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ABSTRACT

The first step in gene expression, transcription, is
modulated by the interaction of transcription factors
with their corresponding binding sites on the DNA
sequence. Pscan is a software tool that scans a set
of sequences (e.g. promoters) from co-regulated
or co-expressed genes with motifs describing
the binding specificity of known transcription fac-
tors and assesses which motifs are significantly
over- or under-represented, providing thus hints
on which transcription factors could be common
regulators of the genes studied, together with the
location of their candidate binding sites in the
sequences. Pscan does not resort to comparisons
with orthologous sequences and experimental
results show that it compares favorably to other
tools for the same task in terms of false positive
predictions and computation time. The website is
free and open to all users and there is no login
requirement. Address: http://www.beaconlab.it/
pscan.

INTRODUCTION

The first step in gene expression, transcription, is mediated
and regulated by transcription factors (TFs), that bind
DNA in a sequence specific manner on transcription
factor binding sites (TFBSs), usually located near the
transcription start site (TSS) of genes (i.e. in the promoter
region), but also in distal elements like enhancers or silenc-
ers. Several studies aimed at the characterization of the
DNA binding specificity of TFs have been performed,
from earlier studies able to identify single binding sites
to large scale genome-wide experiments like chromatin
immunoprecipitation coupled with genome tiling micro-
arrays or next-generation sequencing. Once a set of sites
experimentally known to be recognized by a given TF has

been collected, they can be used to build a motif, describ-
ing and generalizing the binding specificity of the TF.
Since the sites have usually the same size, a common
approach is to align them and to build a profile [or position
specific weight matrix (1)], representing the frequency
with which each nucleotide appears at each position of
the alignment. Several profiles are nowadays available in
dedicated databases like TRANSFAC (2) or JASPAR (3)
and can be employed to scan genomic sequences to find
novel candidate sites for the TF (1).
A typical computational issue is deciding, given

a profile, if and when a nucleotide sequence can be
considered a valid instance of the TFBSs modeled by the
profile itself. Redundancy yields information, and while
reliable predictions on a single sequence are nearly impos-
sible without further considerations, analyses on sets of
sequences (e.g. promoters) coming from co-regulated or
co-expressed sequences are more likely to produce mean-
ingful results. The rationale is that most of the genes
should be the target of the same TF(s) and their promoters
should contain a number of binding sites for them signifi-
cantly higher than some suitably computed expected
number that would be obtained from a collection of unre-
lated genes or some random background model. This is
the general strategy implemented in web-based tools like
OTFBS (4) and ASAP (5).
Given a set of motif profiles, and a typical input con-

sisting of a set of sequences (e.g. promoters) from genes
co-regulated or co-expressed, a ‘likelihood’ score can be
computed (1), expressing how well each oligo of the
input sequences fits the descriptors and thus predict
TFBSs locations. The main issue at this point is setting
suitable likelihood thresholds for ‘yes or no’ decisions.
Setting high-thresholds increases specificity at the price
of low sensitivity, and vice versa, setting low-thresholds
yields too many false positives (4–7). Other than setting
matrix-specific thresholds, another possible way to cir-
cumvent this problem is presented in a very recent tool
called PASTAA (8), in which rather than on a selected
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gene set (e.g. genes belonging to an expression cluster or
functional category) the algorithm can work on large set
of genes and even whole genomes (e.g. all genes available
on a given microarray) where genes are ranked both
according to how well their promoter fits a matrix and
to a likelihood value expressing how well genes fit into
a given category. If this latter piece of information is
available, coherence between the two ranked datasets
is computed as an indicator of association between a TF
and the category.
In our approach, similarly to the CLOVER algorithm

described in (7), instead of computing a count of predicted
sites we rather compute for each input sequence a raw
matching value, representing the likelihood for the TF
to bind the promoter. The main difference of our
method is that, instead of computing an overall average
value on all the oligos of the input sequences as in
CLOVER, we keep as matching value the one correspond-
ing to the highest-scoring oligo in each sequence and com-
pute the mean of the matching value on the input sequence
set [see Supplementary Data and ref. (9) for further
details]. Another issue is the definition of a ‘background
random model’ suitable for assessing the significance
of the results obtained. In CLOVER, this is performed
by shuffling the columns of the motif or by building
random sequence sets of the same size and length of the
sequence set investigated, and a P-value is assigned to the
results by computing, for each available profile, how many
times the random dataset yields a matching score higher
than the input sequence set. In our work, instead, we treat
the input sequences as a sample taken from a ‘universe’.
Since now we have at our disposal whole genome
sequences and gene annotations, this is the set of all pro-
moter sequences available for the species investigated.
Thus, for each profile, the average matching score
obtained from the input sequence set can be compared
to the mean and the standard deviation of the score on
the whole genome promoter set. The over- (or under-)
representation for each profile is finally assessed with a
z-test, that associates with each profile the probability
of obtaining the same score on a random sequence set.
In our experiments we evaluated the performance of
other statistical methods, different from the z-test, for
assessing the significance of the results. Rank-based tests
gave less stable results and higher false positive rates (see
further on), depending more strongly on input set size or
matrix information content. Comparing the results of the
input sets with randomly sampled sets of the same size
gave overall similar results, but, since randomizations
have to be performed thousands or millions of times
to attain reliable P-values, this method increased signifi-
cantly the computation time.
As shown by results we obtained on benchmark

sequence sets [see Supplementary Data and ref. (9)],
considering only the best match on each promoter can
be a reasonable approximation, that guarantees a clear
separation between significantly enriched promoter sets
and the background, while this cannot be attained using
average computed on whole sequences, especially in cases
when good sites can be found only in a subset of the input.
In CLOVER this drawback is overcome by ‘guessing’ the

number of sequences of the input containing good sites
(i.e. enumerating the possible subsets), with a significant
increase in computational complexity and execution time.

Several other methods currently available [see among
others oPOSSUM (10), PAP (11), TFM_EXPLORER
(12) and CORE_TF (6)], regardless of the statistical meth-
ods employed, include in the analyses orthologous
sequences for filtering and reducing false positive predic-
tions. Although the implementation of this feature in
our algorithm is straightforward, we nevertheless chose
not to make it a necessary step in the analysis, but
rather an additional option that can be selected. As a
matter of fact, as pointed out by several studies we
cannot expect a perfect one-to-one conservation in ortho-
logous sequences for TFBSs; and while this strategy is
successful in cases like muscle-specific gene expression
(13), in others we have TFs for which only a limited
number of TFBSs is conserved (e.g. between human and
mouse), and also when two orthologous genes are targeted
by the same TFs they do not show conserved TFBSs that
can be singled out by inspecting genomic alignments (14).

The usual drawback of methods like Pscan (with or
without orthologous sequences) lies in the high number
of predictions that can be considered as ‘false positive’,
at least when compared with estimates one could derive
by using directly the P-values associated with the results
[see, e.g. ref. (10,12)]. We thoroughly assessed this point
for Pscan, by building random promoter sets changing the
size of the set (from 5 to 200 genes) and sequence length.
Clearly, any significant motif reported with P-value lower
than a given threshold in a random set should be regarded
as a false positive. Once defined how many promoters
we want in the set and their length, by building n sets of
sequences in this way we should observe about np times
that the profile has yielded P-value lower than a given
threshold p. Figure 1 shows the average false positive

Figure 1. Experimental false positive rate for JASPAR vertebrate
matrices at different P-value thresholds on random collections of
human promoters (from �450 to +50 with respect to the TSS) of
different size (from 5 to 200 sequences).
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rate (in this case the ratio between false positives and the
overall number of tests performed) observed for vertebrate
JASPAR profiles on sets of human promoters of length
500. For each motif and each set size we performed 1000
random runs. It can be clearly seen how in our case the
observed false positive rate virtually matches the estimate
for different P-value thresholds, regardless of the number
of input sequences, with also no significant difference for
different profiles (data not shown). Remarkably this
observation is true also for small sequence sets, from 5
to 20 genes, sample sizes for which employing the z-test
is not always advised by literature. Changing the length
of the promoters did not produce significantly different
results.

As a comparison, a similar test performed in (12) for the
TFM_Explorer algorithm—although on longer sequences
filtered by phylogenetic footprinting—led authors to sug-
gest using P-value thresholds between 10�8 and 10�6 to
maintain a false positive rate of 0.1. For the oPOSSUM
algorithm, in which two different measures of significance
are used, a P-value of 0.01 has a false positive rate around
0.2–0.3 (changing according to input set size), that
is reduced to about 0.1–0.15 when coupled with further
filtering based on a z-score (10). Thus, the P-value asso-
ciated with the results by Pscan provides a more intuitive
way of interpreting the results and of assessing the actual
significance of the enrichment of the motifs, keeping
the false positive rate easily under control. It should be
kept in mind, however, that typically collections of dozens
or hundreds of profiles are employed in analyses of this
kind. If we assume without loss of generality that for each
motif profile an independent test is performed, then we
need to keep the familywise error rate below a given
threshold. In other words, if we try 100 profiles on a
given sequence set by using a significant P-value threshold
of 0.01, then we can expect one profile to have a P-value
lower than 0.01 purely due to chance. The simplest solu-
tion to account for this problem is to use a Bonferroni
corrected threshold of p/m to maintain the same signifi-
cance threshold of p, where m is the number of profiles
used. More involved methods can be anyway used, like the
Holm–Bonferroni or Benjamini–Hockberg procedures.

THE USER INTERFACE

User input

In the current implementation Pscan performs analyses
with human, mouse, Drosophila, Arabidopsis and yeast
sequences and motifs. The input interface is shown in
Figure 2. Users have to input a set of gene identifiers
together with the organism of provenience. For human,
mouse and Drosophila the interface accepts RefSeq
mRNA IDs (e.g. NM_000546), for Arabidopsis TAIR
IDs (e.g. AT1G08810) and for yeast SGD IDs (e.g.
YPL248C). Other ID types (Affy IDs, Entrez or
ENSEMBL gene IDs and so on) can anyway be quickly
converted in the format accepted by Pscan with tools like
DAVID (15). The ‘human and mouse’ species option
allows for the analysis of a sequence set derived from
both organisms. This option can be selected, for example,

if one wants to perform an analysis on a set of human
and mouse orthologous genes (see Supplementary Data
and the online help page). Then, users have to specify
the promoter region their want to investigate, with respect
to the TSSs of the genes, for example from �450 to +50
or �950 to +50 or �200 to +50. We advise users to select
regions encompassing also a sequence downstream of the
TSS, since functional TFBSs are often found also here.
Given gene IDs and the promoter region selected, the

corresponding sequences are automatically retrieved by
the server. Finally, users have two choices: employing
for the analysis the profiles already available in a given
database (the interface now includes the matrices available
at JASPAR, the familial binding profile collection
of JASPAR and the public release of TRANSFAC), or
uploading a file containing their own matrices. In the
latter case, an upload dialog box appears (see the online
help for the format in which matrices have to be
uploaded). For example, if users have at their disposal
the matrices available in the subscription-only version of

Figure 2. The part of the interface devoted to user input. Users have to
input a list of gene IDs in the text box and choose source organism,
promoter region with respect to the TSS of the genes, and profile
set to be employed in the analysis.
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TRANSFAC, they can upload them and use for their
analyses, since they will not be made public or shared
with other users. Another possible application is to
use Pscan to assess the significance of a motif output
by a de novo motif discovery algorithm for which ‘false
positive’ results are very often an issue [(16); see also
Supplementary Data]. Clicking the ‘Run!’ button, starts
the computation and possible error/warning messages
are displayed in the text box directly below the button.

Output

The result of the computation will appear in the middle
column of the page, together with a small image (the
‘heatmap’) on the top right corner. The output shows
the ranking of the profiles selected according to their
z-test P-value (see Supplementary Data). An example is
shown in Figure 3. At the top of the column there is also a
link for downloading the results in text format as well as
the number of matrices used to analyze the sequences,
suitable for computing corrected P-value thresholds for
assessing the significance of the results.
By clicking on a profile name, users can open a

dedicated page showing further details (Figure 4), and in
particular the matrix itself (with its ‘sequence logo’ at the
bottom), its information content and links to its database
entry as well as to the ID (PMID) of the PubMed entry
describing its generation (in case of user-submitted matri-
ces these two latter pieces of information are missing).
A simple graphic representation shows the average
matching value of the matrix on the sequences analyzed
compared to the average matching value and standard
deviation on the whole promoter set (same set of regions
with respect to the TSS as selected) of the same organism.
Under these fields the interface reports P-value,
Bonferroni corrected P-value (the z-test P-value multi-
plied by the number of profiles employed in the analysis),
with mean and standard deviation for the matching value
of the matrix in the current input set. Next to this, an
input mask allowing users to compare the results just
obtained with the results that came for the same matrix
on a different sequence set (see Supplementary Data and
the online help pages).
Furthermore, by clicking on the ‘Report Occurrences’

button at the bottom of the ‘Matrix Info’ table users can
retrieve, for each gene submitted, the best matching oligo
in the respective promoter, as well as its score (from 0 to 1,
see Supplementary Data) and its position relative to the
annotated TSS. Occurrences are sorted according to their
score, so to have an immediate idea of which genes are
more likely to be actual targets of the TF corresponding to
the profile. The ‘Text Results’ button allows for the down-
load of this occurrence table in text format. On the bottom
right hand of the page two diagrams appear, showing
the distribution of the location of the best occurrences in
the promoter (with score higher than the genome-wide
mean, above) and the scores of the best occurrences
(below). Predictions are also colored according to their
matching score (red-high).
The ‘heatmap’ image shows intuitively in a microarray-

like fashion the contribution of each input gene to the

z-score of each matrix. Red spots (with proportional
color intensity) correspond to positive contributions
(e.g. scores higher than the genome-wide mean), vice
versa green spots (black spots are around the average
genome-wise score of the matrix itself).

To restore the interface to the initial settings, users can
click the ‘Reset’ button located below the input text box.

CONCLUSIONS

Pscan is a software tool that scans promoter sequences
from co-regulated or co-expressed genes, looking for

Figure 3. An example of the main output of Pscan, given as input a set
of promoters of known MYC target genes in human (17), showing
motif profiles ranked according to their z-test P-value. Notice how
also, other than motif profiles of MYC or MYC-like sites, other TFs
show significant enrichment in the dataset, likely to co-operate
with MYC in the regulation of a subset of the input genes (e.g. the
cell-cycle regulators).

W250 Nucleic Acids Research, 2009, Vol. 37,Web Server issue



over- or under-represented motifs describing the binding
specificity of known TFs, thus providing quick hints on
which factors could be responsible for the patterns of
expression observed, or vice versa seem to be avoided
(with P-values nearing 1). The user interface is simple
and immediate, and results can be obtained in a few
seconds or minutes (in case users submit their own
motifs, the computation takes longer since background
genome-wide scores have to be computed as well). More
involved analyses are nevertheless possible, from inter-
genic regions or 30UTR sequences, and so on, for which
users are welcome to download the standalone version
that permits to build customized background models as
well as the input of FASTA sequences. The interface will
be updated anytime new descriptors and matrices are
made available, and also by including novel species and
updated gene and promoter annotations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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