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Abstract

Satellite image artefacts are features that appear in an image but not in the original imaged object 

and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features 

oriented in the along-track direction of an image system and can present as either banding or 

striping; banding are features with a consistent width, and striping are features with inconsistent 

widths. This study used high-resolution data from DigitalGlobeʻs (now Maxar) WorldView-3 

satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated 

the impact of vertical artefacts on both at-sensor radiance and a spectral index for an aquatic 

target as WorldView-3 was primarily designed as a land sensor. At-sensor radiance measured 

by six of WorldView-3ʻs eight spectral bands exhibited banding, more specifically referred to as 

non-uniformity, at a width corresponding to the multispectral detector sub-arrays that comprise the 

WorldView-3 focal plane. At-sensor radiance measured by the remaining two spectral bands, red 

and near-infrared (NIR) #1, exhibited striping. Striping in these spectral bands can be attributed 

to their time delay integration (TDI) settings at the time of image acquisition, which were 

optimized for land. The impact of vertical striping on a spectral index leveraging the red, red 

edge, and NIR spectral bands—referred to here as the NIR maximum chlorophyll index (MCINIR)

—was investigated. Temporally similar imagery from the European Space Agencyʻs Sentinel-3 

and Sentinel-2 satellites were used as baseline references of expected chlorophyll values across 

Lake Okeechobee as neither Sentinel-3 nor Sentinel-2 imagery showed striping. Striping was 

highly prominent in the MCINIR product generated using WorldView-3 imagery, as noise in the at-

sensor radiance exceeded any signal of chlorophyll in the image. Adjusting the image acquisition 

parameters for future tasking of WorldView-3 or the functionally similar WorldView-2 satellite 
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may alleviate these artefacts. To test this, an additional WorldView-3 image was acquired at Lake 

Okeechobee, FL, on 26 May 2021 in which the TDI settings and scan line rate were adjusted 

to improve the signal-to-noise ratio. While some evidence of non-uniformity remained, striping 

was no longer noticeable in the MCINIR product. Future image tasking over aquatic targets should 

employ these updated image acquisition parameters. Since the red and NIR #1 spectral bands 

are critical for inland and coastal water applications, archived images not collected using these 

updated settings may be limited in their potential for analysis of aquatic variables that require 

these two spectral bands to derive
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1. Introduction

Satellite remote sensing can provide improved spatial and temporal coverage and resolution 

compared to field monitoring (Papenfus et al. 2020; Greb et al. 2018; Palmer, Kutser 

and Hunter 2015). However, satellite image artefacts, defined as features that appear in 

an image but not in the original imaged object, can negatively impact image quality and 

the interpretation of remote sensing data products. Vertical artefacts are linear features 

oriented in the along-track direction of an imaging system and can occur due to a variety 

of factors, including sensor engineering, the imaging process, and the subject being imaged. 

Vertical artefacts can have either a consistent width, defined as banding, or inconsistent 

widths, defined as striping. Banding and striping can produce visually flawed imagery, 

and parameters derived from imagery affected by these artefacts can produce erroneous 

quantitative results. Vertical artefacts are particularly problematic in homogeneous regions 

(e.g., open water, desert, snow, and ice) and in aquatic environments that present optically 

dark targets relative to land (Zhao et al. 2013). Vertical artefacts have been documented in 

imagery from several satellite sensors across varying spatial resolutions, including Aqua and 

Terraʻs Moderate Resolution Imaging Spectroradiometer at 250-m to 1-km spatial resolution 

(Bouali and Ladjal 2011; Rakwatin, Takeuchi and Yasuoka 2007), Landsat 4–5ʻs Thematic 

Mapper at 30-m spatial resolution (Helder, Quirk and Hood 1992; Barker 1984; Metzler 

and Malila 1985; Nichol and Vohora 2004), Earth Observing-1ʻs Hyperion hyperspectral 

imaging instrument, also at 30-m spatial resolution (Zhao et al. 2013), and both GeoEye-1 

and WorldView-2 at 1.84-m spatial resolution (Dai and Howat 2018).

Satellite remote sensing has proven to be an effective monitoring tool for aquatic systems 

and has been used to measure various bio-geophysical parameters, including water clarity 

(Zhang et al. 2021; Olmanson, Bauer and Brezonik 2008), chlorophyll-a (Odermatt et 

al. 2012), harmful algal blooms (Hansson and Hakansson 2007; Maguire et al. 2016), 

submerged vegetation (Traganos and Reinartz 2017; Pasqualini et al. 2005), bathymetry 

(Dekker et al. 2011), sediment (Dogliotti et al. 2015), coloured dissolved organic matter 

(Brezonik et al. 2015), and surface oils (De Carolis, Adamo and Pasquariello 2013; 

Kolokoussis and Karathanassi 2018). High spatial resolution sensors are required for 

satellite remote sensing of inland waters (Hestir et al. 2015; Clark et al. 2017; Mouw et 
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al. 2015; Lee et al. 2012). Commercial satellite imagery has been encouraged as an option 

to improve spatial resolution in aquatic systems (Schaeffer and Myer 2020; Dekker and 

Hestir 2012), and has been employed in recent studies for aquatic applications (Coffer et al. 

2020; Mishra, Stumpf and Meredith 2019; Wang, Gong and Pu 2018; El Saadi, Yousry and 

Jahin 2014). However, an investigation into the radiometric quality of commercial satellite 

imagery, particularly regarding vertical artefacts, is still needed.

To address this paucity in the literature, our study used data from WorldView-3, one of 

DigitalGlobeʻs (now Maxar) commercial satellite platforms, as a demonstration, with data 

from the European Space Agencyʻs (ESA) Copernicus Sentinel-3 and Sentinel-2 satellites 

used as baseline references. At-sensor radiance for each of WorldView-3ʻs eight spectral 

bands was considered as well as a spectral index leveraging the red, red edge, and near-

infrared (NIR) spectral bands. This spectral index is referred to here as the NIR maximum 

chlorophyll index (MCINIR) to emphasize the use of the NIR spectral band rather than 

the red edge spectral band used in the original definition of MCI as WorldView-2 lacks 

an equivalent spectral band (Gower et al. 2005). Chlorophyll is an algal pigment whose 

abundance is used to estimate water quality response to ecosystem stress and to categorize 

trophic state in aquatic environments. While all digital images are subject to some influence 

from vertical artefacts, this analysis aimed to determine if the vertical artefacts present in 

WorldView-3 images prevented realistic characterization of water quality parameters. The 

following research objectives were addressed:

1. Investigate the sources of vertical artefacts, including both banding and striping, 

in each spectral band of WorldView-3 imagery.

2. Quantify the influence of vertical artefacts on both at-sensor radiance and 

satellite-derived MCINIR values.

3. Optimize WorldView-2 and WorldView-3 image acquisition parameters for 

aquatic targets to alleviate vertical artefacts.

2. Materials and methods

2.1. Study site

Lake Okeechobee in Florida (FL; 26.97°N, 80.80°W), USA, is the largest lake in the state 

and the fifth largest lake in the country by surface area, excluding the Great Lakes (Figure 

1). Lake Okeechobee was chosen for this study because of its large surface area, which 

provided ample opportunity to evaluate pure water pixels. Large lakes reduce the potential 

of stray light contamination from land which can negatively impact data quality (Palmer, 

Kutser and Hunter 2015), a concern for both the WorldView-3 imagery and the coarser 

resolution Sentinel-3 and Sentinel-2 imagery. Additionally, Lake Okeechobee experiences 

frequent algal blooms (Rosen et al. 2017), which is an important consideration for this 

study given the use of MCINIR, a spectral index that quantifies chlorophyll concentration. 

Although vertical artefacts have been visually confirmed in many WorldView-2 and 

WorldView-3 scenes (results not shown), a single-case study using WorldView-3 data at 

Lake Okeechobee was chosen here as a quantitative demonstration.
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2.2. Satellite data

Satellite imagery was acquired from Maxarʻs WorldView-3 satellite, while imagery 

from ESAʻs Sentinel-3 and Sentinel-2 satellites was used as baseline references. Image 

acquisition dates for each satellite image are shown in Table 1. A flowchart outlining 

specific image processing steps applied to WorldView-3 (Section 2.2.1), Sentinel-3 (Section 

2.2.2), and Sentinel-2 (Section 2.2.3) imagery is shown in Figure 2.

2.2.1. WorldView-3—DigitalGlobe launched WorldView-3 in August 2014 (Maxar 

2019). WorldView-3 is a pushbroom sensor offering multispectral data at 1.24-m spatial 

resolution at nadir and 1.38-m spatial resolution at 20° off-nadir. While vertical artefacts 

are also present in imagery from Maxarʻs WorldView-2 satellite sensor, only WorldView-3 

is shown here. Both the WorldView-2 and the WorldView-3 satellite sensors utilize time 

delay integration (TDI) charge-coupled devices (CCD) for image capture. In TDI line scan 

imaging, images are taken continuously while the sensor moves in a straight line at constant 

velocity. Light from a single target is imaged onto a single pixel, and as the sensor moves, 

the light read for that single pixel is transferred to the pixel below it at the same velocity 

at which the sensor is moving. The light captured from the single target is then summed 

across the number of pixels corresponding to the TDI settings for that spectral band, similar 

to a moving window; for a TDI setting of 10, for example, 10 pixels are activated and 

their measured values are summed to generate a single value, which is assigned to a single 

pixel. The scan line rate at the time of image acquisition indicates the number of lines the 

CCD scans per second. TDI CCD’s are commonly used for capturing fast-moving targets in 

low-light conditions because it allows additional incident light to be included in the at-sensor 

radiance measured for each satellite pixel (Chamberlain and Washkurak 1990).

Three basic level 1B WorldView-3 images, collected on 30 August 2017, were obtained 

from DigitalGlobeʻs EnhancedView Web Hosting Service (evwhs.digitalglobe.com). These 

images were selected as they had full coverage of Lake Okeechobee with minimal cloud 

interference. WorldView-3ʻs default image acquisition parameters were used, which are 

optimized for land and included TDI settings for each spectral band ranging from 10 to 

24 and a scan line rate of 20,000 lines per second. Limited processing was applied to 

WorldView-3 data to ensure results presented here characterized the imagery itself and 

not the selected processing regime. Metadata associated with basic level 1B imagery was 

adjusted using updated vicarious calibration factors provided by Kuester (2017). Relative 

radiometric calibration is provided with basic level 1B data, and absolute radiometric 

calibration was performed following Coffer et al. (2020) to convert digital numbers to top-

of-atmosphere radiance (LTOA) in units of Watts per steradian per square meter (Wsr−1m−2). 

Tiles contained in each of the three scenes were mosaicked together and clipped to the 

boundary of Lake Okeechobee. For comparison to Sentinel-2 imagery, MCINIR derived from 

WorldView-3 imagery was downsampled to match the 20-m spatial resolution of Sentinel-2 

via bilinear interpolation.

As suggested in Section 3.1, vertical artefacts in the WorldView-3 images collected on 30 

August 2017 could be partly attributed to the use of default image acquisition parameters, 

which are optimized for land. To test if adjusting these acquisition parameters alleviated 
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vertical artefacts, an additional WorldView-3 image consisting of a single image tile was 

collected over Lake Okeechobee, FL, on 26 May 2021 using parameters optimized for 

aquatic targets, which involved increasing the TDI rate to 24 for all spectral bands and 

decreasing the scan line rate to 12,000 lines per second. As with the 30 August 2017 data, 

the 26 May 2021 data were obtained as basic level 1B data, relative and absolute radiometric 

calibration were applied, and the image was clipped to the boundary of Lake Okeechobee. 

WorldView-3 image processing was performed in ENVI 8.7.0 and IDL 8.7.2 (Exelis Visual 

Information Solutions, Boulder, Colorado). Image mosaicking, clipping, and downsampling 

were performed in ArcGIS Version 10.7.1 (ESRI 2019).

2.2.2. Sentinel-3—While Sentinel-3 imagery has insufficient spatial resolution (300-

m at nadir) to directly compare to high spatial resolution satellite platforms such as 

WorldView-3, its frequent temporal resolution (near-daily) can allow for contemporaneous 

data collection. Temporally coincident Sentinel-3 imagery was used here to provide 

information regarding algal blooms in Lake Okeechobee at the time of WorldView-3 

image collection. ESA launched the Copernicus Sentinel-3A satellite in February 2016 

and the Copernicus Sentinel-3B satellite in April 2018, hereafter collectively referred to as 

Sentinel-3. Each satellite is equipped with the Ocean and Land Colour Instrument (OLCI). 

OLCI collects data in multiple spectral bands spanning the red and red edge portions 

of the electromagnetic spectrum, a region crucial for measuring chlorophyll. Here, the 

cyanobacteria index (CI-cyano), which leverages reflectances from OLCI between 620 and 

709 nm to estimate cyanobacteria abundance (Lunetta et al. 2015; Wynne et al. 2008, 

2010), was used as evidence of algal blooms across Lake Okeechobee. OLCI imagery 

was first collected by ESA through the Copernicus program and was then processed into 

CI-cyano by the National Aeronautics and Space Administration (NASA) Ocean Biology 

Processing Group (https://oceancolor/gsfc.nasa.gov/projects/cyan/). Two Sentinel-3 images 

were obtained for comparison to WorldView-3 imagery; one was obtained for 31 August 

2017, 1 day after the 30 August 2017 WorldView-3 image acquisition, and another was 

obtained for 26 May 2021, the same day as the 26 May 2021 WorldView-3 image 

acquisition.

2.2.3. Sentinel-2—Vertical artefacts were investigated in imagery from WorldView-3 

while imagery from Sentinel-2 was used as a baseline reference. All digital images, 

including those from Sentinel-2, are affected in some way by vertical artefacts (Warren 

et al. 2019); however, previous studies applying spectral indices to Sentinel-2 imagery have 

demonstrated that vertical artefacts did not hinder quantification of water quality parameters 

(Toming et al. 2016; Oiry and Barillé 2021) as the error introduced through vertical artefacts 

did not outweigh the signal of the attribute being measured. Thus, Sentinel-2 imagery was 

used as a baseline reference to compare satellite-derived chlorophyll concentrations across 

Lake Okeechobee against results from WorldView-3.

Temporally and spatially coincident scenes between WorldView-3 and Sentinel-2 were 

desired in order to quantify the additional variability introduced as a result of vertical 

artefacts in WorldView-3 imagery. However, there were no Sentinel-2 scenes coincident with 

scenes from WorldView-2 or WorldView-3 due to the infrequent and intermittent temporal 
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coverage of commercial satellite imagery. Therefore, Sentinel-2 was used to develop a 

baseline of expected data variability throughout Lake Okeechobee from the period around 

the date of the WorldView-3 image collection. Despite the lack of temporal matches between 

the two datasets, a comparison between WorldView-3 and Sentinel-2 imagery is still valid 

as Sentinel-2 imagery can capture the expected natural spatial patterns in chlorophyll 

(Seuront et al. 1996; Mandelbrot 1983) across Lake Okeechobee, whereas WorldView-3 

imagery contaminated with vertical artefacts will likely not produce expected natural spatial 

patterns. In the absence of field-observed chlorophyll, analyzing expected natural spatial 

patterns can offer insight regarding the reliability of satellite-derived MCINIR values. For 

comparison against either WorldView-2 or WorldView-3 data, imagery from Planet Labʻs 

RapidEye satellite constellation and the joint NASA and United States Geological Survey 

(USGS) Landsat series were also considered. However, no coincident scenes between either 

WorldView-2 or WorldView-3 and RapidEye were available, and Landsat products do not 

contain the red edge spectral band required to compute MCINIR. Thus, Sentinel-2 imagery, 

despite no temporal overlap, was chosen for comparison.

ESA launched the Copernicus Sentinel-2A satellite in June 2015 and the Copernicus 

Sentinel-2B satellite in March 2017, hereafter collectively referred to as Sentinel-2. Each 

satellite is equipped with the MultiSpectral Instrument (MSI), which collects multispectral 

imagery at spatial resolutions of 10, 20, and 60 m at nadir. Sentinel-2 level 1C data were 

requested as top-of-atmosphere reflectance (RTOA) for the months of August and September 

2017 as this time period characterized a one-month period before and after the WorldView-3 

image acquisition. Four Sentinel-2 scenes fit these criteria and were selected for analysis. 

RTOA values were converted to LTOA to match the units of the WorldView-3 data. Cloud 

masking provided with Sentinel-2 imagery was applied, and satellite tiles for each unique 

date were mosaicked together and clipped to the boundary of Lake Okeechobee. The red and 

NIR spectral bands were resampled from their native spatial resolution of 10 m to 20 m to 

match the spatial resolution of the other multispectral band used in the MCINIR calculation. 

MCINIR was computed as described in Section 2.3. MCINIR values derived from each of 

the four Sentinel-2 images were retained for comparison to WorldView-3, and a temporal 

composite was generated reflecting average MCINIR across all four images. Sentinel-2 data 

processing was performed using Google Earth Engine (Gorelick et al. 2017).

2.3. Spectral index

Since vertical artefacts are particularly visible in relatively homogeneous regions, including 

water, a variation on a spectral index commonly used in aquatic environments was chosen 

to assess the influence of vertical artefacts on a derived variable and was adapted to 

the spectral characteristics of the WorldView-3 and Sentinel-2 sensors (Table 2). MCI is 

a line height algorithm originally developed by Gower et al. (2005) for imagery from 

the MEdium Resolution Imaging Spectrometer (MERIS) onboard ESAʻs Envisat satellite. 

MCI leverages three spectral bands to estimate the chlorophyll concentration: two outer 

bands used to establish a baseline and one central band use to measure the peak from the 

baseline. MCI has shown promise when applied to other satellite platforms, including for 

RapidEye (Mishra, Stumpf and Meredith 2019) and Sentinel-2 (Xu et al. 2019; Ansper 

and Alikas 2019; Pirasteh et al. 2020). The WorldView-3 and Sentinel-2 satellites are 
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spectrally different from MERIS; however, this study is not intended to validate the MCI 

algorithm originally presented in Gower et al. (2005) for additional satellite platforms, 

but rather to serve as an example of a spectral index using spectral bands relevant for 

water quality monitoring. Here, MCI was modified to meet the spectral characteristics of 

WorldView-3 and Sentinel-2 and is referred to as MCINIR, leveraging radiances in the red 

and NIR spectral bands as the two outer bands in the MCINIR equation, and the red edge 

spectral band as the peak band to estimate the relative chlorophyll abundance (Equation 1). 

MCINIR was retained as a relative index and was not converted to an absolute chlorophyll 

concentration. MCINIR was computed as:

MCINIR = LTOA λred edge − LTOA λred ×
λred edge − λred

λNIR − λred
× LTOA λNIR − LTOA λred

(1)

2.4. Quantifying vertical artefacts in at-sensor radiance

Using a single image tile, at-sensor radiance measured by each of WorldView-3ʻs eight 

spectral bands was first used to characterize the width of vertical artefacts for each 

spectral band. Next, at-sensor radiance values were extracted across a horizontal transect 

to investigate the influence of vertical artefacts on the resulting radiance values. For each 

spectral band, the mean and standard deviation of all data values across the horizontal 

transect were computed. Standard deviations for all eight spectral bands were analysed for 

outliers. Mild and extreme outliers were defined by Barbato et al. (2011) using the inner 

fence and outer fence of the distribution. The inner fence is defined as the first quartile 

minus 1.5 times the interquartile range and the third quartileplus 1.5 times the interquartile 

range. The outer fence is defined as the first quartile minus 3 times the interquartile range 

and the third quartile plus 3 times the interquartile range. A point beyond an inner fence on 

either side is considered a mild outlier, while a point beyond an outer fence on either side is 

considered an extreme outlier.

2.5. Quantifying vertical artefacts in satellite-derived MCINIRvalues

Vertical and horizontal transects across satellite-derived MCINIR values were compared to 

quantify noise introduced as a result of vertical artefacts. Three vertical and three horizontal 

transects were extracted from satellite-derived MCINIR values in a single WorldView-3 

image tile. First, the shape of the distribution for each transect was characterized by 

computing excess kurtosis (Chissom 1970). Excess kurtosis describes the tail shape of 

the data distribution. In the event of vertical artefacts, distributions associated with vertical 

transects should be more compact due to the linear nature of the artefacts, while distributions 

associated with horizontal transects should be more dispersed as both light and dark biases 

would be captured in each horizontal transect. Distributions that are more concentrated 

about the mean are described as leptokurtic and generally have a kurtosis value above 

zero. Distributions that are more dispersed about the mean are described as platykurtic and 

generally have a kurtosis value below zero. Excess kurtosis was computed using the e1071 
package in R Version 4.0.0 (Meyer et al. 2019; R Core Team 2020).
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As further evidence of vertical artefacts, the two-sample Kolmogorov–Smirnov test was 

used to quantify if distributions within both vertical and horizontal transects were similar. 

This analysis tested the hypothesis that vertical transects affected by banding or striping 

would have different distributions from one another due to light and dark biases across 

the image, while horizontal transects not affected by banding or striping would have 

similar distributions from one another. The two-sample Kolmogorov–Smirnov test is a 

nonparametric test that is sensitive to differences in both location and shape of the empirical 

cumulative distribution functions of the two samples (Kolmogorov 1933; Smirnov 1939). 

The Kolmogorov–Smirnov test statistic, D, is the largest difference between the two 

cumulative distribution functions and ranges from 0 to 1. Generally, values below 0.5 and 

nearing 0 indicate the two samples were drawn from the same population, suggesting small 

differences between samples. Values above 0.5 and nearing 1 indicate the two samples 

were drawn from different populations, suggesting large differences between samples. A 

p-value is provided with results of the Kolmogorov–Smirnov test, but it is not reported 

here. While p-values are often included because of their familiarity to many readers, they 

provide negligible information on the validity of the reported model (Wasserstein, Schirm 

and Lazar 2019) and can be artificially deflated with large sample sizes (Lantz 2013). The 

Kolmogorov–Smirnov test was applied using R Version 4.0.0 (R Core Team 2020).

3. Results

3.1. Sources of vertical artefacts in WorldView-3 imagery

Visual inspection of radiance values for each of WorldView-3ʻs eight spectral bands 

suggests that at least two types of vertical artefacts are occurring in the imagery (Figure 

3). Consistent, vertical banding appears to contaminate radiance measured by all spectral 

bands, although this artefact is most obvious in the coastal blue, blue, green, yellow, red 

edge, and NIR #2 spectral bands. These banding features are approximately 600 pixels in 

width, which corresponds to each of the 12 multispectral detector sub-arrays that make up 

the WorldView-2 and WorldView-3 focal planes (Updike and Comp 2010). Documentation 

accompanying WorldView-3 imagery notes that ‘vertical streaksʻ may be apparent in the 

raw imagery resulting from differences in gain or offset values for a single detector, which 

they refer to as non-uniformity (Updike and Comp 2010; Kuester 2017). The documentation 

also notes that these artefacts are minimized after relative radiometric correction, which 

is included in level 1B data. Non-uniformity has been reported in other satellite sensors 

including in imagery from NASA/USGSʻs Landsat 8 (Pahlevan et al. 2017b), ESAʻs 

Sentinel-2 mission (Pahlevan et al. 2017a), Maxarʻs WorldView-1 satellite (Krause 2008), 

Planet Labʻs RapidEye satellite constellation (Anderson et al. 2011), and more generally for 

short-wavelength infrared pushbroom hyperspectral sensors (Hu et al. 2017).

Narrow, inconsistent striping appears in several spectral bands, but most prominently in 

the red and NIR #1, resulting in highly contrasting and unpredictable light and dark biases 

in radiance values. The locations of these light and dark biases are similar across the 

two spectral bands with a wide bright bias in the left half of the tile while the right half 

of the tile is characterized by dark biases. Striping in red and NIR #1 spectral bands 

can be attributed to their TDI settings. Image capture utilizing TDI is ideal for capturing 
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fast-moving objects while preserving light sensitivity (Chamberlain and Washkurak 1990) 

and is described in detail in Bodenstorfer et al. (2007). Higher TDI settings are preferred in 

low-light conditions or for low-light targets to allow additional incident light to be included 

in the at-sensor radiance measured for each pixel (El-Desouki and Al-Azem 2014). Due to 

hardware limitations, the WorldView-3 satellite is constructed such that the same TDI setting 

is shared between the coastal blue and NIR #2 spectral bands, the blue and green spectral 

bands, the yellow and red edge spectral bands, and the red and NIR #1 spectral bands 

(Updike and Comp 2010). In the image used here, the TDI setting for the red and NIR #1 

spectral bands were set to a lower value (TDI = 10) than those of the other three pairs (TDI 

= 24, 14, and 24, respectively). Red through NIR radiances are generally higher over most 

land targets due to higher reflectances from vegetation, so it is reasonable for TDI settings 

to be lower over land for these spectral bands. However, this assumption does not hold over 

aquatic targets as radiance measured over water in near-infrared wavelengths is much lower, 

nearing zero. Thus, the lower TDI setting in the red and NIR #1 spectral bands likely led 

to insufficient signal-to-noise ratio (SNR) to capture an optically dark target, resulting in 

arbitrary bright and dark striping across the image. A high SNR is essential for measuring 

constituents in aquatic systems due to the already low signal of water; an insufficient SNR 

can cause variability in the measured constituent to be concealed by noise within the image 

(Gordon and Clark 1981).

3.2. Effect of vertical artefacts on radiance values

While the coastal blue, blue, green, yellow, red edge, and NIR #2 spectral bands exhibited 

visible light and dark biases in their radiance values as a result of non-uniformity (see 

Figure 3), the extracted data showed little variability in these spectral bands, with standard 

deviations below 0.001 for each spectral band (Figure 4; Table 3). Radiance values for the 

red and NIR #1 spectral bands, however, were strongly affected by striping as shown by 

high variability in extracted radiance values, particularly values in the NIR #1 spectral band 

(Figure 4). Consequently, the standard deviations of radiance values for the red and NIR #1 

spectral bands were considerably higher than for the other six spectral bands. The standard 

deviation in the red spectral band was two to four times higher than those spectral bands 

impacted only by banding, and for the NIR #1, the standard deviation was five to ten times 

higher. Based on the definitions of mild and extreme outliers presented in Barbato et al. 

(2011), the red spectral band contains mild outliers (σ > 0.0014), and the NIR #1 spectral 

band contains extreme outliers (σ > 0.0021).

3.3. Effect of vertical artefacts on MCINIR values

Vertical artefacts in WorldView-3ʻs spectral bands resulted in drastically different 

distributions of MCINIR values across vertical and horizontal transects (Figure 5). Across 

vertical transects, the distributions were leptokurtic (excess kurtosis spanned 0.02 to 0.17), 

meaning the data values were more concentrated about the mean. Each of the three vertical 

transects had distributions spanning a small range of MCINIR values (interquartile ranges 

all equalled 0.00065), and none of the interquartile ranges overlapped. The three horizontal 

transects had distributions that can be described as platykurtic (excess kurtosis spanned 

−0.87 to −0.59), meaning their data values were more dispersed about the mean. The values 

within the interquartile ranges for the horizontal transects were much more similar (spanning 
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0.00298 to 0.00561), with each median falling within the interquartile ranges of the other 

two distributions.

Results of the two-sample Kolmogorov–Smirnov test also supported differences in the 

vertical transect distributions and similarities in the horizontal transect distributions (Table 

4). Between each possible pairing of vertical distributions, the Kolmogorov–Smirnov test 

statistic indicated a large difference between samples (D = 1.00, 0.99, and 1.00), suggesting 

derived MCINIR values from different vertical transects are not from the same population. 

Between each possible pairing of horizontal distributions, the Kolmogorov–Smirnov test 

statistic indicated a small difference between samples (D = 0.07, 0.37, and 0.34). This offers 

quantitative evidence of the stark contrast in data values imposed by vertical artefacts in the 

imagery, which can cause large variability in derived geophysical variables.

Erroneous MCINIR values derived from WorldView-3 are evident across all of Lake 

Okeechobee, while results derived from Sentinel-2 indicate a much more reasonable pattern 

of data values (Figure 6). Radiance measured from these WorldView-3 and Sentinel-2 scenes 

have not been cross-calibrated, meaning resulting MCINIR values derived from each sensor 

cannot be directly compared (Pancorbo et al. 2021); however, visually comparing results 

between sensors can offer evidence of errors introduced as a result of vertical artefacts in 

WorldView-3 imagery. MCINIR derived from WorldView-3 imagery showed sharp changes 

in data values with vertical bands of varying width spanning the entire north–south extent 

of the lake and extremely high MCINIR values in a vertical stripe near the center of the 

lake (Figure 6(a)). The Sentinel-2 composite, however, showed no increased chlorophyll 

activity in this region. Instead, according to the Sentinel-2 composite, chlorophyll was most 

concentrated along the northwestern shore of the lake (Figure 6(d)), an area that had very 

low MCINIR values in the WorldView-3 image. Sentinel-3 imagery taken the day after the 

30 August 2017 WorldView-3 overpass also suggested an algal bloom was present along 

the northern shore of Lake Okeechobee (Figure 7). A horizontal transect across a subset of 

the lake using WorldView-3 imagery indicated sudden variations in MCINIR (Figure 6(c)), 

while the same transect using both the composite Sentinel-2 data and data from the four 

individual scenes used to create the composite showed much more gradual changes across 

the subset (Figure 6(f)). In the WorldView-3 scene, variability in sensor-derived MCINIR 

was the result of both variability in the measured geophysical variable itself and artefacts 

caused by vertical striping; however, the influence of each of these factors cannot be directly 

quantified without large-scale field observations.

3.4. Minimizing striping in future image acquisitions

Both WorldView-2 and WorldView-3 were designed primarily as land sensors; thus, the 

default acquisition parameters are optimized for land targets. During future image tasking 

of WorldView-2 or WorldView-3, acquisition settings should be optimized to properly serve 

each specific use case. For aquatic applications, for example, adjusting both TDI settings 

and the scan line rate may help alleviate vertical artefacts, including striping. Increasing the 

TDI settings and decreasing the scan line rate during image acquisition may increase the 

SNR of the data. In WorldView-2 and WorldView-3 products, the maximum available TDI 
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setting for multispectral bands is 24 (Updike and Comp 2010), and the minimum potential 

scan line rate is 12,000 lines per second compared to its default value of 20,000.

An additional WorldView-3 image was collected over Lake Okeechobee, FL, on 26 May 

2021 using image acquisition parameters optimized for aquatic targets, and MCINIR was 

computed (Figure 8). Note that the exact same image tile shown in Figure 3 was not used for 

comparison due to differences in pixel size and swath width between the two scenes as the 

view angle differed between image acquisitions: the 30 August 2017 image was collected 

at a view angle of 19.4° and the 26 May 2021 image was collected at a view angle of 

37.8°. Both the true colour image and the derived MCINIR product indicated a chlorophyll 

event in the southwestern portion of the image tile. Temporally and spatially coincident 

OLCI imagery also supported the presence of chlorophyll (Figure 9). MCINIR derived from 

the WorldView-3 image collected using acquisition parameters optimized for aquatic targets 

does not appear to be impacted by striping, although some evidence of banding remains. 

Nevertheless, the increased SNR resulting from adjusted TDI settings and scan line rate 

allowed for the signal of the attribute being measured, chlorophyll, to outweigh errors 

introduced through vertical artefacts.

Vertical and horizontal transects were extracted for a subset of the image tile shown in 

Figure 8 (Figure 10). In the absence of striping in the red and NIR #1 spectral bands, 

values extracted along vertical and horizontal transects should have similar distributions 

unlike those shown in Figure 5 For MCINIR derived from the image collected on 26 May 

2021. All vertical and horizontal distributions were leptokurtic (excess kurtosis spanned 

0.83 to 26.57), meaning the data values were more concentrated about the mean. Results 

of the two-sample Kolmogorov–Smirnov test also support more similar distributions for 

vertical and horizontal transect distributions of MCINIR. Between each possible pairing of 

distributions, the Kolmogorov–Smirnov test statistic indicated small differences between 

samples (Table 5; D spanned 0.12 to 0.36). Moreover, visual interpretation would suggest 

that these differences are the result of differences in the concentration of chlorophyll rather 

than artificial differences caused by striping.

4. Discussion

Field observations would be required to definitively support algal presence; however, 

imagery from both Sentinel-2 and Sentinel-3 suggested algae were present in Lake 

Okeechobee on 31 August 2017, predominately along the northern shore of the lake. 

Consequently, the highest MCINIR values across the scene should highlight pixels that 

contain algae. Instead, the highest and lowest MCINIR values correspond to vertical striping 

across the scene, suggesting the variability in radiance values was higher among striping 

artefacts than it was for the variable being quantified. Additionally, at the time of image 

acquisition (12:22 EDT), winds at the study site were out of the east-southeast at around 

4 ms−1. Surface waters and their constituents, including cyanobacteria, tend to move in 

the direction of the wind (Wu et al. 2013). Thus, winds out of the east-southeast would 

create a diagonal gradient in the algal filaments present in the surface waters at Lake 

Okeechobee. This should lead to fairly equivalent horizontal and vertical variability, but, 

instead, horizontal gradients show much more variability across the image (see Figure 
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5), suggesting that this variability is due to vertical artefacts in the image and not 

the geophysical variables being estimated. Additionally, the composite Sentinel-2 data 

suggest that the highest chlorophyll values occurred along the northwest shoreline of Lake 

Okeechobee, and the Sentinel-3 data suggest that the highest chlorophyll values occurred 

along the northern shore. However, in the WorldView-3 image, the highest chlorophyll 

values occur in a vertical stripe near the centre of the lake.

Vertical artefacts can also be explained by bright targets within an image if satellite pixels 

become saturated. Two image artefacts involving sensor saturation, namely smearing and 

blooming, have been documented in the literature for satellite imagery and were considered 

here as potential causes of striping in the red and NIR #1 spectral bands. Smearing occurs 

when electrons leak into an area of the vertical transfer register, a component of CCD 

cameras, due to image saturation (Smith et al. 1999). These electrons are then transferred 

downward causing pixels above and below the saturated area to contain the excess electrons. 

Smearing manifests as a bright vertical stripe extending above and below the saturated 

portion of the image. Blooming occurs when pixels in the brightest part of the image 

lose their ability to accommodate additional electrons, which causes those electrons to 

spread into neighbouring pixels (Catano 1978). Blooming appears as an isotropic artefact 

emanating from the saturated pixels and is often also accompanied by vertical streaking 

in the image. Wahballah, Bazan and Ibrahim (2018) cited smearing in high-resolution 

satellites, Elvidge et al. (2001) noted blooming in nighttime imagery along coastal areas, and 

Poli et al. (2015) described artefacts similar to blooming from bright targets in GeoEye-1 

and WorldView-2 images. Two anti-blooming techniques, adding a vertical overflow drain 

(Hamasaki et al. 1988) and a lateral overflow drain (Ando et al. 1991), have been effectively 

used in other imaging platforms. Neither a vertical nor a lateral overflow drain was 

implemented in the WorldView-2 sensor design, but WorldView-3 is equipped with a lateral 

overflow drain (Maxar Technologies Inc., personal communication, 18 June 2021).

There were several WorldView-3 pixels within the entire image strip that reached saturation. 

These pixels had digital numbers of 2048, which is the maximum possible value that 

can be achieved in an image with 11-bit radiometric resolution like those collected by 

WorldView-3. However, the location of these saturated pixels did not correspond to the 

striping in the red and NIR #1 spectral bands. In the image strip that includes the spatial 

subset shown in Figure 3, six pixels reached saturation for the red and NIR #1 spectral 

bands due to specular reflection from buildings located along the northern shore of Lake 

Okeechobee. Each of the remaining six spectral bands (coastal blue, blue, green, yellow, red 

edge, and NIR #2) also reached saturation for the same pixel locations and for additional 

pixel locations (e.g., cloud cover along the southern shore of Lake Okeechobee), but did 

not show evidence of smearing or blooming. Therefore, sensor saturation was likely not the 

primarily cause of the striping observed in the red and NIR #1 spectral bands, although it 

could have contributed.

Striping in the red and NIR #1 spectral bands was likely caused by the TDI settings at 

the time of image acquisition. According to documentation accompanying WorldView-3 

imagery, the TDI settings for each image are selected using a look-up table that considers 

only the solar elevation angle and does not include any target feature information such as 
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bright land or dark water, nor does it include a land mask. However, Dai and Howat (2018) 

noted TDI settings in WorldView-2 and WorldView-3 imagery can pose issues with an 

improperly defined land mask, as optimal TDI settings differ over land and aquatic targets. 

Dai and Howat (2018) observed vertical artefacts caused by image saturation over Arctic 

regions in high-resolution, commercial satellite imagery due to improper TDI settings for 

the imaged surface. The authors proposed an algorithm for the local detection of vertical 

artefacts in commercial imagery, but this approach was insufficient for our imagery since: 

(1) our vertical artefacts occur over optically dark regions rather than optically bright 

regions, and (2) their algorithm was designed to identify banding in the imagery, whereas the 

focus of this study is primarily striping.

Striping in the red and NIR #1 spectral bands was no longer evident after adjusting the 

TDI settings and scan line rate during image capture. It is likely that striping will be 

particularly prevalent in scenes that capture sharp transitions from optically bright targets, 

such as land, to optically dark targets, such as water. Algorithms used to assess water 

quality are typically either empirical or semi-analytical and depend on variations in the 

spectral shape and magnitude of the water-leaving reflectance (Greb et al. 2018). Erroneous 

top-of-atmosphere radiance values can be propagated through image processing, resulting 

in inaccurate derived inherent optical properties and derived water quality parameters. 

Optimizing these image acquisition parameters for aquatic targets increased the SNR 

and allowed the chlorophyll signal to exceed noise in the image. Future tasking of both 

WorldView-2 and WorldView-3 should specify the maximum TDI settings and the minimum 

scan line rate. Additionally, WorldView-2 can offer slightly higher SNR than WorldView-3 

due to its coarser spatial resolution at nadir (1.84 m for WorldView-2 and 1.24 m for 

WorldView-3), and therefore, could be more appropriate for aquatic applications than 

WorldView-3. Archived WorldView-2 and WorldView-3 images were likely collected using 

acquisition parameters optimized for land, meaning they may be inadequate for aquatic 

applications that require the red and NIR #1 spectral bands.

Vertical artefacts will be particularly problematic when using spectral indices or spectral 

ratios that utilize spectral bands impacted by striping, such as the red and NIR #1 spectral 

bands in this study. For a spectral index such as MCINIR, which utilizes both of these 

spectral bands as well as the red edge spectral band, vertical artefacts present in each 

spectral band were compounded; banding in the red edge spectral band and striping in 

the red and NIR #1 spectral bands resulted in an inconsistent and erroneous display of 

MCINIR values across Lake Okeechobee. Spectral indices that do not leverage spectral bands 

impacted by striping will likely not create such irregular vertical artefacts; this is a focus 

of ongoing research efforts. Using the RapidEye satellite constellation, Mishra, Stumpf and 

Meredith (2019) evaluated MCINIR at Utah Lake, Utah, and did not find evidence of striping 

in the imagery. Moreover, this artefact is likely less problematic in image classification than 

in spectral indices as image classification is used to create a categorical product and not a 

continuous product, thus allowing some errors caused by vertical artefacts to be concealed 

in the final product. Both Islam et al. (2020) and Coffer et al. (2020) successfully classified 

seagrass coverage using imagery from WorldView-2 without obvious impacts of vertical 

artefacts, but additional noise in the red and NIR #1 spectral bands could lead to poorer 

classification accuracies as pixels of similar classes can become more difficult to distinguish.
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This study presents the first analysis of vertical artefacts in commercial satellite imagery for 

aquatic applications; however, there are several limitations that warrant consideration. Field 

observations were not available for comparison to satellite-measured radiance or satellite-

derived chlorophyll abundance. Therefore, comparisons were made between WorldView-3 

and two coarser spatial resolution sensors. Comparing sensors that have not been cross-

calibrated can introduce additional, unquantifiable error that is not accounted for here. 

Obtaining field observations of chlorophyll in order to quantify bias introduced due to 

vertical artefacts is of interest for both WorldView-2 and WorldView-3 imagery. Moreover, 

while MCI was originally developed for the MERIS sensor using spectral bands centred 

at 681, 709, and 753 nm (Gower et al. 2005), this study considered slightly different 

wavelengths to match the spectral characteristics of the WorldView-3 sensor, which may 

reduce the ability of the spectral index to properly characterize chlorophyll abundance. 

There are also spatial and temporal limitations of this study. Only a single WorldView-3 

image collected using default image acquisition parameters and a single image collected 

using updated image acquisition parameters were considered. Future work will expand 

this demonstration spatially and temporally. And while WorldView-2 was suggested as 

a potentially more appropriate satellite for aquatic applications due to its coarser spatial 

resolution and, thus, higher SNR, no WorldView-2 images were tested here. Finally, a 

sensitivity analysis could refine the updated image acquisition parameters proposed here; 

iterating through the eight potential TDI rates and scan line rates ranging from 12,000 to 

24,000 in increments of 1,000 (Updike and Comp 2010) could offer insight regarding the 

importance of each parameter on the SNR of each of WorldView-3ʻs eight spectral bands. 

However, radiometric field measurements would be required for each image acquisition. To 

test each combination of TDI rates and scan line rates, a minimum of 104 scenes (13 unique 

scan line rate settings multiplied by 8 unique TDI settings) with coincident field radiometry 

would be required, which was beyond the scope of this initial study.

5. Conclusions

This study identified vertical artefacts in WorldView-3 imagery collected over an optically 

dark and homogeneous region of water. Banding was present in all eight spectral bands, 

and striping was present in the red and NIR #1 spectral bands. The TDI settings, which 

were optimized for land targets at the time of image acquisition, were found to cause 

striping, which led to an inconsistent and erroneous characterization of chlorophyll across 

Lake Okeechobee. Analyses presented here can be applied to band ratios or other spectral 

indices used for aquatic applications to characterize potential bias introduced in derived 

geophysical variables as a result of vertical artefacts. The red and NIR #1 spectral bands 

are critical for inland and coastal water applications, and striping in these spectral bands 

can hinder the use of WorldView-2 and WorldView-3 imagery in such environments. For 

aquatic applications, future tasking of WorldView-2 and WorldView-3 should specify image 

acquisition parameters suitable for optically dark targets.
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Highlights

• Banding and striping were identified in WorldView-3 imagery of an aquatic 

system

• Striping caused inconsistent, erroneous values for a derived bio-geophysical 

variable

• All spectral bands had banding caused by detector sub-array non-uniformity

• The red, NIR #1 spectral bands had striping caused by image acquisition 

parameters

• Default acquisition parameters are set for land, revising for water eased 

striping
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Figure 1. 
Lake Okeechobee is located in southeastern Florida (26.97°N, 80.80°W), USA, and is the 

largest lake in the state and the fifth largest lake in the country by surface area, excluding the 

Great Lakes.
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Figure 2. 
A flowchart outlining specific image processing steps applied to WorldView-3 (Section 

2.2.1), Sentinel-3 (Section 2.2.2), and Sentinel-2 (Section 2.2.3) imagery. 1Near-

infrared (NIR) maximum chlorophyll index (MCINIR) 2National Aeronautics and Space 

Administration (NASA) Ocean Biology Processing Group (OBPG) cyanobacteria index 

product (CI-cyano) retrieved from https://oceancolor.gsfc.nasa.gov/projects/cyan/
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Figure 3. 
Radiance measured by each WorldView-3 spectral band for a single tile at Lake 

Okeechobee, Florida, on 30 August 2017. Vertical artefacts called banding appear in all 

eight spectral bands and correspond to the 12 multispectral detector sub-arrays that make 

up the WorldView-2 and WorldView-3 focal planes. Vertical artefacts called striping appear 

in two of the eight spectral bands. Note: the radiance scale is stretched for each individual 

spectral band to optimize visualization.
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Figure 4. 
Radiance values extracted for all pixels (n = 12,548) across a horizontal transect for the 

WorldView-3 image tile shown in Figure 3.
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Figure 5. 
The near-infrared (NIR) maximum chlorophyll index (MCINIR) for a spatial subset of the 

image tile shown in Figure 3 at Lake Okeechobee, Floria, on 30 August 2017 derived using 

imagery from WorldView-3. Boxplots describing the distribution of MCINIR data values for 

three vertical transects are shown above the raster image and for three horizontal transects 

to the right of the raster image. Gray boxes represents the 25th percentile, median, and 

75th percentile; the lower whisker extends to 1.5 times the interquartile range from the 

25th percentile; the top whisker extends to 1.5 times the interquartile range from the 75th 

percentile; black dots represent outliers that fall outside these ranges.
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Figure 6. 
(a) The near-infrared (NIR) maximum chlorophyll index (MCINIR) at Lake Okeechobee, 

Florida, from WorldView-3 imagery collected on 30 August 2017 at a spatial resolution 

of approximately 2 m. (b) A spatial subset of (a) resampled to match the 20-m spatial 

resolution of Sentinel-2. (c) A horizontal transect of MCINIR corresponding to the red line 

in (b). (d) A composite average of MCINIR for Lake Okeechobee generated using four 

Sentinel-2 scenes collected in August and September 2017. (e) A spatial subset of (d). (f) A 

horizontal transect of MCINIR corresponding to the red line in (e), including the composite 

MCINIR values (red line) and the MCINIR values for the four scenes used to generate the 

composite (gray lines). Note: Radiance measured by WorldView-3 and Sentinel-2 have not 

been cross-calibrated; thus, the resulting MCINIR values derived from each sensor cannot be 

directly compared and the extracted data do not use the same quantitative scales.
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Figure 7. 
Cyanobacteria abundance estimated from the cyanobacteria index (CI-cyano) for Sentinel-3 

imagery collected at Lake Okeechobee, Florida, on 31 August 2017, one day after a 

WorldView-3 image acquisition.

Coffer et al. Page 27

Int J Remote Sens. Author manuscript; available in PMC 2022 June 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 8. 
WorldView-3 (a) true color image and (b) near-infrared (NIR) maximum chlorophyll index 

(MCINIR) for a spatial subset of Lake Okeechobee, Florida, on 26 May 2021.
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Figure 9. 
Cyanobacteria abundance estimated from the cyanobacteria index (CI-cyano) for Sentinel-3 

imagery collected at Lake Okeechobee, Florida, on 26 May 2021, coinciding with a 

WorldView-3 image acquisition.
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Figure 10. 
The near-infrared (NIR) maximum chlorophyll index (MCINIR) for a spatial subset of the 

image tile shown in Figure 3 at Lake Okeechobee, Florida, on 26 May 2021 derived using 

imagery from WorldView-3. Boxplots describing the distribution of MCINIR data values 

for three vertical transects are shown above the raster image and boxplots describing the 

distribution of MCINIR data values for three horizontal transects are shown to the right of 

the raster image. Gray boxes represents the 25th percentile, median, and 75th percentile; 

the lower whisker extends to 1.5 times the interquartile range from the 25th percentile; the 

top whisker extends to 1.5 times the interquartile range from the 75th percentile; black dots 

represent outliers that fall outside these ranges.
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Table 1.

Acquisition dates for images collected from WorldView-3, Sentinel-3, and Sentinel-2.

Satellite Image acquisition date

WorldView-3 30 August 2017
26 May 2021

Sentinel-3 31 August 2017
26 May 2021

Sentinel-2 4 August 2017
19 August 2017

13 September 2017
28 September 2017
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Table 2.

WorldView-3 and Sentinel-2 centre wavelengths (nm) for the three spectral bands used to compute the 

near-infrared (NIR) maximum chlorophyll index (MCINIR) originally defined as MCI by Gower et al. (2005).

Spectral band WorldView-3 Sentinel-2

Red 661 665

Red edge 724 704

NIR 832 842
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Table 3.

Average (μ) and standard deviation (σ) of radiance values accompanying the spectra extracted from all pixels 

(n = 12,548) across the horizontal transect shown in Figure 4. Mild and extreme outliers were defined by 

Barbato et al. (2011).

Spectral band μ σ

Coastal blue 0.1351 0.0009

Blue 0.1007 0.0008

Green 0.0703 0.0008

Yellow 0.0562 0.0005

Red 0.0528 0.0020*

Red edge 0.0351 0.0005

NIR #1 0.0259 0.0048**

NIR #2 0.0106 0.0009

*
mild outlier (σ > 0.0014)

**
extreme outlier (σ > 0.0021)
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Table 4.

Results of the two-sample Kolmogorov–Smirnov test for a WorldView-3 image collected at Lake Okeechobee, 

Florida, on 31 August 2017; the sample size for each sample was8477. D is the Kolmogorov–Smirnov test 

statistic. V1, V2, and V3 represent the three vertical transects shown in Figure 5, and H1, H2, and H3 represent 

the three horizontal transects.

Sample A Sample B D Difference

V1 V2 1.00 Large

V1 V3 0.99 Large

V2 V3 1.00 Large

H1 H2 0.07 Small

H1 H3 0.37 Small

H2 H3 0.34 Small
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Table 5.

Results of the two-sample Kolmogorov–Smirnov test for a WorldView-3 image collected at Lake Okeechobee, 

Florida, on 26 May 2021; the sample size for each sample was 9035. D is the Kolmogorov–Smirnov test 

statistic. V1, V2, and V3 represent the three vertical transects shown in Figure 10, and H1, H2, and H3 represent 

the three horizontal transects.

Sample A Sample B D Difference

V1 V2 0.33 Small

V1 V3 0.12 Small

V2 V3 0.30 Small

H1 H2 0.30 Small

H1 H3 0.26 Small

H2 H3 0.36 Small
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