries were electroporated into E. coli (NEB 10-beta electrocompetent cells, New

England BioLabs C3020K) and plated at a target bottleneck of 50,000 variants per duplicate

library, corresponding to>10 barcodes per mutant within each library. Colonies from bottle-

necked transformation plates were scraped and plasmid purified. Plasmid libraries (10 μg plas-

mid per replicate library) were transformed into the AWY101 yeast strain [67] according to

the protocol of Gietz and Schiestl [68].

PacBio sequencing to link variant mutations and barcodes

As described by Starr et al. [25], PacBio sequencing was used to generate long sequence reads

spanning the Nx16 barcode and RBD coding sequence. PacBio sequencing amplicons were

prepared from library plasmid pools via NotI digestion, gel purification, and Ampure XP bead

clean-up. Sample-specific barcodes and SMRTbells were ligated using the HiFi Express v2 kit.

The multiplexed libraries were sequenced on a PacBio Sequel II with a 15-hour movie collec-

tion time. Demultiplexed PacBio HiFi circular consensus sequences (CCSs) were generated

using the SMRT Link GUI, version 10.1.0.119588. HiFi reads are CCSs with> = 3 full passes

and a mean quality score Q> = 20. The resulting CCSs are available on the NCBI Sequence

Read Archive, BioProject PRJNA770094, BioSample SAMN22208699.

HiFi reads were processed using alignparse (version 0.2.6) [69] to determine each variant’s

mutations and the associated Nx16 barcode sequence, requiring no more than 45 nucleotide

mutations from the intended target sequence, an expected 16-nt length barcode sequence, and

no more than 4 mismatches across the sequenced portions of the vector backbone. Attribution

of barcodes to library variants determined that the libraries contained 3,807 of the 3,819 possi-

ble single amino-acid mutations to the B.1.351 RBD. Approximately 26% of barcodes in the

duplicate libraries corresponded to wildtype B.1.351 RBD (S2A Fig). The libraries were

designed to contain only wildtype and 1-amino acid mutations, but some multiple mutations

and stop codons were stochastically introduced during the library generation process. These

mutations were excluded from downstream analysis of the effects of mutations on ACE2 bind-

ing, RBD expression, and plasma antibody binding, except when used in quality control checks

(i.e., that most variants containing premature stop codons should not be expressed on the

yeast cell surface and thus should have very low expression scores).

Determining the effects of mutations on RBD expression and ACE2

binding to filter the library for functional variants

The effects of each mutation on RBD expression on the surface of yeast and on ACE2 binding

were measured essentially as described previously for the Wuhan-Hu-1 RBD [25]. Specifically,

each biological replicate library was grown overnight at 30˚C in 45mL SD-CAA media (6.7g/L

Yeast Nitrogen Base, 5.0g/L Casamino acids, 1.065 g/L MES acid, and 2% w/v dextrose) at an

initial OD600 of 0.4. To induce RBD surface expression, yeast were back-diluted in SG-CAA

+0.1%D (2% w/v galactose supplemented with 0.1% dextrose) induction media at 0.67 OD600

and incubated at room temperature for 16–18 hours with mild agitation. For RBD expression

experiments, 45 OD units of yeast were labeled in 1:100 diluted chicken-anti-Myc-FITC anti-

body (Immunology Consultants CMYC45F) to detect the RBD’s C-terminal Myc tag. For

ACE2-binding experiments, 12 OD units of yeast were incubated overnight at room
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temperature with monomeric biotinylated ACE2 (ACROBiosystems AC2-H82E8) across a

concentration range of 10−13 M to 10−6 M at 1-log intervals. Labeling volumes were increased

at low ACE2 concentration to limit ligand depletion effects. Cells were then labeled with 1:100

diluted Myc-FITC to detect RBD expression and 1:200 Streptavidin-PE (Invitrogen S866) to

detect binding of biotinylated ACE2.

Cells were processed on a BD FACSAria II and sorted into four bins from low to high RBD

expression (measured by myc-FITC staining) or ACE2 binding (measured by streptavidin-PE

fluorescence). The RBD expression sort bins were set such that bin 1 would capture 99% of

unstained cells, and the remaining 3 bins divide the remainder of each mutant RBD library into

equal tertiles. For ACE2 binding, bin 1 captured 95% of cells expressing unmutated RBD incu-

bated with no ACE2 (0 M), and bin 4 captured 95% of cells expressing unmutated RBD incubated

with a saturating amount of ACE2 (10−6 M). Bins 2 and 3 equally divided the distance between

the bin 1 upper and bin 4 lower fluorescence boundaries on a log scale. The frequency of each var-

iant in each bin was determined by Illumina sequencing of RBD variant barcodes.

The effects of each mutation on RBD expression and ACE2 binding were determined as

described in [25]. RBD mutant expression and ACE2 binding scores were calculated according

to the equations in [25]. For ACE2 binding, a score of –1.0 corresponds to a 10-fold loss in

affinity (Kd) compared to the wildtype RBD. For RBD expression, a score of –1.0 corresponds

to a 10-fold reduction in mean RBD-myc-FITC fluorescence intensity. These measurements

were used to computationally filter library variants that were highly deleterious for RBD

expression or ACE2 binding and would likely represent spurious antibody-escape mutations

(see below for details). The ACE2 binding and RBD expression scores for the single amino-

acid mutations in the B.1.351 RBD are available at https://github.com/jbloomlab/SARS-CoV-

2-RBD_B.1.351/blob/main/data/final_variant_scores.csv.

As previously described, prior to performing the antibody-escape experiments, the yeast

libraries were pre-sorted for RBD expression and binding to dimeric ACE2 (ACROBiosystems

AC2-H82E6) to eliminate RBD variants that are completely misfolded or non-functional, such

as those lacking modest ACE2 binding affinity [37]. Specifically, unmutated B.1.351 RBD and

each RBD mutant library were incubated with dimeric ACE2 at 10−8 M (a saturating concen-

tration of ACE2 for unmutated B.1.351 RBD). A FACS selection gate was set to capture 98% of

cells expressing unmutated B.1.351 RBD that were incubated with 10−10 M ACE2, to purge the

mutant libraries of highly deleterious mutations (i.e., those that have <1% the affinity of

unmutated B.1.351 RBD). These pre-sorted yeast libraries containing RBD variants with at

least nominal expression and ACE2 binding were used in downstream antibody-escape experi-

ments (see below).

Depleting plasma of nonspecific yeast-binding antibodies prior to

antibody-escape experiments

Prior to the yeast-display deep mutational scanning, plasma samples were twice-depleted of

nonspecific yeast-binding antibodies. AWY101 yeast containing a negative control (containing

an empty vector pETcon plasmid) were grown overnight at 30˚C in galactose-containing

media. Then, up to 50 microliters of plasma samples were incubated, rotating, with 40 OD

units of the yeast for 2 hours at room temperature in a total volume of 1mL. The yeast cells

were pelleted by centrifugation, and the supernatant was transferred to an additional 40 OD

units of yeast cells, and the incubation was repeated overnight at 4˚C. Before beginning the

plasma-escape mapping experiments, the negative control yeast were pelleted by centrifuga-

tion and the supernatant (containing serum antibodies but not negative control yeast or yeast-

binding antibodies) was used in plasma-escape mapping.
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FACS sorting of yeast libraries to select B.1.351 mutants with reduced

binding by polyclonal plasmas from B.1.351-convalescent individuals

Plasma mapping experiments were performed in biological duplicate using the independent

mutant RBD libraries, similarly to as previously described for monoclonal antibodies [37] and

polyclonal plasma samples [28]. Mutant yeast libraries induced to express RBD were washed

and incubated with plasma at a range of dilutions for 1 hour at room temperature with gentle

agitation. For each plasma, we chose a sub-saturating dilution such that the amount of fluores-

cent signal due to plasma antibody binding to RBD was approximately equal across samples.

The exact dilution used for each plasma is given in S3 Fig. After the plasma incubations, the

libraries were secondarily labeled for 1 hour with 1:100 fluorescein isothiocyanate-conjugated

anti-MYC antibody (Immunology Consultants Lab, CYMC-45F) to label for RBD expression

and 1:200 Alexa Fluor-647-conjugated goat anti-human-IgA+IgG+IgM (Jackson ImmunoRe-

search 109-605-064) to label for bound plasma antibodies. A flow cytometric selection gate

was drawn to capture 3–6% of the RBD mutants with the lowest amount of plasma binding for

their degree of RBD expression (S3 Fig). For each sample, approximately 10 million RBD+

cells (range 107 to 1.5 x 107 cells) were processed on the BD FACSAria II cell sorter, with

between 4 x 105 and 2 x 106 plasma-escaped cells collected per sample. Antibody-escaped cells

were grown overnight in synthetic defined medium with casamino acids (6.7g/L Yeast Nitro-

gen Base, 5.0g/L Casamino acids, 1.065 g/L MES acid, and 2% w/v dextrose + 100 U/mL peni-

cillin + 100 μg/mL streptomycin) to expand cells prior to plasmid extraction.

DNA extraction and Illumina sequencing

Plasmid samples were prepared from 30 optical density (OD) units (1.6e8 colony forming

units (cfus)) of pre-selection yeast populations and approximately 5 OD units (~3.2e7 cfus) of

overnight cultures of plasma-escaped cells (Zymoprep Yeast Plasmid Miniprep II) as previ-

ously described [37]. The 16-nucleotide barcode sequences identifying each RBD variant were

amplified by polymerase chain reaction (PCR) and prepared for Illumina sequencing as

described in [25]. Specifically, a primer with the sequence 50-AATGATACGGCGACCACC-

GAGA-30 was used to anneal to the Illumina P5 adaptor sequence, and the PerkinElmer Next-

Flex DNA Barcode adaptor primers with the sequence 50-

CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTGACTGGAGTTCA-

GACGTGTGCTCTTCCGATCT-30 (where xxxxxxxx indicates the sample index sequence)

were used to anneal to the Illumina P7 adaptor sequence and append sample indexes for sam-

ple multiplexing. Barcodes were sequenced on an Illumina HiSeq 2500 with 50 bp single-end

reads. To minimize noise from inadequate sequencing coverage, we ensured that each anti-

body-escape sample had at least 2.5x as many post-filtering sequencing counts as FACS-

selected cells, and reference populations had at least 2.5e7 post-filtering sequencing counts.

Analysis of deep sequencing data to compute each mutation’s escape

fraction

Escape fractions were computed as described in [37], with minor modifications as noted

below. We used the dms_variants package (https://jbloomlab.github.io/dms_variants/, version

0.8.10) to process Illumina sequences into counts of each barcoded RBD variant in each pre-

selection and antibody-escape population. For each plasma selection, we computed the escape

fraction for each barcoded variant using the deep sequencing counts for each variant in the

original and plasma-escape populations and the total fraction of the library that escaped anti-

body binding via the formula provided in [37]. Specifically:
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Ev ¼ F � ðnpost
v =NpostÞ � ðnpre

v =NpreÞ where F is the total fraction of the library that escapes

antibody binding (these fractions are given as percentages in S3C Fig), npost
v and npre

v are the

counts of variant v in the RBD library after and before enriching for antibody-escape variants

with a pseudocount of 0.5 added to all counts, and Npost ¼
X

v
npost
v and Npre ¼

X

v
npre
v are the

total counts of all variants after and before the antibody-escape enrichment.

These escape fractions represent the estimated fraction of cells expressing that specific vari-

ant that falls in the escape bin, such that a value of 0 means the variant is always bound by

plasma and a value of 1 means that it always escapes plasma binding.

We then applied a computational filter to remove variants with >1 amino-acid mutation,

low sequencing counts, or highly deleterious mutations that might cause antibody escape sim-

ply by leading to poor expression of properly folded RBD on the yeast cell surface [25,37]. Spe-

cifically, we removed variants that had ACE2 binding scores< −3.0 or expression scores <

−1.0, after calculating mutation-level deep mutational scanning scores for this library as in

[25]. An ACE2 binding score threshold of –3.0 retained 99.4% and an RBD expression score

threshold of –1.0 retained 93.8% of all RBD mutations observed > = 50x in GISAID as of Aug.

1, 2021 (S2C Fig).

We also removed all mutations where the wildtype residue was a cysteine. There were 2,014

out of the possible 3,653 mutations to non-disulfide bond residues in the RBD that passed

these computational filters.

The reported antibody-escape scores throughout the paper are the average across the librar-

ies; these scores are also in S3 Data. Correlations in final single-mutant escape scores are

shown in S3D Fig.

For plotting and analyses that required identifying RBD sites of strong escape, we consid-

ered a site to mediate strong escape if the total escape (sum of mutation-level escape fractions)

for that site exceeded the median across sites by >5-fold, and was at least 5% of the maximum

for any site. Full documentation of the computational analysis is at https://github.com/

jbloomlab/SARS-CoV-2-RBD_B.1.351.

Differences between composition and analysis of B.1.351 RBD libraries and

Wuhan-Hu-1 libraries

Importantly, because the B.1.351 libraries were generated using a different method than the

Wuhan-Hu-1 RBD libraries, which is fully described in [25], the analysis of deep sequencing

data to compute each mutation’s escape fraction is also different. The newly generated B.1.351

libraries were ordered from Twist Bioscience to have one amino-acid mutation per variant,

whereas the Wuhan-Hu-1 libraries were generated in-house with a PCR-based approach, with

an average of 2.7 mutations per variant [25]. Because there were often multiple mutations per

variant for the Wuhan-Hu-1 libraries, global epistasis modeling was used to deconvolve the

effects of single amino-acid mutations on antibody binding [28,37], whereas for the B.1.351

libraries, the measurements for single-mutant variants were used directly (occasional variants

with multiple mutations were discarded) to calculate antibody escape.

Generation of pseudotyped lentiviral particles

HEK-293T (American Type Culture Collection, CRL-3216) cells were used to generate SARS-

CoV-2 spike-pseudotyped lentiviral particles and 293T-ACE2 cells (Biodefense and Emerging

Infectious Research Resources Repository (BEI Resources), NR-52511) were used to titer the

SARS-CoV-2 spike-pseudotyped lentiviral particles and to perform neutralization assays (see

below).
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For experiments involving D614G spike, we used spike-pseudotyped lentiviral particles that

were generated essentially as described in [70], using a codon-optimized SARS-CoV-2 spike

from Wuhan-Hu-1 strain that contains a 21-amino-acid deletion at the end of the cytoplasmic

tail [27] and the D614G mutation that is now predominant in human SARS-CoV-2 [30]. The

plasmid encoding this spike, HDM_Spikedelta21_D614G, is available from Addgene

(#158762) and BEI Resources (NR-53765), and the full sequence is at (https://www.addgene.

org/158762). Point mutations were introduced into the RBD of this plasmid via site-directed

mutagenesis.

For experiments involving B.1.351 spike, we introduced the following mutations into the

HDM_Spikedelta21_D614G plasmid to match the amino acid sequence of EPI_ISL_700420:

80A, D215G, L242-244del, K417N, E484K, N501Y, and A701V. This plasmid map is available

online at https://github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/data/plasmid_

maps/2957_HDM_Spikedelta21_B.1.351.gb.

To generate spike-pseudotyped lentiviral particles [70], 6×105 HEK-293T (ATCC CRL-

3216) cells per well were seeded in 6-well plates in 2 mL D10 growth media (Dulbecco’s Modi-

fied Eagle Medium with 10% heat-inactivated fetal bovine serum, 2 mM l-glutamine, 100 U/

mL penicillin, and 100 μg/mL streptomycin). 24 hours later, cells were transfected using BioT

transfection reagent (Bioland Scientific) with a Luciferase_IRES_ZsGreen backbone, Gag/Pol

lentiviral helper plasmid (BEI Resources NR-52517), and wild-type or mutant SARS-CoV-2

spike plasmids. Media was changed to fresh D10 at 24 hours post-transfection. At ~60 hours

post-transfection, viral supernatants were collected, filtered through a 0.45 μm surfactant-free

cellulose acetate low protein-binding filter, and stored at −80˚C.

Titering of pseudotyped lentiviral particles

Titers of spike-pseudotyped lentiviral particles were determined as described in [70] with

the following modifications. 100 μL of diluted spike-pseudotyped lentiviral particles was

added to 1.25e4 293T-ACE2 cells (BEI Resources NR-52511), grown overnight in 50 μL of

D10 growth media in a 96-well black-walled poly-L-lysine coated plate (Greiner Bio-One,

655936). Relative luciferase units (RLU) were measured 65 hours post-infection (Promega

Bright-Glo, E2620) in the infection plates with a black back-sticker (Thermo Fisher Scien-

tific, NC9425162) added to minimize background. Titers were first estimated from the

average of 8 two-fold serial dilutions of virus starting at 10 μL virus in a total volume of

150 μL, performed in duplicate.

Neutralization assays

293T-ACE2 cells (BEI Resources NR-52511) were seeded at 1.25e4 cells per well in 50 μL D10

in poly-L-lysine coated, black-walled, 96-well plates (Greiner 655930). 24 hours later, pseudo-

typed lentivirus supernatants were diluted to ~200,000 RLU per well (determined by titering

as described above) and incubated with a range of dilutions of plasma for 1 hour at 37˚C.

100 μL of the virus-antibody mixture was then added to cells. At about 50 or*70 hours post-

infection, luciferase activity was measured using the Bright-Glo Luciferase Assay System (Pro-

mega, E2610). Fraction infectivity of each plasma antibody-containing well was calculated rela-

tive to a no-plasma well inoculated with the same initial viral supernatant in the same row of

the plate. We used the neutcurve package (https://jbloomlab.github.io/neutcurve version

0.5.7) to calculate the inhibitory concentration 50% (IC50) and the neutralization titer 50%

(NT50), which is 1/IC50, of each plasma against each virus by fitting a Hill curve with the bot-

tom fixed at 0 and the top fixed at 1.
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Depletion of RBD-binding antibodies from polyclonal sera

Two rounds of sequential depletion of RBD-binding antibodies were performed for vaccine-

elicited sera. Magnetic beads conjugated to the SARS-CoV-2 B.1.351 RBD (ACROBiosystems,

MBS-K032) were prepared according to the manufacturer’s protocol. Beads were resuspended

in ultrapure water at 1 mg beads/mL and a magnet was used to wash the beads 3 times in phos-

phate-buffered saline (PBS) with 0.05% bovine serum albumin (BSA). Beads were then resus-

pended in PBS with 0.05% BSA at 1 mg beads per mL. Beads (manufacturer-reported binding

capacity of 10–40 μg/mL anti-RBD antibodies) were incubated with human plasma at a 2:1

ratio beads:plasma, rotating overnight at 4˚C or for 2 hours at room temperature. A magnet

(MagnaRack Magnetic Separation Rack, Thermo Fisher Scientific, CS15000) was used to sepa-

rate antibodies that bind RBD from the supernatant, and the supernatant (the post-RBD anti-

body depletion sample) was removed. A mock depletion (pre-depletion sample) was

performed by adding an equivalent volume of PBS + 0.05% BSA and rotating overnight at 4˚C

or for 2 hours at room temperature. Up to three rounds of depletions were performed to

ensure full depletion of RBD-binding antibodies. For the neutralization assays on these plas-

mas depleted of RBD-binding antibodies, the reported plasma dilution is corrected for the

dilution incurred by the depletion process. Note that these assays were performed in 293T cells

over-expressing human ACE2, which may underestimate contributions of non-RBD-binding

antibodies to viral neutralization [7,35,60].

Measurement of plasma binding to RBD or spike by enzyme-linked

immunosorbent assay (ELISA)

The IgG ELISAs for spike protein and RBD were conducted as previously described [71].

Briefly, ELISA plates were coated with recombinant B.1.351 spike (purified and prepared as

described in [71]) and RBD (ACROBiosystems, SPD-C52Hp) antigens described in at 2 μg/

mL. Five 3-fold serial dilutions of sera beginning at 1:500 were performed in PBS with 0.1%

Tween with 1% Carnation nonfat dry milk. Dilution series of the synthetic sera comprised of

the anti-RBD antibody REGN10987 [72], which binds to both Wuhan-1-like RBD and B.1.351

RBD, and pooled pre-pandemic human serum from 2017–2018 (Gemini Biosciences; nos.

100–110, lot H86W03J; pooled from 75 donors) were performed such that the anti-spike anti-

body was present at a highest concentration of 0.25 μg/mL. REGN10987 was recombinantly

produced by Genscript. The REGN10987 is the same as that used in [73]. Pre-pandemic serum

alone, without anti-RBD antibody depletion, was used as a negative control, averaged over 2

replicates. Secondary labeling was performed with goat anti-human IgG-Fc horseradish perox-

idase (HRP) (1:3000, Bethyl Labs, A80-104P). Antibody binding was detected with TMB/E

HRP substrate (Millipore Sigma, ES001) and 1 N HCl was used to stop the reaction. OD450

was read on a Tecan infinite M1000Pro plate reader.

Data visualization

The static logo plot visualizations of the escape maps in the paper figures were created using

the dmslogo package (https://jbloomlab.github.io/dmslogo, version 0.6.2) and in all cases the

height of each letter indicates the escape fraction for that amino-acid mutation calculated as

described above. For each sample, the y-axis is scaled to be the greatest of (a) the maximum

site-wise escape metric observed for that sample, (b) 20x the median site-wise escape fraction

observed across all sites for that plasma, or (c) an absolute value of 1.0 (to appropriately scale

samples that are not noisy but for which no mutation has a strong effect on antibody binding).

Sites K417, L452, S477, T478, E484, and N501 have been added to logo plots due to their
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frequencies among circulating viruses. The code that generates these logo plot visualizations is

available at https://github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/results/

summary/escape_profiles.md. In many of the visualizations, the RBD sites are categorized by

epitope region [23] and colored accordingly. We define the class 1 epitope as residues 403+405

+406+417+420+421+453+455–460+473–476+486+487+489+504, the class 2 epitope as resi-

dues 472+483–485+490–494, the class 3 epitope to be residues 345+346+437–452+496+498–

501, and the class 4 epitope as residues 365–372+378+382–386.

For the static structural visualizations in the paper figures, the RBD surface (PDB 6M0J)

was colored by the site-wise escape metric at each site, with white indicating no escape and red

scaled to be the same maximum used to scale the y-axis in the logo plot escape maps, deter-

mined as described above. We created interactive structure-based visualizations of the escape

maps using dms-view [74] that are available at https://jbloomlab.github.io/SARS-CoV-

2-RBD_B.1.351/. The logo plots in these escape maps can be colored according to the deep

mutational scanning measurements of how mutations affect ACE2 binding or RBD expression

as described above.

Statistical analysis

The percent of neutralizing activity of early-2020 and B.1.351-convalescent plasmas due to

RBD-binding antibodies is plotted with the plotnine python package, version 0.8.0 (https://

plotnine.readthedocs.io/en/stable/index.html), shown as a Tukey boxplot (middle line indicat-

ing median, box limits indicating interquartile range) with individual measurements overlaid

as points. P-values are from a log-rank test accounting for censoring, calculated with the life-

lines python package, version 0.25.10 (https://lifelines.readthedocs.io/en/latest/).

Supporting information

S1 Fig. Enzyme-linked immunosorbent assay (ELISA) and neutralization curves of B.1.351

convalescent plasmas before and after depletion of B.1.351 RBD-binding antibodies. (A)

Controls showing that the RBD antibody depletion completely removes a RBD-targeting neu-

tralizing antibody. Effect of two rounds of RBD antibody depletion on binding to B.1.351 RBD

and spike (left) and neutralization of B.1.351 spike-pseudotyped lentiviral particles (right) by

synthetic serum. The synthetic serum was made by adding the RBD-targeting antibody

REGN10987 that binds both Wuhan-Hu-1 and B.1.351 RBD [72] to pre-pandemic pooled

serum at 50 μg/mL. The x-axis indicates the antibody concentration (μg/mL), and the y-axis is

the optical density at wavelength 450 (OD450) reading at each dilution (left) or fraction infec-

tivity (right). (B) Binding of B.1.351 convalescent plasmas to B.1.351 RBD and spike for mock

depletion (gray lines) and depletion of RBD-binding antibodies (orange lines). Some samples

were depleted three times (dashed lines and open circles) if two rounds of depletion did not

abrogate binding to RBD. There were not substantial reductions in OD450 after the third

round of depletions, so we reasoned that the samples were maximally depleted, and no further

rounds of depletions were performed. Removal of RBD-binding antibodies only modestly

reduces spike binding, consistent with prior findings that the majority of anti-spike antibodies

do not bind the RBD [28,77–80]. (C) Neutralization curves for plasma mock depletion (gray

circles) and depletion of RBD-binding antibodies (orange triangles). Each assay was performed

in technical duplicate, and points show the mean and standard error of the replicates. Pre-pan-

demic pooled serum was included in (B) and (C) as a negative control for binding and neutral-

ization. RBD-binding antibodies were removed from the plasma using streptavidin magnetic

beads conjugated to biotinylated B.1.351 RBD. All binding assays were performed with B.1.351

RBD and spike, and all neutralization assays were performed with B.1.351 spike-pseudotyped
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lentiviral particles. This figure shows the underlying measurements for all of the B.1.351 plas-

mas in Fig 2; the underlying measurements for the early 2020 plasmas in Fig 2 are shown in

[28].

(EPS)

S2 Fig. Generation of the B.1.351 RBD mutant libraries and measurements of effects of

mutations on ACE2 binding and RBD expression. (A) Schematic showing the B.1.351 RBD

mutant library design. A site-saturation variant library was generated in the B.1.351 RBD back-

ground, targeting one amino-acid mutation per variant. Nx16 unique DNA barcodes were

added to the variant gene fragments. The Nx16 barcodes were linked to their associated RBD

mutations by PacBio circular consensus sequencing (CCS). The plasmid library DNA was

transformed into yeast cells. In downstream experiments, the Nx16 barcodes are sequenced by

short-read Illumina sequencing. The tables at right indicate key library statistics. (B) Correla-

tions between biological independent replicate library measurements of the effects of single

mutations on ACE2 binding and RBD expression, measured as described in [25]. See Methods

for experimental details. (C) Thresholds on the ACE2 binding and RBD expression scores

(dashed orange lines) for the B.1.351 mutant library to computationally filter highly deleteri-

ous variants that may represent spurious antibody-escape mutations. Importantly, we aimed

to retain most mutations that have been observed > = 50 times in sequenced SARS-CoV-2 iso-

lates. The x-axis categorizes mutations by their number of observations in GISAID [81] as of

Aug. 1, 2021. An ACE2 binding score threshold of> = –3.0 (1,000-fold loss in binding affinity)

and an RBD expression score of> = –1.0 (10-fold loss in RBD expression) were chosen, which

filter comparable numbers of mutations as in prior Wuhan-Hu-1 experiments [28,73]. These

filters retain 99.4 and 93.8% of mutations, respectively, that have been observed > = 50 times

in sequenced SARS-CoV-2 isolates. (D) Relationship between the ACE2 binding and RBD

expression scores for the B.1.351 RBD library compared to those previously published for the

Wuhan-Hu-1 library [25]. The computational filters used for antibody-escape experiments for

the Wuhan-Hu-1 [28] and B.1.351 libraries are dashed orange lines. Each dot is one mutation,

and mutations to disulfide bonds are shown in red. A key difference is that for the previously

published Wuhan-Hu-1 experiments, dimeric rather than monomeric ACE2 was used [25].

(EPS)

S3 Fig. Deep mutational scanning approach to map mutations that reduce binding of

B.1.351 infection-elicited polyclonal plasma antibodies to the B.1.351 RBD. (A) Schematic

of the approach. The RBD is expressed on the surface of yeast (top left). Flow cytometry is

used to quantify both RBD expression (via a C-terminal MYC tag, green star) and antibody

binding to the RBD protein expressed on the surface of each yeast cell (bottom left). A library

of yeast expressing B.1.351 RBD mutants was incubated with convalescent plasmas and fluo-

rescence-activated cell sorting (FACS) was used to enrich for cells expressing RBD that bound

reduced amounts of plasma antibodies, as detected using an IgA+IgG+IgM secondary anti-

body. Deep sequencing was used to quantify the frequency of each mutation in the initial and

antibody-escape cell populations. We quantified the effect of each mutation as the escape frac-

tion, which represents the fraction of cells expressing RBD with that mutation that fell in the

antibody escape FACS bin. Escape fractions are represented in logo plots, with the height of

each letter proportional to the effect of that amino-acid mutation on antibody binding. The

site-level escape metric is the sum of the escape fractions of all mutations at a site. Experimen-

tal and computational filtering were used to remove RBD mutants that were misfolded or

unable to bind the ACE2 receptor. (B) Left: Representative plots of nested FACS gating strat-

egy used for all plasma selection experiments to select for single cells. Samples were gated by

SSC-A versus FSC-A, SSC-W versus SSC-H, and FSC-W versus FSC-H) that also express RBD
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(FITC-A vs. FSC-A). Right: The RBD mutant libraries were sorted to retain cells expressing

variants that bound to ACE2 with at least nominal affinity. Unmutated B.1.351 RBD and each

RBD mutant library was incubated with dimeric ACE2 at 10−8 M. A FACS selection gate was

set to capture 98% of cells expressing unmutated B.1.351 RBD that were incubated with 10−10

M ACE2, to purge the mutant libraries of highly deleterious mutations (i.e., those that have

<1% the affinity of unmutated B.1.351 RBD). (C) Left: FACS gating strategy for one of two

independent libraries to select cells expressing RBD mutants with reduced binding by poly-

clonal sera (cells in blue). Gates were set manually during sorting. Selection gates were set to

capture ~5% of the RBD+ library. The same gate was set for both independent libraries stained

with each plasma sample, and the FACS scatter plots looked qualitatively similar between the

two libraries. Right: the fraction of library cells that fall into each selection gate. (D) Mutation-

and site-level correlations of escape scores between biologically independent library replicates.

SSC-A, side scatter-area; FSC-A, forward scatter-area; SSC-W, side scatter-width; SSC-H, side

scatter-height; FSC-W, forward scatter-width; FSC-H, forward scatter height; FITC-A, fluores-

cein isothiocyanate-area.

(EPS)

S4 Fig. Escape maps for the early 2020 convalescent plasmas, as measured using a deep

mutational scanning approach in the Wuhan-Hu-1 RBD background. The line plots at left

indicate the site-level antibody escape for all RBD sites, and the logo plots at right zoom in on

key sites (highlighted in purple on the line plot x-axes). For each sample, the y-axis is scaled

independently. RBD sites are colored by antibody epitope. Sites 417, 484, and 501 are labeled

with red text on the x-axis. All 11 samples from the Washington State early 2020 cohort [28]

are shown here and averaged in Fig 4. Interactive versions of logo plots and structural visuali-

zations are at https://jbloomlab.github.io/SARS-CoV-2-RBD_B.1.351/. These data were origi-

nally published in [28] and are reanalyzed here. The numerical antibody-escape scores are in

S4 Data and at https://github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/results/

prior_DMS_data/early2020_escape_fracs.csv.

(EPS)

S5 Fig. Neutralization of point mutants of B.1.351 and D614G spike-pseudotyped lenti-

viral particles by convalescent plasmas from B.1.351 and early 2020-infected individuals.

(A) Each plot shows the neutralization curves of one point mutant and the wildtype measured

on the same assay date for each plasma (the same wildtype curve is repeated on multiple plots

for comparison). Plots are grouped by assay date. Each point is the average of two technical

replicates. (B) The fold-decrease in neutralization for samples shown in Fig 5, with the addi-

tion of previously measured neutralization by samples from 6 early 2020 convalescent individ-

uals collected approximately 100 days post-symptom onset [38]. (C) The fold-change in IC50

(left) or the absolute IC50 (right) for the neutralization of each point mutant by each plasma.

The fold-change IC50 is calculated relative to the geometric mean of two wildtype technical

replicates performed on the same assay date. Each point is one technical replicate. The dashed

gray line indicates the geometric mean of all wildtype measurements for that plasma, and the

orange line indicates the geometric mean of the effect of removing all RBD-binding antibodies.

B.1.351 plasma names are prefixed with K�, and early 2020 plasmas are prefixed with “partici-

pant”. All assays were performed with the “homologous” virus: B.1.351 spike for B.1.351 plas-

mas, and D614G spike for early 2020 plasmas. Mutations are given the same names for B.1.351

and D614G spikes, so 417K/N is 417N in the B.1.351 background and 417K in the D614G

background; 484E/K is 484E in B.1.351 and 484K in D614G; 501N/Y is 501N in B.1.351 and

501Y in D614G; and 417-484-501 is 417K-484E-501N in B.1.351 and 417N-484K-501Y in
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D614G.

(EPS)

S1 Data. Neutralization titers for B.1.351 and early 2020 infection-elicited sera before and

after depletion of homologous RBD-binding antibodies. This file is also available at: https://

github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/experimental_data/results/

rbd_depletion_neuts/RBD_depletion_NT50_b1351_haarvi.csv

(CSV)

S2 Data. The effects of all single amino-acid mutations in the B.1.351 RBD on ACE2 bind-

ing and RBD expression. This file is also available at: https://github.com/jbloomlab/

SARS-CoV-2-RBD_B.1.351/blob/main/data/final_variant_scores.csv

(CSV)

S3 Data. Plasma-escape scores for B.1.351 plasmas against the B.1.351 RBD deep muta-

tional scanning library. This file is also available at: https://github.com/jbloomlab/

SARS-CoV-2-RBD_B.1.351/blob/main/results/supp_data/B1351_raw_data.csv

(CSV)

S4 Data. Plasma-escape scores for early 2020 plasmas against the Wuhan-Hu-1 RBD deep

mutational scanning library. This file is also available at: https://github.com/jbloomlab/

SARS-CoV-2-RBD_B.1.351/blob/main/results/prior_DMS_data/early2020_escape_fracs.csv

(CSV)

S5 Data. Neutralization titers of early 2020 and B.1.351 plasmas against spike-pseudotyped

lentiviral particles in the homologous spike background. This file is also available at: https://

github.com/jbloomlab/SARS-CoV-2-RBD_B.1.351/blob/main/experimental_data/results/

neut_titers/neut_titers.csv.

(CSV)
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