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Real-time structure search and structure
classification for AlphaFold protein models
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Last year saw a breakthrough in protein structure prediction, where the AlphaFold2 method

showed a substantial improvement in the modeling accuracy. Following the software release

of AlphaFold2, predicted structures by AlphaFold2 for proteins in 21 species were made

publicly available via the AlphaFold Database. Here, to facilitate structural analysis and

application of AlphaFold2 models, we provide the infrastructure, 3D-AF-Surfer, which allows

real-time structure-based search for the AlphaFold2 models. In 3D-AF-Surfer, structures

are represented with 3D Zernike descriptors (3DZD), which is a rotationally invariant,

mathematical representation of 3D shapes. We developed a neural network that takes

3DZDs of proteins as input and retrieves proteins of the same fold more accurately than

direct comparison of 3DZDs. Using 3D-AF-Surfer, we report structure classifications of

AlphaFold2 models and discuss the correlation between confidence levels of AlphaFold2

models and intrinsic disordered regions.
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Structural biology has entered a phase when structure pre-
diction methods, particularly a recent method, AlphaFold21,
consistently produce reliable computational structure

models with atomic accuracy. Protein structure prediction has
been extensively studied in the computational biology commu-
nity. Taking advantage of the accumulated protein sequence and
structure information in the Protein Data Bank (PDB)2, numer-
ous methods have been developed based on different scientific
disciplines, ideas, and various computational techniques. In the
past few years, methods that use machine learning methods,
particularly deep neural networks3–9, made a large improvement
in structure prediction accuracy in the Critical Assessment of
techniques in protein Structure Prediction (CASP)10. In CASP14,
a breakthrough11 was achieved by AlphaFold21, which showed
the best performance among participants with a substantial gap to
the second-best method. Remarkably, the accuracy of AlphaFold2
models often reaches what would be expected from X-ray crys-
tallography. It has been reported that models generated by
AlphaFold2 have indeed helped experimental protein structure
determination, as such models were successfully used for mole-
cular replacement in X-ray crystallography and for density
interpretation of cryo-EM maps12,13.

Soon after the release of the AlphaFold2 code, predicted
structure models by AlphaFold2 for proteins from 21 major model
species have been released at the AlphaFold Protein Structure
Database14. This is an invaluable resource for the biology com-
munity as modeled protein structures can be easily obtained
without installing and running the AlphaFold2 software. Many
proteins that do not have experimentally determined structures
now have computational models with an expected high accuracy.

Here, we provide the infrastructure, 3D-AF-Surfer, for real-
time protein structure model search within AlphaFold2 models
and across entries in PDB at https://kiharalab.org/3d-surfer/
submitalphafold.php. In any database, the functionality for quick
entry search and comparison is essential. In 3D-AF-Surfer, a quick
structure search against the entire PDB and AlphaFold2 models is

realized with 3D Zernike descriptors (3DZD), which are rota-
tionally invariant, mathematical representations of 3D shapes15,16

(see Methods for more technical details). 3DZDs were shown to be
effective in rapid protein structure database search17–20 other tasks
that involve biomolecular shape comparison and matching21–25,
mapping the global shape space of known protein structures26,
binding pocket comparison27,28, drug screening28,29, and protein
docking22. To the best of our knowledge, 3D-AF-Surfer is the only
tool that can search between AlphaFold2 models and PDB entries
real-time, within seconds to a couple of minutes. In 3D-AF-Surfer,
we further developed neural networks that take 3DZDs of proteins
as input and achieve more accurate retrieval of proteins of the
same fold than a direct comparison of 3DZDs.

Results
Domains with high confidence in AlphaFold2 models. In 3D-
AF-Surfer, protein structure models generated by AlphaFold2 for 21
proteomes were retrieved from the European Bioinformatics Insti-
tute’s FTP server of the AlphaFold Database (https://ftp.ebi.ac.uk/
pub/databases/alphafold) on July 22, 2021, which is still up-to-date
on November 8, 2021. AlphaFold2 assigns one of four confidence
levels, from very high confidence to very low confidence, to each
amino acid position in a model. The confidence levels were assigned
by the predicted local distance difference test (pLDDT) score30,
which examines the accuracy of Cα atom distances in a model.
Since many models have low or very low confidence regions, which
often have unfolded conformation, we extracted confident domain
region(s) from each model in 3D-AF-Surfer (see Methods). In total,
this procedure yielded 508,787 domains, which cover 48.8% of
residues in all the AlphaFold2 models. The statistics of model
counts is provided in Table 1.

3D-AF-Surfer. Figure 1 illustrates the input and output panels
of 3D-AF-Surfer, available at https://kiharalab.org/3d-surfer/
submitalphafold.php. In the input panel, users can enter the

Table 1 Proteomes and structure models considered.

Species Common name Reference
proteome

# unique
UniProt IDs

# original # domains # structure predictions with
no domains (1D)

Arabidopsis thaliana Arabidopsis UP000006548 27,434 27,434 37,682 5722
Caenorhabditis elegans Nematode worm UP000001940 19,694 19,694 26,160 4277
Candida albicans C. albicans UP000000559 5974 5,974 9,978 743
Danio rerio Zebrafish UP000000437 24,664 24,664 42,135 2530
Dictyostelium discoideum Dictyostelium UP000002195 12,622 12,622 18,963 2986
Drosophila melanogaster Fruit fly UP000000803 13,458 13,458 19,881 2335
Escherichia coli E. coli UP000000625 4363 4363 5397 417
Glycine max Soybean UP000008827 55,799 55,799 72,217 14,146
Homo sapiens Human UP000005640 20,504 23,391 44,827 3302
Leishmania infantum L. infantum UP000008153 7924 7924 12,257 1579
Methanocaldococcus
jannaschii

M. jannaschii UP000000805 1,773 1,773 2,097 131

Mus musculus Mouse UP000000589 21,615 21,615 35,216 2477
Mycobacterium tuberculosis M. tuberculosis UP000001584 3988 3988 5170 351
Oryza sativa Asian rice UP000059680 43,649 43,649 39,775 19,756
Plasmodium falciparum P. falciparum UP000001450 5187 5187 7283 1162
Rattus norvegicus Rat UP000002494 21,272 21,272 33,818 2664
Saccharomyces cerevisiae Budding yeast UP000002311 6040 6040 9837 967
Schizosaccharomyces pombe Fission yeast UP000002485 5128 5128 8173 637
Staphylococcus aureus S. aureus UP000008816 2888 2888 3283 415
Trypanosoma cruzi T. cruzi UP000002296 19,036 19,036 26,205 5436
Zea mays Maize UP000007305 39,299 39,299 48,433 11,582

For each proteome, the number of unique proteins, total original/domain models, and total original models containing no confident domains are given. The definition of the confident domains is given in
the main text. The human original model count is underlined, indicating that the number of original models does not match the number of unique proteins. The human structure predictions retrieved from
the AlphaFold Database contain models which are 1400-residue slices of larger proteins.
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Fig. 1 Input and an output example of 3D-AF-Surfer. a The input page (see text). b An example output page. The query was PDB ID: 7tim-A, a TIM-barrel
fold and search was against AlphaFold2 models using the deep neural network. As shown, retrieved top 25 hits are all TIM-barrel folds with a distance of
0.0, indicating that the network judged that these structures are highly likely to belong to the same fold.
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AlphaFold model ID, PDB ID or upload the file of the query
structure (Fig. 1a). When the first couple of letters of ID is
entered, candidates of the rest will be listed. Then, the repre-
sentation of protein structures used to compute 3DZD needs to
be specified (full atom or main chain). Next, select the database to
search against, which can be the full AlphaFold proteome data-
base, structures from PDB (complexes, domain structures) or
both combined. Users also have an option to select the method of
the database search, a deep neural network-based search (the
default setting), which is suitable for retrieving proteins with the
same fold (see below) or original 3DZD-based search that is
equipped in 3D-Surfer. The result page shows a table where the
query structure is displayed on the left side and a list of retrieved
structures ranked by their similarity to the query is shown on the
right side (Fig. 1b). Clicking a retrieved structure invokes a new
search using the selected structure as the query and allow users to
“surf” in the protein structure universe. The panel also provides
the option to compute the root mean square deviation (RMSD)
between the query and the displayed similar structure. Pockets in
the query structure can be identified using VisGrid31 or
LIGSITE32. Finally, shown at the bottom of the page is the 3DZD
of the query structure.

PDB entries in 3D-AF-Surfer are updated bi-weekly. As of
November 29, 2021, the server holds 547,639 protein chains and
249,163 additional domain structures from PDB, and 508,787
domain structures from the AlphaFold Database. Average time
for a search measured over ten queries is as follows, when the
neural network is used: Against AlphaFold domains: 55 s (s); PDB
chains: 1 min 10 s; PDB domains: 22 s; PDB chains+domains:
1 min 15 s; All of the above: 2 min 26 s. Search is faster if 3DZD is
used: 3 s against AlphaFold domains; 1.35 s, 1.45 s, 1.93 s against
PDB chains, domains, and chains+domains, respectively, and
2.45 s for All of the above.

We further compared the computational time of 3D-AF-
Surfer with DaliLite33, TM-align34, MADOKA35, SPalignNS36,
and ZEAL37. DaliLite and TM-align are conventional, com-
monly used structure alignment methods, while MADOKA and
SPalignNS are more recent methods. ZEAL is a method that
uses 3D Zernike moments instead of 3DZDs (see “Methods”).
Table 2 reports the computational time of these methods on
structure comparison of 4950 protein pairs formed from
randomly sampled 100 proteins. For 3D-AF-Surfer, both direct
3DZD comparison and the neural network (3DZD-NN)
were evaluated. 3DZD is the fastest of all methods, followed
by 3DZD-NN. MADOKA was the next fastest, but it was 10
times slower than 3DZD-NN. ZEAL was the slowest of all the
methods.

Secondary structure class of AlphaFold2 models. Figure 2a
shows a breakdown of the secondary structure class of domain
structures of AlphaFold2 models in comparison with SCOPe38,39.

Four secondary structure classes were considered, α, β, αβ, and
small proteins. αβ corresponds to the α+β and α/β classes in
SCOPe. The classification was performed with a machine learning
method, a bagged40 ensemble of support vector machine classi-
fiers (SVMs) using the secondary structure content of SCOPe
domains (see Methods). The bagged ensemble had an accuracy of
91.5% (Table 3). The method had the highest accuracy among all
the methods compared, which include handmade classification
procedures and different architectures of SVM. The classification
result for SCOPe (Fig. 2a) is qualitatively consistent with earlier
statistics of CATH41, where the αβ class occupies over 50% and
the share of α-class is around 15%. On the other hand, we note a
greater prevalence of α-class structures among the AlphaFold2
domains (Fig. 2b) than in the SCOPe statistics (Fig. 2a). This
result probably indicates that α-class structure models tend to
have higher confidence than other classes.

Fold classification by deep neural network. To have an overall
grasp of the fold distribution of AlphaFold2 models, we used the
deep neural network of 3D-AF-Surfer and classified AlphaFold
domain structures into SCOPe folds (Fig. 2b). For this classifi-
cation, we considered 1101 folds in the class a (all α proteins), b
(all β proteins), c (α/β proteins), d (α+β proteins), and g (small
proteins) in the SCOPe database. The neural network takes
3DZDs of two protein structures and outputs the probability that
the two structures belong to the same SCOPe fold42 (Fig. 3; see
“Methods”). This neural network architecture has shown sig-
nificant performance in the yearly-held 3D Shape Retrieval
Contests (SHREC) protein retrieval categories42,43.

For the current work we newly trained two networks, one
that uses 3DZDs computed from full-atom protein surface and
the other one that takes 3DZDs computed from main-chain Cα,
C, and N atoms44. The network with the main-chain atoms
showed higher classification accuracy (95.0%) than the full-
atom network (Table 3). This accuracy was higher than the
original 3D-Surfer17, which compares 3DZDs directly with the
Euclidean distance.

We also compared the structural classification performance of
3DZD and 3DZD-NN with SPalignNS, because Janan et al.45

performed a comprehensive analysis of eighteen structure
alignment methods and reported SPalignNS as the best method
for fold classification (Supplementary Fig. 1). This comparison
was performed on randomly sampled 2,500 positive (i.e. same-
fold) and 2,500 negative (i.e. different-fold) pairs from the
validation dataset used in Table 4. As shown in the figure, 3DZD-
NN showed the highest AUC of 0.998, followed by SPalignNS
with an AUC of 0.976. The AUC of 3DZD was the lowest,
at 0.789.

Illustrative cases of misclassifications of folds. Although 3D-
AF-Surfer showed high fold classification performance as dis-
cussed above, there are certainly cases where it failed to provide
a correct classification. Some such cases come from the inherent
methodology of using 3DZDs as discussed in our earlier
paper19. We showed four examples in Fig. 4. The two pairs in
panel a and b are false negatives where the two structures
belong to the same SCOP fold while both 3DZD-NN and 3DZD
considered them as different folds. The pair in Fig. 4a (d2d0oa2
and d3g25d1) have similar secondary structure arrangement
along the sequences but their spatial packings are different.
Consequently, these two structures have different overall sur-
face shape for 3DZD. In the pair in Fig. 4b, although the two
structures have a bent β-sheet structure in common, extra α-
helices in d1mjxb_ made the two folds less similar, which also
led to differences in their surface shapes.

Table 2 Comparison of computational time.

Method Running time

3DZD 1.64 s
3DZD-NN 4.06 s
DaliLite 4 min 37.2 s
TM-align 10 min 14.4 s
MADOKA 41.4 s
SPalignNS 19 min 18.55 s
ZEAL 3 days 3 h 22min 7.47 s

We ran the programs on a Linux machine with an Intel(R) Core i7-6900K CPU @ 3.20 GHz.
min, minutes; sec, seconds. The running times reported are the average of three
independent runs.
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Fig. 2 Distribution of protein secondary structure classes and fold classes of confident domains of AlphaFold2 models. a The secondary structure
classes were assigned to SCOPe domains and domains of high confidence in AlphaFold2 models. Four classes were considered, α, β, αβ, and small proteins. Left,
SCOPe (232,630 domains); right, domains of high confidence in AlphaFold2 models. (508,787 domains). The classification was performed using a bagged SVM
ensemble (see Methods). SCOPe domains (left) were also classified with the SVM ensemble to be able to compare with the results on AlphaFold2 domains
(right). b Fold classification of the AlphaFold2 structure domains of high confidence. The classification was performed with the deep neural networks that were
trained on the fold assignment provided in SCOPe (see Methods). The outer wheel indicates the fraction of each fold. Folds were ordered according to SCOPe
IDs. Left, the fold distribution of AlphaFold2 domains using the deep network trained on 3DZDs of full atom domain structure surface. The inner wheel shows
the fraction of secondary structure classes. Since this classification was based on the fold assignment, the fractions are overall consistent but not identical
to those shown in panel (a). The top 10 most abundant folds are indicated. Right, the fold distribution using the deep network trained on 3DZDs of surface
shapes with main-chain atoms. c The 10 most abundant folds among AlphaFold2 domains. The fraction of each fold is indicated in the wheel diagram on the left
in panel b. For each fold, an example of AlphaFold domains is shown. (1) Non-globular all-alpha subunits of globular proteins (a.137). Example shown is
A0A1D6E4Z3_F1, residue 823-895 (maize). (2) ROP-like (a.30): A0A1D6MV33_F1, residue 758-815 (maize). (3) Mediator hinge subcomplex-like (a.252).
Q4DL50_F1, residue 384-495 (T. cruzi). (4) BAR/IMD domain-like (a.238). Q8LE58_F1, residue 2-133 (Arabidopsis). (5) Intrinsically disordered proteins (g.88).
I1L2C2_F1, residue 210-284 (soybean). (6) N-terminal domain of bifunctional PutA protein (a.176). A7MBM2_F1, residue 157-225 (human). (7) L27 domain
(a.194). A0A1D6PKM6_F1, residue 314-375 (maize). (8) alpha-alpha superhelix (a.118). K7KHY8_F, residue 213-524 (soybean). (9) Spectrin repeat-like (a.7).
P38637_F1, residue 149-238_AFv1 (S. cerevisiae). 10 SRF-like (d.88). A0A1D6NUQ9_F1, residue 2-74 (maize).
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Fig. 4c, d shows examples of false positives, i.e. two pairs of
structures of different folds where both 3DZD-NN and 3DZD
recognized them as the same fold. The structures in Fig. 4c have
similar spatial arrangements of secondary structures, each with a

large β-sheet in the middle and a long, kinked characteristic
α-helix on the side, although structure superimposition shows an
RMSD over 15 Å. Figure 4d shows two proteins with different
secondary structure classes but with a similar C-shaped surface
shape. Detecting similar surface shape of proteins regardless of
their main-chain conformations is characteristic of the perfor-
mance of 3DZD, which, in these two cases, led to false positives.
However, note that while these false positive pairs have a score
above the detection threshold, they do not practically affect a
database search against the entire PDB or AlphaFold2 models
because there are many far more similar structures that occupy
top hits in a search as shown in Supplementary Fig. 2.

In Fig. 5 we discuss cases where 3DZD-NN improved over
3DZD, where the neural network correctly classified two proteins
as being in the same fold or not while 3DZD failed. In the pairs in
Fig. 5a, b surface shapes of the two proteins are apparently
different due to a tail that flipped out from the main body of the
protein volume. 3DZD was confused by the shape difference, but
the neural network was still able to correctly identify the pair as
belonging to the same fold with high confidence. Figure 5c and
Fig. 5d show cases where 3DZD had a slightly higher score than
the threshold and considered them as the same fold while 3DZD-
NN considered them as different folds. In both cases, while 3DZD

Table 3 Accuracy of fold class assignment on SCOPe.

Method Accuracy

Overall α β αβ Small proteins

Expert handmade (without optimization) 0.852 0.683 0.771 0.961 0.357
Expert handmade (optimized) 0.880 0.759 0.889 0.928 0.500
Multinomial logistic regression 0.863 0.916 0.861 0.851 0.818
SVM (linear) 0.445 0.991 0.927 0.069 0.548
SVM (RBF kernel) 0.896 0.947 0.869 0.896 0.861
Bagged SVM (RBF kernel) 0.915 0.943 0.882 0.937 0.621

Fold classes were assigned to AlphaFold2 models based on secondary structure content and sequence length. Here we show the benchmark results from optimizing these classifiers on the original manually
curated SCOPe fold classes. For the expert handmade classifiers, secondary structure content and protein length conditions were defined for each fold class. The first classifier without optimization used the
following conditions: length<50aa ! small; else helix � 60% ! α; else sheet � 35% and helix<20% ! β; else ! αβ. The second one optimized the actual threshold values by parameter sweep of an
increment of 5% for secondary structure content and increments of 5aa for the sequence length. The optimized mapping was: length<55aa ! small; else helix � 55% ! α; else sheet � 25% and
helix<20% ! β; else ! αβ. For the other classifiers, lengths and secondary structure proportions were used directly as features. For each classifier, accuracy is shown both overall and per-class.

Fig. 3 Deep neural network model for protein fold classification. The Network takes as input two protein structures represented by their 3DZD vectors.
The encoder layer uses the three hidden layers, each with 250, 200, 150 nodes, to encode the features in the 3DZD. The encoding vector of a length of
1452 is then input into the feature extractor layer, which is used to compare the encoded feature of the two structures using four distance metrics, the
Euclidian distance, the cosine distance, the Manhattan (absolute value) distance, and dot product. The FC network takes the feature extractor output and
predicts the probability that the two structure belong to the same fold.

Table 4 Fold classification accuracy by 3DZD and the deep
neural network.

Method 3DZD Type Accuracy Precision Recall F-Measure

Fold
3DZD-
NN

Full Atom 0.954 0.945 0.964 0.954
Main Chain 0.977 0.974 0.979 0.977

3DZD Full Atom 0.508 0.504 0.998 0.670
Main Chain 0.616 0.571 0.939 0.710

This benchmark is computed using the test set from the SCOPe dataset. Balanced positive and
negative test pairs were constructed from the set of 2521 protein structures in SCOPe. There were
167,872 test pairs in total. 3DZD is the original method where the 3DZD of two structures are
compared with a score that uses Euclidean distance of 3DZDs of two proteins, which is defined as
1/(1+Euclidean distance). Thus, the score ranges from 0 to 1. 3DZD-NN is the deep network that
outputs predicted probability that input two structures are in the same SCOPe fold. Probability
values output by 3DZD-NN range from 0 to 1. We used the best threshold that maximized
F-measure. The threshold values of 3DZD-NN full atom, 3DZD-NN main-chain, and 3DZD were
0.5, 0.6, and 0.1, respectively. See Table 1 in Supplementary Information for results of all different
thresholds. See Methods for definitions of accuracy, precision, recall, and F-measure.
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could not differentiate the pairs due to their similar surface
shapes, the neural network is able to differentiate the pair as not
belonging to the same fold.

To summarize, surface shape similarity of proteins, which
3DZD detects, can lead to misclassification of protein folds if that
is the main interest of users. But in many cases the neural
network was able to correct such misclassification by 3DZD. It
would be worthwhile to note that identifying proteins with
similar surface shape but different main-chain conformations by
3DZD often lead to findings of functionally related proteins,
which were otherwise missed due to the lack of main-chain and
sequence-level similarity19,37.

Fold distribution of AlphaFold2 models. We now discuss
abundant folds observed in Alphafold2 models. In Fig. 2b, the
fold classification are shown in wheel diagrams. The inner and the
outer wheels of the pie charts show the classification result at the
secondary structure class level and at the individual SCOPe folds,
respectively. The distribution of the secondary structure class
levels is consistent with Fig. 2a, which was classified from sec-
ondary structure content of models. Classifications using the
main-chain atoms (the left panel in Fig. 2b) and full-atoms (the

right panel) were also consistent. Overall, the α-class folds are
dominant when all the proteomes are considered.

In Fig. 2c, we showed 10 most abundant folds from all the
21 species. Among them, eight belong to the α-class, one to the α
+β-class (d.88), and one to the small protein class (g.88),
respectively. Supplementary Table 2 breaks down the statistics
into individual species. Reflecting the overall abundance of α-class
proteins as shown in Fig. 2, α-class folds dominate top 10
rankings in all the species. On average, 7.0 α-class folds ranked
within top 10 in each species, which contrasts to the small
numbers of folds in α/β or α+β-class (1.67 folds) and β−class
(0.71 folds). These results of Alphafold2 models are largely
different from statistics taken from the SUPERFAMILY2.0
database46, which is a reference of the current understanding of
protein fold distribution (Supplementary Table 3, 4). As shown in
Supplementary Table 4, the 21 species in SUPERFAMILY2.0 have
more α/β or α+β-class folds within top 10: On average, 5.24 folds
from the α/β or α+β-class are within top 10, which contrasts with
1.9 α-class folds. The dominance of the α/β and α+β-class
observed in SUPERFAMILY2.0 is consistent with earlier works by
Gerstein47, which is shown in Supplementary Table 5 and by
Kihara & Skolnick48 (Supplementary Table 6), which assigned
folds by a threading method. In Supplementary Table 2,

Fig. 4 Examples of protein pairs that were misclassified by 3D-AF-Surfer. Four protein structure pairs are shown with scores from 3DZD-NN and 3DZD.
3DZDs of the main-chain atoms were used. The two numbers below each protein pair are scores of the two structures by 3DZD-NN and 3DZD. The pairs
on panel a and b are cases where both 3DZD-NN and 3DZD considered the two proteins to belong to different SCOP folds but they actually do not.
a d2d0oa2 and d3g25d1 belong to the Ribonuclease H-like motif fold (SCOP code: c.55). The scores of 3DZD-NN and 3DZD for this pair was 0.273 and
0.099, respectively, both of which were lower than threshold values used (0.6 and 0.1) and thus considered as different folds. b d1o7ld3 and d1mjxb_
belong to OB fold (b.40). The two pairs on panel c and d are examples of false positives, where 3D-AF-Surfer suggested that each pair belonged to the
same fold, but they actually do not. c d2jj2f2 belongs to P-loop containing nucleoside triphosphate hydrolases (c.37) while d2io9b3 belongs to ATP-grasp
(d.142). d PDB ID: 5mko-A is a β class structure while 2ho1-A is an α-class structure. These two structures do not have a SCOP ID assigned at time of
writing. This example is taken from the paper that reported ZEAL37.
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commonly appeared folds with the SUPERFAMILY2.0 statistics
(Supplementary Table 4) are underlined. There are not many
common folds between the two tables. Seven species did not have
common folds. For the rest of species, there were one to three
common folds.

Low-confidence regions of AlphaFold2 models. At last, we also
analyzed low-confidence regions of AlphaFold2 models as they
are not handled in 3D-AF-Surfer and thus left out from the above
analysis. Particularly, we analyzed correlation between the low-
confidence regions (pLDDT ≤ 0.5 and 0.7) from AlphaFold2
models and disorder predictions. We used two disorder predic-
tion methods, SPOT-Disorder-Single49 and flDPnn50. According
to the two methods, about 14–18% of residues are disordered
(Fig. 6a). On the other hand, considering 0.5 and 0.7 pLDDT
as cutoffs, more residues, 25% and 36.5%, in AlphaFold2
models were in low confidence regions (Fig. 6b). The percentage
of low-confidence residues varies for different species. Low-
confidence regions are relatively small (7–13%) in the four bac-
terial proteomes, while D. discoideum has the largest fraction of
low-confidence residues, 58.4%. For the other species, low-
confident residues share about 30–40%.

In Fig. 6d, e, we compared disorder predictions and the model
confidence scores using two score cutoffs, pLDDT of 0.5 and 0.7.

When SPOT-Disorder-Single was used for disorder prediction
(Figs. 6d), 52.6% and 44.2% of low-confidence regions defined
with a pLDDT cutoff of 0.5 and 0.7, respectively, were predicted
as disordered. Thus, reversely, 47.4% and 55.8% of low-
confidence regions were predicted as ordered. On the other
hand, almost all high confident regions were predicted to be
ordered. The result was essentially the same when flDPnn was
used (Fig. 6e), except that disordered residues in low-confidence
regions became even less, 33.5% and 30.9% using pLDDT of 0.5
and 0.7 as a cutoff, respectively. The results indicate that low-
confidence regions do not always correspond to disordered
regions, at most only 30 to 50%, and rest would be folded in
native protein structures. Figure 6f–i shows several examples. The
first three panels (f, g, h) are similar cases. Low-confidence
residues at pLDDT around 0.4 or lower have a wide range of
disorder propensities, and about half of such residues have low
disorder propensity and probably would be folded in the native
structures. In the model shown in Fig. 6i does not have residues
with high disorder propensity, implying that the protein would be
well folded in the native form.

Discussion
We developed 3D-AF-Surfer, which performs protein structure
comparison against the entire PDB and the entire Alphafold2

Fig. 5 Examples of pairs where 3DZD-NN classified correctly but 3DZD did not. Four protein structure pairs with the scores by 3DZD-NN and 3DZD are
shown. The main-chain atom representation was used for these comparisons. The two pairs on panel a and b are cases where 3DZD did not recognize
them as the same fold (i.e. false negative) but 3DZD-NN did. a d4rxfa1 and d3mana_ belong to the TIM beta/alpha-barrel (SCOP code: c.1). 3DZD-NN had
a probability score of 0.99, i.e. very confident that these two structures belong to the same fold while 3DZD had a score of 0.082, below the detection
threshold of 0.1. b d5mwnf1 and d4lpvb1, belong to Immunoglobulin-like beta-sandwich (b.1). Panel c and d shows two pairs, where 3DZD-NN correctly
detected that the two structures have different folds while 3DZD had a score above the threshold of 0.1 and thus considered them as the same fold. Fold
assignment of the four structures in SCOP are as follows: c, d1bvia_: Microbial ribonucleases (d.1); d1v8bd1: NAD(P)-binding Rossmann-fold domains (c.2);
(d), d4pjhg2: Immunoglobulin-like beta-sandwich (b.1); d4z93a_: Bromodomain-like (a.29).
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Fig. 6 Correlation between predicted disordered regions and low-confidence regions in AlphaFold2 models. a Percentages of residues that were
predicted as disordered or ordered by SPOT-Disorder-Single (left) and flDPnn (right). b Percentages of residues that were with a low confidence score �
0.5 (left) and � 0.7 (right). c percentages of residues with a low confidence score � 0.7 for each proteome. d The number of residues in predicted
disordered regions in low-confidence regions with 0.5, 0.7 cutoff. prediction was made by SPOT-Disorder-Single. e The same type of analysis as panel d
using disorder region prediction by flDPnn. f–i Case studies of correlation between the confidence score and disorder propensities by SPOT-Disorder-
Single. The AlphaFold2 model ID is provided at the top of the plot. Left, the model structure. The color code shows the confidence level as used in the
AlphaFold Database: blue (pLDDT > 90), light blue (90 > pLDDT>70), yellow (70 > pLDDT>50), orange (pLDDT<50). Right, correlation between the
confidence score (x-axis) and disorder propensity (y-axis) for each residue by SPOT-1D-Single.
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models within a couple of minutes. Thus, it would be a BLAST51

sequence database search tool-equivalent for 3D protein structure
database search. At the time of writing, there is no other method
that can perform such a fast structure comparison for the entire
Alphafold2 models and PDB. As demonstrated in Results, 3D-
AF-Surfer maintains high accuracy yet is still able to perform a
real-time structure search, which allows users to analyze Alpha-
fold2 models interactively. Currently, 3D-AF-Surfer is running on
a single CPU on a regular Linux machine and all searches are
performed on the fly. Therefore, further speed up can be easily
achieved by using multiple CPUs or by applying other standard
techniques of database management. With such an expansion of
the server, 3D-AF-Surfer will be able to handle the future release
of more structure models by the Alphafold database, which is
expected to happen in near future.

Methods
Extraction of confident domain regions in AlphaFold2 models. To extract a
confident domain in an AlphaFold2 model, we first extracted all contiguous regions
of more than 50 confident residues that have a pLDDT score greater than 70.0.
Then, confident regions separated by at most 5 non-confident residues were
merged, along with the intervening residues regardless of confidence level.
AlphaFold2 models were discarded if they have no confident domains. In total, this
procedure yielded 508,787 domains. 83,615 (22.9%) models out of 365,198 total
AlphaFold2 models contain no confident domains. The statistics of model counts is
provided in Table 1. In terms of total residues, the domain dataset in 3D-AF-Surfer
contains 48.8% (78,133,986 residues) of residues among the residues in all the
AlphaFold2 models (160,235,650 residues).

SCOPe benchmark dataset for structure classification. We downloaded the
latest version of the SCOPe dataset release 2.07 from the download page of the
SCOPe website (https://scop.berkeley.edu/downloads/). The dataset included
256,391 structures in 1,430 folds after removing structures in class I (Artifacts). For
each of the protein structures we used EDTSurf52 to generate the solvent excluded
surface, for which a 3DZD vector is computed. We computed two types of 3DZD
vector for a structure. The first one is computed using full atom of the protein
structure. The second 3DZD is computed using only the main-chain Cα, C, and N
atoms from the structure, because this main-chain surface representation per-
formed better in our previous work44.

Classification of secondary structure class with bagged SVM. The fold clas-
sification was performed with a bagged ensemble of SVMs using the secondary
structure content of SCOPe domains. In bagging, N = 20 different classifiers were
trained on 5% of the SCOPe dataset selected randomly with replacement. The
output classes were then decided by voting. On the training set, the bagged
ensemble had an accuracy of 91.5%. This accuracy was higher than five other
methods we compared, which were a multinomial logistic regression, two SVM
architectures, and two expert-designed approaches. In the expert-designed
approaches, the secondary structure content thresholds, i.e. fraction of amino acids
in a protein in α helices, β strands, and coil (other structures) were considered. A
detailed comparison of these methods is provided in Table 2.

Performance metrics. We measured the performance of the method using
Accuracy, Precision, Recall and F-measure.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð1Þ

Precision ¼ TP
TPþ FP

ð2Þ

Recall ¼ TP
TPþ FN

ð3Þ

F�Measure ¼ 2� Precision �Recall
Precision þ Recall

ð4Þ

where TP= True positive, FP= False positive, TN= True negative, FN= False
negative. True positive is the case where the protein pairs belong to the same fold
and the method predicts correctly that they are in the same fold. True negative is
similar to TP, the case where the protein pairs belong to different folds and the
method predicts correctly that they belong to different folds.

False positive is the case where the protein pairs belong to different fold and the
method predicts wrongly that they are in the same fold. False negative is the case
where the protein pairs belong to the same fold and the method predicts wrongly
that they belong to different folds.

3D Zernike descriptors (3DZD). 3DZDs are mathematical rotation-invariant
moment-based descriptors. For a protein structure, a surface from a set of atoms
was constructed and then mapped to a 3D cubic grid of size N3 (N= 200). Each
voxel (a cube defined by the grid) is assigned either 1 or 0; 1 for a surface voxel that
locates closer than 1.7 grid intervals to any triangle defining the protein surface,
and 0 otherwise. This grid was considered as a 3D function f xð Þ, for which a series
was computed in terms of the Zernike–Canterakis basis15:

Zm
nl r; ϑ;φ
� � ¼ Rnl rð ÞYm

l ϑ;φ
� � ð5Þ

with �l<m<l; 0≤ l ≤ n; and ðn� lÞ even. Ym
l ϑ;φ
� �

are spherical harmonics. Rnl rð Þ
are radial functions defined by Canterakis, constructed so that Zm

nl r; ϑ;φ
� �

are
homogeneous polynomials when written in terms of Cartesian coordinates. 3D
Zernike moments of f xð Þ are defined as the coefficients of the expansion in this
orthonormal basis, i.e. by the formula

Ωm
nl ¼

3
4π

Z

xj j ≤ 1
f xð Þ �Zm

nlðxÞdx ð6Þ

3D Zernike moments will change if the 3D object, f(x), is rotated to a different
orientation. Thus, they could be used to evaluate differences of shapes convolved
with differences in orientation of two objects or to align objects37. To achieve
rotation invariance, the moments are collected into (2 l+1)-dimensional vectors
Ωnl ¼ ðΩl

nl ;Ω
l�1
nl ;Ωl�2

nl ;Ωl�3
nl ; ¼Ω�l

nl Þ, and the rotationally invariant 3D Zernike
descriptors Fnl are defined as norms of the vectors Ωnl

21. Thus,

Fnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
m¼l

m¼�l
Ωm

nl

� �2
s

ð7Þ

Index n is called the order of the descriptor. The rotational invariance of 3D
Zernike descriptors means e.g. that calculating Fnl for a protein and its rotated
version would yield the same result. We used 20 as the order because it gave
reasonable results in our previous works on protein 3D shape comparison17,19,44,53.
A 3DZD with an order n of 20 represents a 3D structure as a vector of 121
invariants19.

Deep neural network for fold classification. Using the generated 3DZD, we
trained a deep neural network that outputs the probability that a given pair of
protein structures belong to the same fold. The network (Fig. 3) takes the 3DZDs of
two protein shapes as input. Three hidden layers have 250, 200, and 150 neurons,
respectively, which were used as the encoding of an input 3DZD. The encoder is
connected to the feature extractor, a fully-connected network, which takes the
3DZDs of the two proteins, and the encodings from the three hidden layers, and
four metrics that compare two vectors, the Euclidian distance, the cosine distance,
the element-wise absolute difference, and the element-wise product, and the two
features of the two protein shapes (the difference in the number of vertices and
faces). In total, the number of the input features of the feature comparator is 2*121
+ 2 * (250 + 200 + 150) + 2 * 4 + 2 = 1,452 features. The first term is the 3DZDs
of order 20 (n = 20), which is a 121-element vector of the two protein shapes. The
third term, 2 * 4 comes from the four-comparison metrics applied to two repre-
sentations of the two proteins, the original 3DZDs and encodings, which con-
catenate the output of the input layer and the three intermediate layers of the
encoder. The feature comparator outputs a score between 0 and 1 using a sigmoid
activation function, which is the probability that the two proteins are in the same
fold classification in the SCOPe database.

The training and validation were performed on the aforementioned structure
dataset of SCOPe. Out of 256,391 structures in 1430 unique folds, we set aside
2541 structures for model validation. For each of the structures in the database, we
generated positive and negative pairs. Positive pairs are protein structures that
belong to the same fold, while negative pairs are from different folds. For training,
we randomly sampled a balanced set of positive and negative pairs based on the
batch size (i.e. 32 positive pairs and 32 negative pairs for a batch size of 64). We
used ADAM for parameter optimization with a binary cross-entropy loss function.
The learning rate was explored from 1e−3 to 7e−3 and 0.1–0.7 in our previous
work and set to 0.00542. The accuracy of networks was evaluated on the negative
and positive set generated from the 2541 structures, which totals 167,872 pairs.

To assign a fold to a query protein, the query was compared with 10 randomly
selected structures from each SCOPe fold. Then, the fold that showed the highest
probability for the query is assigned. Although the training of each network was
performed on the folds for all the classes except for the artifact class (class I), in the
pie charts in Fig. 2 we assigned to folds that belong to α, β, αβ (α+β and αβ), and
small proteins, because the other classes are consider factors other than structural
features.

Disorder region prediction methods. We used two methods, flDPnn50 and
SPOT-Disorder-Single49. flDPnn uses profile information computed by three other
methods, which is processed by a deep learning architecture to output residue-wise
disorder prediction. flDPnn showed the top performance in the most recent Cri-
tical Assessment of protein Intrinsic Disorder prediction (CAID) experiment54.
Following the instruction of the software, residues with a disorder propensity score
above 0.3 were considered disordered. We used the open-sourced implementation
and trained models at http://biomine.cs.vcu.edu/servers/flDPnn/.
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SPOT-Disorder-Single is a fast method that computes prediction from the
single sequence of the query. It uses an ensemble of nine models. At their core, each
model is constructed from ResNet blocks and/or LSTM BRNN blocks. Following
the instruction of the software, residues with a disorder propensity score above
0.426 were considered disordered. We adopted the local version of SPOT-Disorder-
Single available at (http://sparks-lab.org/server/SPOT-Disorder-Single) and kept
the default configuration.

Statistics and reproducibility. The computational run time experiments (Table 2)
were performed three times. We reported the parameters used to reproduce SCOPe
database fold classification and released the trained neural network to reproduce
the AlphaFold2 database fold classification.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this webserver were obtained from PDB and the AlphaFold Database and
are fully and freely available to public.

Code availability
The webserver described in this work is freely available for public at https://kiharalab.org/
3d-surfer/submitalphafold.php. The codes used for classifying a protein structure into
secondary structure class and fold are made available at https://github.com/kiharalab/3d-
af_surfer.
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