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ABSTRACT An estimated one-third of the world’s population is currently latently infected with Mycobacterium tuberculosis.
Latent M. tuberculosis infection (LTBI) progresses into active tuberculosis (TB) disease in ~5 to 10% of infected individuals. Di-
agnostic and prognostic biomarkers to monitor disease progression are urgently needed to ensure better care for TB patients and
to decrease the spread of TB. Biomarker development is primarily based on transcriptomics. Our understanding of biology com-
bined with evolving technical advances in high-throughput techniques led us to investigate the possibility of additional plat-
forms (epigenetics and proteomics) in the quest to (i) understand the biology of the TB host response and (ii) search for multi-
platform biosignatures in TB. We engaged in a pilot study to interrogate the DNA methylome, transcriptome, and proteome in
selected monocytes and granulocytes from TB patients and healthy LTBI participants. Our study provides first insights into the
levels and sources of diversity in the epigenome and proteome among TB patients and LTBI controls, despite limitations due to
small sample size. Functionally the differences between the infection phenotypes (LTBI versus active TB) observed in the differ-
ent platforms were congruent, thereby suggesting regulation of function not only at the transcriptional level but also by DNA
methylation and microRNA. Thus, our data argue for the development of a large-scale study of the DNA methylome, with partic-
ular attention to study design in accounting for variation based on gender, age, and cell type.

IMPORTANCE DNA methylation modifies the transcriptional program of cells. We have focused on two major populations of
leukocytes involved in immune response to infectious diseases, granulocytes and monocytes, both of which are professional
phagocytes that engulf and kill bacteria. We have interrogated how DNA methylation, gene expression, and protein translation
differ in these two cell populations between healthy individuals and patients suffering from TB. To better understand the under-
lying biologic mechanisms, we harnessed a statistical enrichment analysis, taking advantage of predefined and well-
characterized gene sets. Not only were there clear differences on various levels between the two populations, but there were also
differences between TB patients and healthy controls in the transcriptome, proteome, and, for the first time, DNA methylome in
these cells. Our pilot study emphasizes the value of a large-scale study of the DNA methylome taking into account our findings.
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Tuberculosis (TB) is a threatening disease, with currently 9 mil-
lion new cases and 1.5 million deaths per year (1). One-third of

the global population is latently infected (latent TB infection
[LTBI]) with Mycobacterium tuberculosis, thus facing the risk of
developing active TB during their lifetime. Effective drug treat-
ment regimens exist, albeit they have been challenged by increas-
ing multidrug-resistant, extensively drug-resistant, and totally
drug-resistant forms of TB (2). In addition, TB diagnosis and

control are still hampered by the unavailability of vaccines capable
of preventing TB. The fact that only an estimated 5 to 10% of
people with LTBI develop active TB disease combined with the
high occurrence of infection in household contacts emphasizes
that the underlying biological mechanisms remain poorly under-
stood. A better understanding of the biological processes involved
in progression from LTBI to active TB will contribute toward bet-
ter intervention measures. To this end, sufficiently validated bio-
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markers to support development of TB vaccines, diagnostics, and
drugs are needed (3, 4). To add further complexity to this sce-
nario, the biology of and interactions between the host, microbe,
and environment are highly complex and variable (5). Some fac-
tors are known to affect the host response to M. tuberculosis infec-
tion, including inherent host genetics, variability among hosts,
status of the immune system, and external factors, such as nutri-
tion, pollution, coinfection, frequency of previous infections and
coinfections, stress levels, and adaptations by bacterial strains in
specific host populations (6–8). External factors are also known to
affect host epigenetics, prompting us to include the epigenome in
future TB biomarker research. In particular, stable marks such as
those derived from DNA methylation patterns are currently ab-
sent from studies of this kind, while more dynamic epigenetic
marks (histone modifications) have uncovered matters relating to
“trained immunity,” even in the case of recipients of the only
current TB vaccine, M. tuberculosis BCG (bacillus Calmette-
Guérin) (9, 10).

To date, transcriptomic profiles from peripheral blood cells
have been the main focus in the exploration for biomarkers (11).
In addition to easy access, blood also represents a site of dynamic
exchange of chemokines, cytokines, and cells trafficking between
foci of active disease and the lymphoid system (12). Within the
immune system, cells have their own discrete functions, but the
system as a whole exerts a concerted function with remarkable
plasticity. Hence careful consideration of different cell types is
required when describing either predispositions for disease devel-
opment or the resultant functions following infection. Under-
standing how each specific cell contributes to maintenance of
LTBI instead of progressing to active TB is essential. Professional
phagocytes play a central role in these processes (13). Phagocytes
comprise dendritic cells, monocytes (differentiating into macro-
phages), and granulocytes, predominantly neutrophils. Mono-
cytes and granulocytes have epigenomes distinct from other cell
types (14, 15). Due to its inherent stability, disruption of the nor-
mal DNA methylome can produce stable cell populations with
prolonged aberrant phenotypes and thereby contribute to disease,
which suggests a useful source of biomarkers for risk stratification
and disease diagnosis (16). In primary human leukocyte subsets,
single nucleotide polymorphisms (SNPs), which are associated
with immune-mediated disease, preferentially map to cell-specific
regulatory hypomethylated regions (HMRs) (14). Such loci, in
combination with DNA methylation sites, offer hypotheses to-
ward depicting cellular subsets in which specific epigenetic
changes may drive disease.

This pilot study aims to investigate the level of differentiation
between TB patients and genetically unrelated LTBI household
contacts in a cell-specific manner. Isolated monocytes and granu-
locytes from peripheral blood were investigated to determine the
extent and biological functions of differences between the DNA
methylome, transcriptome (mRNA and microRNA [miR]), and
proteome at a global level using high-throughput techniques.

Toward this end, we studied each platform in a descriptive
manner, followed by differential analyses between LTBI and TB at
each platform in monocytes and granulocytes alone and in com-
bination. Next, we determined if these differences point toward
specific functions. Finally, we analyzed these data to determine
which, if any, correlations of differences between LTBI and TB
exist in functions from one platform to another. Specifically, we
wanted to ascertain in this very-limited-sample-size study

whether a portion of the differences between LTBI and TB in
global DNA methylation and miR platforms reveal gene regula-
tion that will be reflected by the mRNA data set and in turn is
translated into the proteome.

At the levels of DNA methylation, miR, mRNA, and pro-
teins, the data allowed differentiation between LTBI and TB.
Moreover, unique functions were congruent from one plat-
form to another, suggesting a global regulation of function (or
loss thereof) during TB.

RESULTS AND DISCUSSION
Global DNA methylation in LTBI and TB. The DNA methylation
status of over 485,000 CpGs was interrogated in isolated mono-
cytes and granulocytes from LTBI and TB participants. For both
cell types, a clear bimodal data distribution was evident, with no
major variation of these distributions between LTBI and TB (see
Fig. S1A and B in the supplemental material) either together or per
cell type. Frequency distributions illustrate similar levels of hy-
pomethylated (0 to 30%) and hypermethylated (70 to 100%)
CpGs in both study groups. This observation differs from the
overall spread of methylated CpGs in precursor cells, such as he-
matopoietic stem cells (15).

We tested whether methylation of CpGs in professional phago-
cytes was related to known functions in these cell types. The list of
genes with fully hyper- or hypomethylated CpGs associated with
promoter regions was tested for enrichment in blood transcrip-
tion modules (BTMs) using the hypergeometric test, in which
genes with fully hyper- or hypomethylated CpGs associated with
promoter regions constituted the foreground set, while genes
lacking such sites constituted the background (17, 18). Genes with
promoter-associated hypermethylated sites (i.e., putatively si-
lenced in the analyzed cell subsets) were not significantly enriched
in BTMs. However, significant enrichment in BTMs for genes
with hypomethylated CpGs associated with promoter regions
(i.e., potentially activated genes) was observed with statistically
significant enrichment in modules involved in cell cycling and
transcription, as well as those involved in immune activation (see
Table S1 in the supplemental material).

To determine which known sources of variation (that is, dis-
ease phenotype, gender, and cell type) explain the total variance of
the data set, we applied principal component analysis (PCA) re-
gression of principal components (PCs) over the independent
variables. Both gender and cell type explained a substantial por-
tion of the variance of the first two PCs, while disease phenotype
explained a smaller fraction of the variance (Fig. 1A). Disease phe-
notype explained the majority of the variance of PC6 (Fig. 1A and
B). When the global DNA methylation status of these and other
cell types in peripheral blood was compared in another study of
similar design, PCA indicated that DNA methylation patterns dif-
fer more profoundly between cell types than between individuals
(19). These results, in combination with our findings, indicate
that M. tuberculosis infection affects DNA methylation in mono-
cytes and granulocytes to a lesser extent than differences observed
in cell type at the level of the global DNA methylome.

Given the clear binomial distribution both in cell types and in
disease phenotypes, a nonspecific filtered data set was defined to
exclude uninformative data. This set excluded (i) CpGs for which
no link to functional genes had been established thus far and (ii)
CpGs that were either hypermethylated or hypomethylated in ev-
ery sample. The resulting filtered data set contained 80,198 CpG
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sites and showed an even more concise discrimination between
genders (Fig. 1C and D). Unsupervised hierarchical clustering
of the methylation profiles from 36 samples confirms gender
differences in these two cell types (Fig. 1E). Thus, gender ac-
counted for higher variation between individuals than TB dis-
ease phenotype in this data set. However, when the filtered set
of CpGs was evaluated for differences between LTBI and TB, a
clear distinction between groups was observed in PC5 and PC6
of the PCA (Fig. 1D), suggesting that some of the epigenetic
changes in monocytes and granulocytes were either the result
or the cause of TB.

Second, differential analyses revealed �1% of the CpGs in the
filtered set to be statistically differentially methylated between TB
and LTBI (Wilcoxon q � 0.05, adjusted for multiple testing using
the Benjamini-Hochberg procedure) (see Table S2 in the supple-
mental material). Of these, the CpGs showing most differentially
methylated targets occurred in CpG islands and shores (see
Fig. S1C in the supplemental material). We tested whether the
effect of the disease phenotype was random by considering the
predictive power of the methylated sites using a machine learning
(ML) approach. The resulting models were significantly better
than random at distinguishing TB from LTBI (area under the

curve [AUC], 0.74; 95% confidence interval [CI], 0.57 to 0.92),
with an overall error rate below 30%. Classification between cell
types yielded no errors (AUC, 1.00).

As can be expected following PCA, the relative abundances of
differential methylation between monocytes and granulocytes
within the same individual were much larger (~20% [Fig. S1D]).
This confirms a previous study reporting 22% of CpGs to be dif-
ferentially methylated between these two cell types (19).

To gain insight into the functional role of CpGs with methyl-
ation differences between LTBI and TB, we tested enrichment in
functional categories of the genes associated with differentially
methylated CpGs. BTMs for which the differences between LTBI
and TB were significantly enriched resemble a tentative signature/
fingerprint with CpGs either hyper- or hypomethylated in LTBI
compared to TB within five known functional modules (Fig. 2A).
Of particular interest are four CpGs found to be differentially
methylated in the “MHC-TLR7-TLR8 cluster,” which all occur in
CpG islands (Fig. 2B). While the CpGs associated with HLA-
DQB1 (coding for one HLA class II chain) did not reside in a
promoter-associated area of the gene, the other three CpGs asso-
ciated with HLA-F and coding for HLA class I were all located
within the promoter. Moreover, these two HLA-related genes to
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FIG 1 Methylation in professional phagocytes in latent Mycobacterium tuberculosis infection (LTBI) and tuberculosis (TB) illustrating sources of variance in the
methylation data following principal component analysis (PCA). (A) Variance in the full data set (black line) is broken down into known sources of variance
within each component of PCA, illustrating the majority of variance being explained. (B) Mainly along the axis of principal component 6 (PC6), a distinction can
be made between LTBI (green) and TB (yellow): spheres, monocytes; cubes, granulocytes. (C) Variance and sources thereof following PCA analysis of the filtered
set. (D) Heat maps showing correlation coefficients between the samples, from low (red) to high (yellow). Samples clustered by hierarchical clustering indicate
a primary distinction between genders. (E) Variance explained in the filtered set from which all X- or Y-chromosome-associated loci were removed.
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FIG 2 Functional association of statistically significant differentially methylated CpGs. (A) Heat map showing differentially methylated CpGs associated with
genes from five blood transcriptional modules. Colors are relative as data are scaled row-wise: white indicates lowest methylation for a given CpG, while blue
indicates highest methylation for a given CpG. Columns correspond to samples. Multiple CpGs can correspond to a single gene. (B) Dot plots showing changes
between LTBI and TB for one CpG associated with the HLA-DQB1 gene and three CpGs associated with the HLA-F gene. Lines connect samples from a single
pair of individuals. Blue indicates measurements for samples in LTBI, and red indicates measurements for samples in TB. The q values represent the P values after
correction for multiple testing (Benjamini-Hochberg); *, P � 0.05; **, P � 0.01 (Wilcoxon paired test).
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which these CpGs have bearing had opposite effects when LTBI
and TB were compared: CpGs for HLA-DQB1 were significantly
hypermethylated in TB patients compared to their paired LTBI
samples, while CpGs at three different loci in the promoter of
HLA-F were hypomethylated (Fig. 2).

Hypermethylated HLA-DQB1 in TB and reduced major histo-
compatibility complex class II (MHC-II) expression, regardless of
whether it is a trigger or a result of activation, could benefit M. tu-
berculosis. This resonates with reports (20, 21) indicating that
M. tuberculosis interferes with antigen processing and presenta-
tion. Interestingly, an immunogenic peptide from M. tuberculosis
is presented by HLA-DQB1, and some HLA-DQB1 alleles associ-
ated with TB sensitivity present such peptides resulting in subop-
timal antigen-specific interferon gamma (IFN-�) secretion by
CD4 T cells (22). This underlines the relevance of methylation of
disease-related MHC-II alleles and warrants further investigation.
On the other hand, HLA-F, which has been associated with tumor
invasiveness (23) and immune suppression (24), was hypometh-
ylated in TB compared to LTBI-matched individuals. This, along
with hypermethylated HLA-DQB1, may result in immune mod-
ulation to favor the pathogen.

Global expression of transcripts and miRs. Transcriptomic
data from the four experimental groups can be clearly distin-
guished according to gene expression profiles, with differences
between cell types dominating over differences between study
groups (see Fig. S2A in the supplemental material). PCA revealed
that 33% of the overall variance in the data corresponded to PC1,
which was correlated with the two cell types. A further 14% of the
variance is explained by PC2 and PC5, which correlate with TB.
We have trained ML models to distinguish TB from LTBI and,
independently, the two cell types. TB could be distinguished from
LTBI with few errors (AUC, 0.99; 95% CI, 0.96 to 1.00), while
there were no errors in classification of the cell types.

Second, both cell types showed a number of significantly dif-
ferentially expressed genes between LTBI and TB (see Table S3 in
the supplemental material). Pairwise comparisons between
monocytes and granulocytes as well as between the LTBI and TB
groups demonstrated a substantial response to TB in both cell
types, as well as marked differences between these cell types in
both LTBI and TB samples (see Fig. S3B in the supplemental ma-
terial), as can be seen on the PCA plot (see Fig. S3C). PC1 corre-
sponded to differences between monocytes and granulocytes and
was enriched in “mitochondrial and translation-related” genes,
and PC2 and PC5 corresponded to differences between LTBI and
TB samples.

In agreement with previous studies, TB patients showed a sig-
nificant increase in expression of several genes identified as rele-
vant in previous studies (25–27). These include significant up-
regulation of CD64 (Fc-� receptor IA), and guanylate-binding
proteins (GBPs) in TB. In granulocytes, we found a higher expres-
sion in TB for several MHC-II-related genes, including the CD74,
HLA-DRA, and HLA-DMB genes. While the expression of these
genes was significantly lower in granulocytes than in monocytes,
no differences between LTBI and TB were apparent in monocytes.

Differential transcription analysis between LTBI and TB fol-
lowed by functional analysis revealed several BTMs that were sta-
tistically significantly enriched for among differentially expressed
genes (q � 0.05) (Table 1; Fig. 3A). Notably, the BTM designated
“B cell surface signature” was significantly enriched on both the
methylation and transcription levels. Likewise, transcriptional

differences between monocytes and granulocytes were coherent
with the corresponding module enrichments in the methylation
data set (see Table S4 in the supplemental material). The responses
to TB in monocytes and granulocytes were largely similar in the
mRNA data set. The overall Pearson correlation coefficient be-
tween the log2-fold changes in monocytes and granulocytes was
0.42 (q ~ 0). In line with this, there were no genes with a statisti-
cally significant interaction between cell type and disease state—
that is, genes with a different response to TB in monocytes com-
pared to granulocytes.

However, based on visual inspection and uncorrected P values,
we marked several candidate genes with an apparent difference
between LTBI and TB for 1 cell type only. Employing quantitative
reverse transcription-PCR (qRT-PCR), we were able to confirm
differential expression in both cell types for GBP5 and signal
transducer and activator of transcription 1 (STAT1), while for
STAT1 in separate analyses for monocytes and granulocytes, only
the monocytes revealed a statistically significant difference (n �
10 per group; P � 0.05, Wilcoxon paired test) (Fig. 3B). Even
though statistical analyses fail to point out singular gene products
to differ between LTBI and TB after correction for multiple test-
ing, these data were confirmed by a second technique. Moreover,
this supports the importance of interrogating cellular subsets in-
dependently when investigating the transcriptome for differential
markers in TB.

In the miR data set, the largest portion of variation can be
explained by differences between cell type and disease phenotype
(see Fig. S3 in the supplemental material). Gender played a far less
significant role than DNA methylation. The separation between
LTBI and TB was less clear in the PCA for mRNA. The random
forest ML models showed high performance both for separation
of TB from LTBI samples (1 error; AUC, 1.00) and monocytes
from granulocytes (no errors; AUC, 1.00).

Several miRs were significantly differently expressed between
LTBI and TB in both cell types as well as in one cell type (see
Table S5 in the supplemental material). One such example is miR-
146a-5p (see Fig. S4A in the supplemental material), for which the
largest relative upregulation was in monocytes from LTBI com-
pared to TB. This miR has recently been reported to play a central
role in the immune response (28) and to be upregulated in periph-
eral blood mononuclear cells of control subjects versus TB pa-
tients (29). miR-146a is upregulated in response to microbial
stimuli and proinflammatory cytokines and has also been nega-
tively correlated with interferon (IFN) type I signaling (30). We
have validated this result using a TaqMan miR real-time quanti-
tative PCR (qPCR) assay (see Fig. S4B).

Of note is the relatively large fraction of variance explained by
gender in the full data set of DNA methylation as opposed to those
for mRNA and miR. Transcripts such as mRNA and miR have a
very short half-life. Therefore, changes in transcription rate rap-
idly affect the number of transcripts, which in turn causes a rela-
tively high baseline variation due to rapid change in regulatory
signals. Relative to this high baseline variation in transcripts, the
contribution of gender to the total variation will be small. On the
other hand, DNA methylation is a biochemically stable modifica-
tion that results in markedly less baseline variation than that in
mRNA and miR transcripts.

DNA methylation at CpGs had been documented repeatedly to
be influenced by gender (31–34), not only on X and Y chromo-
somes but also CpGs on autosomal genes (32, 34). Moreover,
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DNA methylation patterns are thought to be established largely
during early embryonic development and then stably propagated
via mitosis.

Since the samples for this study were collected from adult par-
ticipants, we can expect to see a relatively small contribution to
variation by gender compared to the large baseline variation in
transcript data sets but a relatively high contribution of variation
by gender against the low baseline variation in the DNA methyl-
ation set.

Phagocyte proteomics during active TB. To shed light on the
relationship between active disease and protein synthesis in pro-
fessional phagocytes, we measured the relative abundances for
3,047 unique proteins and an additional 429 isoforms. Variance in
these data was largely accounted for by differences observed in cell
types (Fig. 4A). Yet, in PC3 and PC5, the majority of variance is
explained by differences between LTBI and TB, revealing that at
the proteomic level in professional phagocytes, LTBI and TB can
be discriminated (Fig. 4C). Accordingly, ML models could cor-
rectly classify both TB versus LTBI samples (AUC, 0.93; 95% CI,
0.84 to 1.00) and monocytes/granulocytes (no errors; AUC, 1.00).

In both cell types, we found significant differences between
LTBI and TB (see Table S6 in the supplemental material). Several
of these proteins are functionally related, as has been revealed by

interrogation for enriched BTMs. Notably, we identified enrich-
ment of the IFN signaling modules (Fig. 5), including GBP1,
GBP3, GBP5, STAT1, STAT2, and IFN-induced proteins with tet-
ratricopeptide repeats (IFITs).

Effect of DNA methylation on transcription. We next inter-
rogated the extent to which differences in DNA methylation may
influence transcription in TB. To test whether, in general, distinct
methylation sites were correlated with expression of correspond-
ing genes, we calculated row-wise correlation coefficients between
CpG methylation sites and the corresponding genes (83,562 CpG
gene pairs in total). The distribution of these correlation coeffi-
cients was significantly different from those of randomly paired
genes and methylation sites (P ~ 0 in a two-sample Kolmogorov-
Smirnov test).

We then focused on genes for which expression was strongly
correlated with methylation of related CpG sites by investigating
which BTMs contained such genes. In other words, for each func-
tional group (BTM), we interrogated whether the expression of
genes included in that functional group was, on average, corre-
lated with the methylation of sites linked to that gene.

Toward this end, we tested for BTMs in which gene expression
was strongly correlated with methylation of the linked CpG sites.
First, we calculated correlation coefficients between values of

TABLE 1 Blood transcriptional module enrichment analysis of genes differentially expressed between latent M. tuberculosis infection and TBa

Module ID Module title
No. of genes
in a module AUC q value

DC.M3.4 IFN 51 0.88 2.61E�18
DC.M5.12 IFN 57 0.77 2.48E�10
DC.M1.2 IFN 24 0.87 4.57E�08
LI.M47.0 Enriched in B cells (I) 47 0.73 1.94E�06
LI.M75 Antiviral IFN signature 22 0.83 4.40E�06
LI.M67 Activated dendritic cells 11 0.95 8.61E�06
LI.M47.1 Enriched in B cells (II) 34 0.74 5.45E�05
LI.M127 Type I IFN response 12 0.90 5.69E�05
DC.M4.10 B cell 31 0.75 5.69E�05
LI.M37.1 Enriched in neutrophils (I) 49 0.30 5.69E�05
LI.M111.1 Viral sensing and immunity; IRF2 targets network (II) 11 0.89 2.06E�04
LI.M150 Innate antiviral response 12 0.85 5.53E�04
DC.M3.2 Inflammation 118 0.39 5.58E�04
LI.M226 Proteasome 12 0.83 1.72E�03
DC.M3.5 Cell cycle 143 0.41 4.24E�03
LI.M68 RIG-1-like receptor signaling 10 0.83 4.27E�03
DC.M6.2 Mitochondrial respiration 144 0.41 4.75E�03
LI.M5.0 Regulation of antigen presentation and immune response 79 0.62 5.20E�03
DC.M4.13 Inflammation 77 0.39 1.18E�02
DC.M2.3 Erythrocytes 66 0.61 1.50E�02
LI.M32.8 Cytoskeletal remodeling 10 0.79 1.69E�02
LI.M69 Enriched in B cells (VI) 20 0.70 2.03E�02
DC.M6.12 Mitochondrial stress 66 0.39 2.35E�02
DC.M4.15 T cells 41 0.64 2.67E�02
LI.M156.0 Plasma cells and B cells; immunoglobulins 24 0.67 2.88E�02
LI.M111.0 Viral sensing and immunity; IRF2 targets network (I) 17 0.71 2.88E�02
LI.M7.1 T cell activation (I) 48 0.62 3.09E�02
LI.M14 T cell differentiation 12 0.74 3.09E�02
LI.M112.0 Complement activation (I) 17 0.70 3.91E�02
LI.M209 Lysosome 8 0.79 3.93E�02
DC.M4.1 T cell 53 0.61 4.06E�02
LI.S2 B cell surface signature 168 0.56 4.06E�02
a The module title is the title of the blood transcription module according to references 17 and 18. In the module ID, the prefix “DC” refers to BTMs according to Chaussabel et al.
(18) and the prefix “LI” refers to BTMs according to Li et al. (17). Only modules with a functional annotation are shown. The AUC is the area under the curve, and the q value is the
adjusted P value after correction for multiple testing (Benjamini-Hochberg). E, exponential notation (e.g., E– 03 represents �10�3); IFN, interferon; IRF2, interferon regulatory
factor 2.
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methylation or expression for each pair of a CpG and a corre-
sponding gene. Then, for each BTM, we performed a randomiza-
tion test to determine whether the average correlation coefficient
per BTM was significantly different from a random set of correla-
tion coefficients. The existence of a correlation between the abso-
lute methylation values and gene expression does not necessarily
mean that a regulation of gene expression by differential methyl-
ation is relevant for the TB disease process. Therefore, we further
calculated the correlation coefficients of paired differences in
methylation/expression between LTBI and TB in monocytes and
granulocytes, as well as between monocytes and granulocytes in
LTBI and TB. We found that for 39 BTMs, the average correlation
coefficients for the genes in that module were significantly differ-
ent from 0 (at q � 0.05) in a randomization test. Several of these
modules were related to the immune response, including “regula-

tion of antigen presentation and immune response,” “enriched in
neutrophils,” and “immune regulation—monocytes, T and B
cells.” Interestingly, 24 annotated modules, including modules
related to antigen processing and presentation, showed a signifi-
cant average correlation coefficient (at q � 0.05) of differences
between LTBI and TB (Table 2), indicating that disease-specific
expression of genes in these modules is connected to differential
methylation.

Furthermore, we applied an alternative approach to elucidate
whether a functional link between methylation and the transcrip-
tome exists. We calculated the correlation between methylation
and gene expression for each pair consisting of a CpG and a
matched gene. Genes were ordered by their highest correlation
coefficient with any matched CpG, and enrichment in BTMs was
calculated. Thirty modules were significantly enriched at q � 0.05,
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including “enriched in monocytes,” “enriched in neutrophils,”
and “immune activation— generic cluster.”

Using this approach, we further directly investigated whether
differences in methylation between LTBI and TB within a
matched-pair design had an effect on changes in gene expression.
For each gene, the highest correlation of differences was calculated
between matched samples in LTBI and TB in methylation and
gene expression and tested for enrichment in BTMs accordingly.
We found enrichment in 18 modules at q � 0.05, including “en-
riched in neutrophils,” “inflammation,” and “enriched in mono-
cytes.” These results confirm our findings and demonstrate that
differences in methylation between LTBI and TB are functionally
linked to differences in gene expression relevant to the immune
response.

Effect of DNA methylation on protein synthesis. The effect of
changes in gene expression on the abundance of the final protein
product is moderated by various factors (35), and any effect of
DNA methylation on protein abundance will be exerted via tran-
scriptional changes. Therefore, we interrogated whether observed

changes in DNA methylation could be linked to changes in pro-
tein abundance.

Applying the same approaches described above, we first calcu-
lated the per-BTM average correlation coefficients and identified
modules showing a significant average correlation. Second, we
determined module enrichment in genes ordered by their corre-
lation with methylation sites.

The first approach (average correlations in a BTM) revealed
that for the general correlation, 22 modules had significant corre-
lation coefficients, including “cell cycle and transcription,” “en-
riched in monocytes,” and “interferon.” Moreover, several mod-
ules showed significant average correlations of changes in
methylation and protein abundance between LTBI and TB. These
modules included “cell cycle and translation,” “enriched in
monocytes,” “T cell activation,” and “inflammation.”

In the second approach, we tested the genes ordered by their
respective correlation coefficients for enrichment in BTMs. Here,
possibly due to low statistical power, we identified “immune acti-
vation— generic cluster” for both general correlations and corre-
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lations of differences between LTBI and TB and “enriched in
monocytes” for general correlation (Table 3). In any case, these
results confirm that disease-specific differences in methylation are
correlated with protein expression.

Conclusions. To date, defining the diagnostic biosignatures of
TB has been largely based on gene expression analysis. However,
the complexity of gene expression regulation is greatly simplified
in approaches where only the transcriptome of a mixture of cells is
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analyzed. We dissected a fragment of regulation of transcriptomic
changes in professional phagocytes of TB patients, elucidating the
underlying biological mechanisms and paths of gene regulation.
For the first time, parallel analysis of the DNA methylome, tran-
scriptome (mRNA and miR), and proteome revealed disease-
specific changes permeating these levels of regulation, commenc-
ing with methylation marks on the DNA. We demonstrate that
methylation events can distinguish TB disease from healthy, in-
fected LTBI in this sample set. These events are functionally re-
lated to unique immune-relevant classes and are manifested on
both transcriptomic and proteomic levels. Although the low num-
ber of samples constrained our investigation to general effects
rather than specific regulatory mechanisms, this study paves the
way for further detailed investigations that interrogate the DNA

methylome and proteome in addition to the transcriptome of TB
patients. These future investigations would necessarily entail also
the analysis of professional phagocytes in healthy subjects neither
latently infected nor with active TB, allowing a comparison and
biomarker identification between the two healthy groups.
Whether the observed differences from each of the platforms as
well as the correlated platforms will be appreciated in a large sam-
ple set representative of a population remains to be shown. We
cannot ascertain whether the observed changes in methylation
causally contribute to risk of TB and whether the altered methyl-
ation patterns are a cause or effect of disease. Given that the dif-
ferences observed in the DNA methylome are related to functional
differences observed in both transcriptome and proteome, we
suggest that studying the epigenome can bring us closer to defin-
ing biomarkers of predisposition to disease, as well as uniquely
contribute to our understanding of TB pathogenesis.

MATERIALS AND METHODS
Ethics statement. Blood samples (20 ml) were collected from participants
following written consent (ethical approval from Stellenbosch University
N10/08/274).

Clinical procedures and sample isolation. Samples from patients di-
agnosed with active TB (n � 8) and LTBI participants (n � 8) were
obtained from an area of high TB endemicity in Cape Town, South Africa
(Ravensmead and Uitsig), conforming to International Conference on
Harmonisation good clinical practice (ICH-GCP) procedures. TB partic-
ipants were included following a chest X ray suggestive of active disease in
combination with symptoms of active TB and a confirmed positive M. tu-
berculosis culture result. LTBI participants were recruited to match TB
patients’ age, gender, and ethnicity and were confirmed as controls based
on a negative chest X-ray, the presence of no signs of active TB, and a
negative M. tuberculosis culture. Both TB and LTBI participants were HIV

TABLE 2 Blood transcriptional modules with significant average correlation coefficients between the differences in DNA methylation and gene
expression in comparison of LTBI and TBa

Module ID Module title r q value

LI.M200 Antigen processing and presentation 0.25 3.86E�16
LI.M95.0 Enriched in antigen presentation (II) 0.22 3.43E�14
DC.M8.83 Immune responses 0.22 1.68E�10
LI.M71 Enriched in antigen presentation (I) 0.15 9.94E�08
LI.M37.0 Immune activation—generic cluster �0.07 5.50E�06
LI.M17.3 Hox cluster IV �0.25 9.40E�06
LI.S2 B cell surface signature 0.07 1.06E�05
LI.M146 MHC-TLR7-TLR8 cluster 0.09 0.0002
LI.M168 Enriched in dendritic cells �0.28 0.001
LI.M5.0 Regulation of antigen presentation and immune response 0.09 0.002
LI.M17.1 Hox cluster II �0.03 0.003
LI.M17.0 Hox cluster I �0.19 0.003
LI.M96 Hox cluster V �0.03 0.004
DC.M5.15 Neutrophils �0.11 0.005
LI.M24 Cell activation (IL-15, IL-23, TNF) �0.18 0.009
LI.M74 Transcriptional targets of glucocorticoid receptor �0.12 0.02
DC.M4.13 Inflammation �0.18 0.02
LI.M160 Leukocyte differentiation �0.09 0.02
LI.M37.1 Enriched in neutrophils (I) �0.26 0.03
LI.M75 Antiviral IFN signature �0.14 0.03
DC.M4.2 Inflammation �0.22 0.03
LI.M112.0 Complement activation (I) �0.11 0.04
DC.M3.2 Inflammation �0.18 0.04
LI.M57 Immunoregulation—monocytes, T and B cells �0.21 0.04
a “Module ID” refers to the original publication, where the prefix “LI” refers to BTMs according to Li et al. (17), and the prefix “DC” refers to BTMs according to Chaussabel et al.
(18). Only modules with a functional annotation are shown. r is the average correlation coefficient in the module, and the q value is the P value in a randomization test corrected for
multiple testing. IFN, interferon; IL, interleukin; TNF, tumor necrosis factor.

TABLE 3 Blood transcriptional modules with significant average
correlation coefficients between the differences in DNA methylation
and protein abundance in comparison of latent M. tuberculosis infection
and TBa

Module ID Module title r q value

LI.M37.0 Immune activation—generic cluster �0.27 1.08E�06
LI.M7.4 T cell activation (III) 0.07 0.01
LI.M4.0 Cell cycle and transcription �0.15 0.03
LI.M11.0 Enriched in monocytes (II) �0.14 0.03
DC.M4.2 Inflammation �0.28 0.03
DC.M4.14 Monocytes �0.25 0.04
a “Module ID” refers to the original publication, where the prefix “LI” refers to BTMs
according to Li et al. (17), and the prefix “DC” refers to BTMs according to Chaussabel
et al. (18). Only modules with a functional annotation are shown. r is the average
correlation coefficient in the module, and the q value is the P value in a randomization
test corrected for multiple testing.
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negative. LTBI participants for this study were not followed up longitudi-
nally.

Blood was collected from patients presenting with TB symptoms (n �
8), who were recruited on the day of diagnosis. Subsequently, blood was
collected from LTBI participants who were recruited to match the pa-
tients’ age and gender. Granulocytes and monocytes were sequentially
separated from peripheral blood with magnetic beads by magnetically
activated cell sorting (MACS) (Miltenyi Biotec GmbH) (CD15� and
CD14�, respectively) according to the manufacturer’s instructions. Total
RNA (tRNA), genomic DNA (gDNA), and protein were isolated using
TRIzol reagent (Life Technologies Corporation) according to the manu-
facturer’s instructions. The quality and quantity of nucleic acids were
determined by electrophoresis (Agilent 2100, BioAnalyser; Agilent Tech-
nologies) and spectrophotometry (NanoDrop 2000c; Thermo Scientific).

DNA methylation. To investigate DNA methylation marks on CpGs,
genomic DNA (500 ng) was bisulfate converted using the EZ-96 DNA
methylation kit (Zymo Research Corporation) and whole-genome ampli-
fied, fragmented enzymatically, and then applied to the arrays. After ex-
tension, arrays were fluorescently stained and scanned, and the intensities
of the nonmethylated and methylated bead types were measured using the
Infinium human methylation450K BeadChip (Illumina). DNA methyl-
ation values (described as � values and expressed as fractions of the total
number of available oligomers on the bead to anneal to) were recorded for
each locus in each sample and analyzed using the software GenomeStudio
(Illumina, Genomestudio 2011.1, methylation module 1.9.0). The raw
data of the microarrays were uploaded to Gene Expression Omnibus.

Transcription. mRNA, long intergenic noncoding RNA (lincRNA),
and miR abundances were measured using microarrays from Agilent
Technologies (human 8-by-60,000 custom layout design 041580 contain-
ing the whole human genome), novel content for lincRNAs (from
Agilent-028004), and Broad Institute human lincRNA together with
Broad Institute TUCP transcripts (from Agilent-039494) and 8-by-60,000
(release 16) unrestricted human miR microarrays (Agilent-031181). Sam-
ple labeling and microarray processing were done according to the man-
ufacturer’s instructions, and features were extracted with Agilent Feature
Extraction 11.5.1.1 using the recommended protocols and settings. Data
were background corrected and normalized using the R package limma
version 3.20. To detect differentially expressed genes, we used the linear
models in limma and the moderated t statistic (36). The differences in-
cluded pairwise comparisons between LTBI and TB samples for mono-
cytes and granulocytes separately and pairwise comparisons between
monocytes and granulocytes for LTBI and TB separately, as well as testing
the significance of the interaction between cell type and disease status. The
raw data of the microarrays were uploaded to the Gene Expression Om-
nibus.

Proteomics. Protein pellets were resuspended in lysis buffer contain-
ing 8 M urea, RapiGest (Waters), and ammonium bicarbonate. Proteins
were reduced and alkylated, followed by a tryptic digest. The peptide
solution was desalted by C18 reverse-phase chromatography, vacuum
dried, and resolubilized to a final concentration of 1 mg/ml. Each peptide
sample was analyzed on a Thermo Easy-nLC 1000 high-performance liq-
uid chromatography (HPLC) system connected to an Orbitrap Elite mass
spectrometer, which was equipped with a nanoelectrospray ion source
(Thermo Scientific). Peptides were separated on a 15-cm Acclaim Pep-
Map rapid separation liquid chromatography (RSLC) column (75-�m
inner diameter, 2-�m particle size; Thermo, Fisher Scientific) at a flow
rate of 300 nl·min�1. Mass spectrometry (MS) spectra were acquired in
the Orbitrap with a resolution of 120,000, and tandem MS (MS/MS) spec-
tra were acquired in the linear ion trap at normal scan speed following
collision-induced dissociation of the 10 most abundant precursors per
cycle (normalized collision energy, 35%). We performed label-free quan-
tification (LFQ) using Progenesis 4.0 (Nonlinear Dynamics) by automatic
alignment of total ion chromatograms of raw files, using imported pep-
.xml files from Sequest searches against the human UniProtKB/Swiss-
Prot protein database. The search identifications were statistically scored

using PeptideProphet (37) within the TPP (38), and all peptides with an
iProbability score above 0.9 were considered resulting in a protein false
discovery rate (FDR) of 1%. After manually improving the alignment,
quantified peaks were filtered for identification by sequence search, and
overall protein abundances were calculated thereof. The mass spectrom-
etry discovery peptidomics data have been deposited into the ProteomeX-
change Consortium (http://proteomecentral.proteomexchange.org) via
the PRIDE partner repository.

Statistical analysis and systems biological approaches. Unless other-
wise stated, statistical analyses were performed as follows: data were tested
in each platform’s quality control pipeline. These were then tested for
normality, described in general, followed by differential analyses employ-
ing Wilcoxon tests (DNA methylation) and limma (gene expression, miR,
and proteomics), with correction for multiple testing according to
Benjamini-Hochberg (39). For each platform, we performed a PCA and
estimated the contribution of controlled variables in explaining the vari-
ance of the PCA components by applying PCA regression. For machine
learning, random forests were applied as implemented in the R package
randomForest version 4.10 (40). Unless otherwise stated, for statistical
tests, we used the significance threshold of q � 0.05, where q is the P value
corrected for the family-wise error rate using the Benjamini-Hochberg
method (39).

To validate the predictive power of various platforms to differentiate
between TB and LTBI, we have applied the random forest ML method (R
package randomForest version 4.6 [40]), cross-validated with a modified
leave-one-out (LOO) scheme. Here, at each iteration of the LOO, we have
removed from the training a set of matching samples (monocytes and
granulocytes) from one TB patient and the matching LTBI control. We
have used the remaining samples as the training set and applied the
trained model to the four test samples. The variable set used to train
the model was the full set, except for the methylation platform, in
which we used the filtered variable set. The results are reported as AUC
and 95% CIs.

To functionally annotate results of statistical tests, we used the R soft-
ware package tmod version 0.19 (available from CRAN; http://cran.r-
project.org/web/packages/tmod/index.html), with BTMs as described by
Li et al. (17) and Chaussabel et al. (41). Depending on context, we used
either a hypergeometric test for enrichment of modules in a set of differ-
entially regulated genes compared to the genetic background or U
summed rank statistics for enrichment in modules in an ordered list of
genes. All procedures and R scripts required for replication of results are
available upon request.

Microarray data accession number. The raw data from the microar-
rays have been uploaded to the Gene Expression Omnibus (GEO) under
SuperSeries accession no. GSE70478. The mass spectrometry discovery
peptidomics data have been deposited into the ProteomeXchange Con-
sortium (http://proteomecentral.proteomexchange.org) via the PRIDE
partner repository with the data set identifier PXD001960.
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