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Abstract

Overcoming and preventing cancer therapy resistance is the most 
pressing challenge in modern breast cancer management. Conse-
quently, most modern breast cancer research is aimed at understanding 
and blocking these therapy resistance mechanisms. One increasingly 
promising therapeutic target is the autotaxin (ATX)-lysophosphati-
date (LPA)-lipid phosphate phosphatase (LPP) axis. Extracellular 
LPA, produced from albumin-bound lysophosphatidylcholine by 
ATX and degraded by the ecto-activity of the LPPs, is a potent cell-
signaling mediator of tumor growth, invasion, angiogenesis, immune 
evasion, and resistance to cancer treatment modalities. LPA signaling 
in the post-natal organism has central roles in physiological wound 
healing, but these mechanisms are subverted to fuel pathogenesis in 
diseases that arise from chronic inflammatory processes, including 
cancer. Over the last 10 years, our understanding of the role of LPA 
signaling in the breast tumor microenvironment has begun to mature. 
Tumor-promoting inflammation in breast cancer leads to increased 
ATX production within the tumor microenvironment. This results in 
increased local concentrations of LPA that are maintained in part by 
decreased overall cancer cell LPP expression that would otherwise 
more rapidly break it down. LPA signaling through six G-protein-
coupled LPA receptors expressed by cancer cells can then activate 

virtually every known tumorigenic pathway. Consequently, to target 
therapy resistance and tumor growth mediated by LPA signaling, mul-
tiple inhibitors against the LPA signaling axis are entering clinical tri-
als. In this review, we summarize recent developments in LPA breast 
cancer biology, and illustrate how these novel therapeutics against 
the LPA signaling pathway may be excellent adjuncts to extend the 
efficacy of evolving breast cancer treatments.
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Introduction: Overview of Autotaxin and 
Lysophosphatidate Signaling in Breast Cancer

As the most common cancer in women with a 1 in 8 lifetime 
risk, breast cancer persists as a perplexing disease to manage, 
particularly in the context of either relapsed or metastatic dis-
ease [1, 2]. The primary challenge to improving patient sur-
vival is overcoming treatment resistance that develops via 
mechanisms either intrinsic or acquired to advanced cancers 
[3]. The underpinnings of most current breast cancer research 
are typically directed at targeting these pathways with novel 
adjunct therapies to either desensitize or stave off resistance 
development or increase the therapeutic index of treatment 
regimens [3, 4].

One such mediator of therapy resistance is a potent ex-
tracellular signaling molecule called lysophosphatidate (LPA), 
which is primarily produced from serum lysophosphatidyl-
choline (LPC) by the phospholipase D activity of a secreted 
enzyme called autotaxin (ATX) (gene name ENPP2) [5]. ATX 
is believed to interact with cell surface integrins and other ex-
tracellular binding molecules to concentrate LPA in the local 
environment [6]. LPA mediates a plethora of physiological 
processes primarily involved in embryogenesis, tissue repair, 
and tissue regeneration by signaling through six known G-pro-
tein coupled receptors (LPAR1-6). Additionally, LPA signaling 
contributes to multiple hallmarks of cancer [5, 7]. Extracel-
lular LPA is broken down by the ecto-activities of three mem-
brane bound lipid phosphate phosphatases (LPPs) (gene names 
PLPP1-3) to monoacylglycerols (MAG), which typically lack 
signaling properties except for 2-arachidonoylglycerol [8].

ATX was first identified in 1992 in the cell media of cul-
tured melanoma cells as an “autocrine motility factor” [9]. Ten 
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years later, it was discovered that ATX exerted its biological 
function via its hydrolysis of LPC to LPA [10, 11]. Around this 
time and thereafter, a general paradigm for LPA signaling in 
cancer began to unfold centered on increased tumor prolifera-
tion, cancer cell migration, angiogenesis, and cancer treatment 
survival and resistance [12]. Primarily through cell culture in-
vestigations, cancer cells were shown to potentiate LPA signal-
ing by either increasing both ATX secretion and LPAR receptor 
expression or decreasing ecto-LPP activity primarily through 
downregulation of LPP1 and LPP3 [8, 13, 14]. The overall net 
effect would result in an increased pool of extracellular LPA 
that can activate or augment virtually every known pathway 
implicated in tumorigenesis [5, 15]. Further, ATX is one of the 
40 - 50 most upregulated genes in both locally invasive and 
metastatic tumors [16, 17]. As such, the ATX-LPA-LPP signal-
ing pathway became an enticing area for therapeutic research 
not only in cancer, but also in multiple disease processes medi-
ated by chronic inflammation [18]. This is because LPA signal-
ing, while physiologically underpinning acute wound healing 
inflammatory processes, can readily be perturbed into a state 
of persistent signaling in these pathological conditions where 
“wounds” do not heal [5, 18].

ATX is overexpressed in many cancers compared to nor-
mal or benign tissue from the same organs, such as in mela-
noma, glioblastoma multiforme, hepatocellular carcinoma, 
and thyroid carcinoma [19]. However, most breast cancer cells 
produce little or virtually no ATX compared to normal breast 
tissue, but these cells still display increased tumorgenicity in 
response to LPA signaling. As in most cancers, downregula-
tion of ecto-LPP expression increases LPA signaling [20-22]. 
Seminal work supporting the relevance of LPA signaling in 
breast cancer in biological systems was demonstrated in mam-
mary mouse tumor virus (MMTV) mice with transgenic over-
expression of ATX or LPAR1, LPAR2, or LPAR3 [23]. These 
mice develop breast tumorigenesis and subsequent metastasis 
in 32-53% of mice compared to no tumor development in wild 
type mice over the study period [23]. However, bridging the 
disconnect between the negligible ATX production findings in 
breast cancer cell culture and these animal results coincided 
with the concept of the tumor microenvironment coming into 
vogue in cancer research [24, 25].

We showed in an orthotopic mouse 4T1/Balb/c model, 
which is syngeneic and immunocompetent, that the grow-
ing breast tumor induced ATX expression in the surrounding 
mammary fat pad through the effects of LPA in activating 
NF-κB and upregulation of inflammatory cytokine produc-
tion [21, 22]. These results led to the concept of there being a 
feedforward ATX-LPA-inflammatory cycle that drives tumor 
progression. Additionally, treatment with a potent oral ATX 
inhibitor not only slowed initial tumor growth and subsequent 
lung metastasis, but also decreased the concentrations of mul-
tiple inflammatory cytokines in the tumor [21, 22]. The 4T1/
Balb/c breast cancer model is highly inflammatory and meta-
static compared to the use of E0771 breast cancer cells in syn-
geneic C57BL/6 mice where metastasis is not observed [26]. 
However, inhibiting ATX with the oral ATX inhibitor IOA-289 
decreased tumor growth in this model and this was accompa-
nied by decreases in the concentrations of the inflammatory 
cytokines chemokine CXC ligand (CXCL)10, CC chemokine 

ligand 2 (CCL2), and CXCL9 in the plasma and leukemia in-
hibitory factor (LIF), transforming growth factor (TGF)β1, 
TGFβ2, and prolactin in the tumors [26].

We further validated this paracrine-induced inflammatory 
model of ATX production between breast tumor cells and the 
tumor stroma in human breast tumor specimens by demon-
strating an immunohistochemical gradient of approximately 
two-fold increased ATX and cytokine staining in tumor adja-
cent stroma compared to patient-matched breast stroma distant 
from the tumor [21].

Preliminary clinical studies additionally have suggested 
a linkage between stromal ATX expression and breast tumor 
aggressiveness. Among the first of these investigations, dem-
onstrated by immunohistochemistry, it was found that stromal 
ATX was upregulated in 50% of advanced stage breast tumors 
compared to only 17.6% of stage II cancers and in no stage 
I specimens examined [27]. Serum studies comparing ATX 
levels in 112 breast cancer patients to 50 healthy participants 
showed significantly increased concentrations in cancer pa-
tients, with stepwise increases with progressive clinical dis-
ease [28]. We showed similar results in the plasma of mice 
with advanced breast cancer [29]. Mechanistically, we also 
demonstrated that LPA could exert feedback product inhibi-
tion on further ATX transcription, thereby regulating its own 
extracellular secretion [29]. However, this inhibition can be 
overcome by increased ATX expression and secretion in re-
sponse to increased inflammatory cytokine production. This 
occurs in the context of acute inflammation with physiological 
wound healing, or chronic inflammation in pathological con-
ditions like cancer, often described as wounds that do not heal 
(Fig. 1) [4, 5, 8, 29-34]. This finding, along with our model of 
tumor microenvironment ATX production in breast cancer, has 
since been replicated by other investigators [35, 36].

In this review, we summarize a large body of growing evi-
dence on new insights into the ATX-LPA-LPP axis in breast 
cancer tumor biology, particularly as they relate to novel dis-
coveries related to the tumor microenvironment. We addition-
ally provide expert commentary into ongoing translational and 
clinical research in breast cancer that is setting the stage for 
more clinical trials with inhibitors of LPA signaling. Ultimate-
ly, blocking the cross-talk of LPA signaling between breast 
cancer cells and their surrounding supportive microenviron-
ment is predicted to adjunctly extend the efficacy of cancer 
therapy, by both limiting tumor growth and metastasis, and 
mitigating activation of survival pathways involved in therapy 
resistance.

Insights Into ATX Production in the Breast Tu-
mor Microenvironment

Although multiple groups have demonstrated that ATX in the 
breast tumor microenvironment is undoubtably induced in the 
tumor stroma [22, 35, 36], our understanding of the cross talk 
and the players involved in this communication is evolving. 
We know from murine conditional knockout studies that about 
40% of plasma ATX is produced via adipocytes [37, 38]. Adi-
pose tissue composes from 4% to 38% of the total breast by 
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weight [39]. These findings would favor breast adipose tissue 
as a possible primary source of ATX in breast tumor develop-
ment. Our early work in murine tumor models showed that 
breast cancer cells produce virtually no ATX but instead in-
duce ATX expression in adjacent tumor stroma [21, 22, 29]. 
Based on this, Schmid et al isolated and cultured epithelial 
and mesenchymal tumor cells from four luminal B or triple 
negative mammary carcinomas from human patients, as well 
as adipose-derived stem cells from healthy breast tissue, tumor 
adjacent tissue, or tumor distant tissue (at least 10 cm from 
the tumor) [36]. At both the mRNA and protein level, adipose-
derived stem cells from any source had higher ATX levels than 
mesenchymal tumor cells, and epithelial cells expressed virtu-
ally no ATX [36]. After adipogenic differentiation, ATX mRNA 
and protein levels were nearly two-fold higher in cultures from 
tumor-adjacent adipose-derived stem cells compared to either 
cultures form tumor distant tissue or healthy tissue [36]. While 
this study supports adipose tissue as a source of ATX in breast 
tumors, these results are not derived from a model of the intact 
tumor microenvironment.

To study the cells that produce ATX for breast tumor 
growth, our group crossed immunocompetent C57BL/6 mice 
carrying adipocyte-specific ATX knockout with MMTV-PyMT 
mice [26]. As predicted [37], the adipocyte-specific ATX knock-
out displayed an approximately 37% reduction in total plasma 

ATX concentration [26]. However, the timing of spontaneous 
palpable breast tumors, time for tumors to reach 1 cm, and num-
ber of lung micrometastases were the same between control and 
knockout mice groups [26]. Similarly, C57BL/6 mice were in-
jected with syngeneic E0771 breast cancer cells into mammary 
fat pads. Again, the ATX knockout mice had the same tumor 
growth rate as the controls, but tumor growth was slowed with 
the oral ATX inhibitor, IOA-289 [26]. E0771 tumors were then 
digested and sorted by flow cytometry into E0771 cells, CD45+ 
leukocytes, fibroblasts, and other cells. Relative to tumor-de-
rived E0771 cells, leukocytes and fibroblasts expressed about 
16-fold more, and other cells about five-fold more, ATX mRNA 
[26]. Therefore, from these investigations, these breast tumors 
are dependent on tumor microenvironment-derived ATX for tu-
mor growth, however, this ATX does not necessarily have to be 
sourced from breast adipocytes.

To answer the question where ATX is produced in the hu-
man breast tumor microenvironment, we analyzed expression 
patterns in over 5,000 non-metastatic breast cancers from the 
TCGA, METABRIC, and GSE96058 (SCAN-B) databases 
[40]. Consistent with animal model studies [21, 22], tumor 
ATX mRNA levels were lower than in normal breast tissue 
(Fig. 2a) [15, 40-42]. Tumors from all three databases were 
cybersorted with the xCell algorithm, and high ATX expres-
sion correlated most strongly with adipocyte, fibroblast, and 

Figure 1. Overview of ATX-LPAR-LPP signaling. Autotaxin (ATX) is a secreted 125-kDa glycoprotein with lysophospholipase 
D activity, which generates lysophosphatidate (LPA) from lysophosphatidylcholine (LPC), the most abundant phospholipid in 
the plasma at concentrations of about 200 µM in human beings [32]. Plasma LPA levels are typically in the 100 - 300 nM range 
[33]. LPA signals through at least six G-protein coupled receptors (LPARs) to elicit intracellular effects. Signaling through these 
receptors may be either redundant or antagonistic, depending on the coupling between the receptor and the heterotrimeric G-
protein [5, 34]. LPA is degraded by the ecto-activity of three lipid phosphate phosphatases (LPPs) [8]. Cancers can increase 
the tumorigenic effects of LPA signaling by increasing local concentrations of extracellular LPA through either increasing ATX 
secretion (either by the cancer cells themselves or induction in the tumor stroma) or by decreasing ecto-LPP activity levels, and 
by increasing LPAR levels [4]. LPA can exert feedback inhibition on ATX transcription to decrease further LPA production [29]. 
However, signaling mediated by inflammatory cytokines can increase ATX protein expression in the tumor microenvironment, 
which can overcome this feedback inhibition [29]. MAG: monoacylglycerols.
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endothelial cell fractions [40]. We then verified these results 
with single cell RNA sequencing results, which demonstrated 
the highest expression in endothelial cells, followed by my-
eloid cells and cancer-associated fibroblasts (Fig. 2b) [15, 26, 
40-42]. Whether there is a temporal relevance to tumor patho-
genesis as to which cell populations express ATX remains an 
open question.

In the context of cancer overall, ATX is typically consid-
ered a pro-tumorigenic enzyme. This perspective is likely too 

simplistic, because ATX/LPA signaling influences a myriad of 
biological processes. To illustrate this, ATX knockout in mice 
is embryonically lethal at day 9.5 secondary to neural tube and 
vascular defects [43, 44]. After birth, ATX orchestrates wound 
healing via platelet aggregation and the growth and migration 
of fibroblasts, endothelial cells, keratinocytes, and leukocytes 
[5]. Hence, if ATX is a wound healing enzyme, it is possible that 
in very early breast cancer, ATX could have anti-tumor proper-
ties, but as the tumor grows and learns to evade the immune 

Figure 2. Comparison of ATX, LPARs, and LPPs expression in normal breast tissue and whole breast tumors, and via breast 
tumor single cell RNA sequencing. (a) mRNA expression from 114 normal breast tissues and 1,090 whole breast cancer tumors 
from the TCGA database. Results are plotted as box plots, with the bolded center bar representing the median, the lower and 
upper bounds the 25th and 75th percentiles, respectively, and the lower and upper tails the minimum and maximum values, 
respectively. (b) Single-cell RNA sequencing results from the cohort described in [42], comprised of 26 breast tumors (11 ER+ 
HER2-, five HER2+, and 10 TNBC), for a total of 130,246 single cells, to demonstrate which cell populations in the tumor express 
these genes. Percent expressed (circle size) refers to the percent of the total gene expression for the whole tumor by cell type, 
and color refers to the average gene expression. Figures were reproduced from [15, 40, 41] with permission. ATX: autotaxin; 
LPP: lipid phosphate phosphatase; ER: estrogen receptor; HER: human epidermal growth factor receptor; TNBC: triple-negative 
breast cancer.
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system, it highjacks cross-talk in the tumor microenvironment 
to subvert ATX/LPA signaling for progressive tumorigenesis. 
When we examined this intriguing notion in early breast tu-
mors from the TCGA, METABRIC, and GSE96058 (SCAN-
B) databases, high ATX-expressing tumors (when compared 
to low ATX-expressing tumors dichotomized at the median 
expression level) correlated significantly with decreased tu-
mor mutational burden, lower Ki67 scores, increased immune 
cell population infiltration, increased immune cytolytic scores, 
and overall survival trends with hazard ratios between 0.75 
and 0.80 [40]. While our study did not have enough locally 
advanced/metastatic tumors to draw definitive conclusions 
for a pro-tumor switch with more aggressive disease, gene set 
enrichment analysis demonstrated enriched gene signatures in 
high ATX expressing tumors for pro-tumor survival gene sets 
[40]. These sets included signatures for angiogenesis, hypoxia, 
reactive oxygen species, xenobiotic metabolism, inflammato-
ry-mediated signaling, and stemness gene sets including the 
epithelial mesenchymal transition [40]. Hence, breast tumors 
high in ATX expression appear to be primed to mediate tumo-
rigenesis in a maladaptive manner by using the physiological 
wound healing mechanisms and subverting them to promote 
tumor growth and metastasis.

ENPP2 (the ATX gene) is amplified in multiple cancer 
types, particularly melanoma, and the degree of amplifica-
tion correlates positively with worse progression-free survival 
[45]. In a large survey of over 2,000 breast tumors, ENPP2 
amplification was found in 26.6% of ductal carcinomas and 
14.5% of lobular carcinomas [4, 46]. Despite this, relative to 
normal breast tissues, the ENPP2 promoter in breast cancer 
cells was highly methylated, even in stage 1 breast cancers 
[47]. This methylation pattern hence appeared to occur early 
in breast cancer development and did not significantly change 
with more advanced disease [47]. If fact, analysis of data from 
TCGA demonstrate that ENPP2 is of one of the 66 most hy-
permethylated genes in stage 1-3 breast cancer [48]. Whether 
this methylation is a protective event of the host organism to 
suppress tumor development is unknown, but these studies 
demonstrate that despite breast cancer cells displaying the pro-
pensity to overexpress ATX, they are prevented from doing so 
even at early stages, and instead must rely on inducing ATX in 
the surrounding tumor stroma to induce LPA-mediated tumo-
rigenesis [49, 50].

Overview of Recent Insights Into LPAR and 
LPP Function in Breast Cancer

Biological systems tend to make use of multiple receptors to 
the same activating ligand to fine tune signaling depending on 
the temporal and spatial needs of the microenvironment [51]. 
Consequently, it is not surprising that LPA signaling through 
any of the six LPARs can have complementary, synergic, or 
antagonistic effects depending on the G-protein complex to 
which the receptors interact [5, 15, 52]. LPAR1-3 are ubiq-
uitously expressed across most tissue types and belong to the 
Edg (endothelial differentiation gene) family [24]. LPAR4-6 
have not been studied as extensively and belong to the P2Y 

puringenic receptor family [53]. Unlike ATX, all murine indi-
vidual LPAR knockouts are viable [52, 54], as are all double 
LPAR1-3 knockouts and the triple LPAR1-3 knockout [32, 
55]. Of the known double knockouts, only the LPAR4/LPAR6 
knockout is embryonically lethal secondary to angiogenesis 
malformations [56].

Similar to our recent analysis of ATX expression in the 
breast tumor microenvironment, we performed the same analy-
sis on over 5,000 breast tumors from the TCGA, METABRIC, 
and GSE96058 (SCAN-B) databases, with additional single 
cell RNA-sequencing validation. Compared to normal breast 
tissue, breast tumors have significantly lower LPAR1,3,4, and 
6 mRNA levels, whereas the opposite is true for LPAR2 and 
LPAR5 (Fig. 2a) [15, 40-42]. Uniquely, LPAR2 expression 
was highest in cancer epithelial cells, and high tumor LPAR2 
expression correlated strongly with increased tumor grade and 
mutational burden, triple-negative breast cancer (TNBC) hor-
mone status, and decreased survival [15]. These findings have 
been validated in breast cancer cell culture, where LPAR2 inhi-
bition alone was capable of limiting TNBC growth via block-
age of autocrine production of proinflammatory cytokines 
interleukin (IL)-6, IL-8, and CXCL1 in an NF-κB-dependent 
manner [57]. Additionally, when ATX, LPAR1, LPAR2, and 
LPAR3 were overexpressed in an MMTV model, tumorigenic-
ity was highest in the LPAR2 mice at 52.8%, followed by ATX 
at 50.0%, LPAR3 at 42.3%, and LPAR1 at 32.0% [23].

Infiltration and activation of T cells, particularly CD8+ 
cytotoxic T cells, is a critical requirement for immune-medi-
ated tumor eradication [58]. In recent years, LPAR5-mediated 
signaling has emerged as a unique suppressor of immune cell 
infiltration into the tumor microenvironment by suppressing 
the CD8+ T cell function via inhibition of intracellular Ca2+ 
mobilization and ERK activation [59], inhibition of antigen-
specific CD8+ T cell proliferation following activation [60], 
and impediment of CD8+ T cell function by impeding gran-
zyme B granule exocytosis [59, 61]. Though LPAR5 levels are 
increased in bulk breast tumor compared to normal tissue (Fig. 
2a) [15, 40-42], LPAR5 gene expression did not significantly 
affect survival parameters [15]. However, selective inhibition 
of LPAR5 might have synergistic effects with immunotherapy 
approaches in improving cytolytic responses, particularly in 
TNBC, for which immunotherapy adjuncts are now being used 
[62]. An alternative approach is to use ATX inhibitors such as 
IOA-289, which increases CD8+ T cell infiltration in breast 
tumors in mouse models [26, 63].

Consistent with our findings (Fig. 2a) [15, 40-42], LPAR6 
is known to be downregulated particularly in human epidermal 
growth factor receptor (HER)2+ and TNBC, and decreased 
expression in all subtypes correlated to decreased survival [64-
66]. LPAR6 has been proposed to function as a tumor sup-
pressor in part through the formation of E2F family complexes 
capable of inducing cell cycle arrest [64]. Mechanistically, the 
microRNA miR-27a-3p acts as an upstream positive regulator 
of LPAR6 transcription and is also suppressed in breast tumors 
compared to normal or benign breast tissues [64]. These find-
ings might provide a mechanistic explanation for our observa-
tion that ATX expression in early breast tumors correlated to 
better survival [40]. It is possible that LPA signaling in this 
situation through LPAR6 contributes to cell cycle arrest, and 



Articles © The authors   |   Journal compilation © World J Oncol and Elmer Press Inc™   |   www.wjon.org6

Autotaxin, Lysophosphatidate, and Breast Cancer World J Oncol. 2024;15(1):1-13

with disease progression, LPAR6 expression is repressed, re-
sulting in loss of tumor repression via this pathway. It is pos-
sible that LPA signaling through LPAR4 could have a similar 
phenotype (Fig. 2a) [15, 40-42], as one study in colon cancer 
cell cultures showed that cell motile activities were markedly 
stimulated by either LPAR4 or LPAR6 knockdown [67]. This 
phenomenon has not been reported in breast cancers, though 
we did show that the cell cycling gene sets enriched in low-
expressing LPAR6 tumors are nearly identical to those seen in 
low-expressing LPAR4 tumors [15].

It is well known that breast tumors (and other cancers, par-
ticularly ovarian) express low tumor cell LPP1 and LPP3 and 
high LPP2 concentrations relative to normal breast tissue [8, 
68]. Breast and ovarian murine allograft and xenograft mod-
els with implanted cancer cells overexpressing either LPP1 or 
LPP3 results in tumors with slower growth and decreased sub-
sequent metastasis [69, 70]. Low LPP1 expression in breast 
cancer cells is known to increase cyclin D1 and D3 levels and 
concentrations of matrix metalloproteinases, culminating in 
increased rates of cell division [71]. While LPP1 and LPP3 
function primarily via ecto-cell activity to regulate LPA con-
centrations, LPP2 probably functions primarily endocellularly 
[8, 12]. LPP2 overexpression in many cancer types increases 
the rate of S-phase entry though c-Myc transcription factor 
upregulation [72-74], and LPP2 knockout in MDA-MB-231 
breast cancer cells decreases tumor growth and lung metasta-
sis in mouse xenografts [74]. We confirmed these phenotypic 
findings in three large cohorts of human breast tumors (Fig. 
2a) [15, 40-42], and through single cell RNA-seq analysis, we 
demonstrated that most tumor LPP1 and LPP3 was expressed 
in the tumor stroma, while LPP2 was primarily found in the 
cancer cells [41]. Besides c-Myc pathways, E2F pathways 
were additionally upregulated in high LPP2-expressing tumors 
on gene set enrichment analysis and correlated with worse 
tumor grade and decreased overall survival [41]. Combined, 
these results suggest that the development of LPP2-specific 
inhibitors to block endo-LPP catalytic targets may have thera-
peutic benefits.

Summary of the Current State of LPA Pathway 
Pharmacological Interventions

As the initiator of the LPA signaling axis, most therapeutic 
development against LPA signaling has been towards design-
ing potent and orally bioavailable ATX inhibitors. The first 
oral ATX inhibitor tested in murine breast cancer models was 
ONO-8430506. We showed that this inhibitor slowed initial 
tumor growth and lung metastasis in an orthotopic and immu-
nocompetent murine breast cancer model (4T1/Balb/c), large-
ly through reducing LPA-mediated cytokine expression in the 
tumor microenvironment [21, 22, 29]. We and others addition-
ally showed that ATX inhibition with ONO-8430506 improved 
the effectiveness of doxorubicin [75] and paclitaxel [76]. Our 
group later used the ATX inhibitor GLPG1690, subsequently 
known as ziritaxestat, to show increased efficiency of doxoru-
bicin in mouse breast cancer models and decrease the percent-
age of Ki-67 positive cells and increase rates of apoptosis with 

concurrent radiotherapy [77]. Ziritaxestat was the first ATX to 
enter clinical trials, eventually culminating in two identically 
designed phase III double-blind and placebo-controlled trials 
that combined ziritaxestat with standard of care treatments for 
idiopathic pulmonary fibrosis (IPF) (ISABELA 1, ziritaxestat 
600 mg daily; ISABELA 2, ziritaxestat 200 mg daily) [78, 79]. 
The trials were eventually terminated early due to lack of effi-
cacy over standard of care and potential safety concerns in the 
high dose group [78]. Other non-competitive tunnel-binding 
inhibitors like BLD-0409 (cudetaxestat), and BBT-877 are 
currently in phase II trials for IPF, with estimated completion 
dates of mid-2024 [80-82].

ATX substrate binding-pocket targeting inhibitors are cur-
rently divided into five different classes [83]. Class I are lipid-
like or orthosteric inhibitors, with the early inhibitor PF-8380 
being the prototypical inhibitor of this class [84, 85]. None of 
these compounds have entered advanced clinical trials, sec-
ondary to their off-target effects related to their high partition 
coefficient [86]. More modern inhibitors are non-carboxylic 
and non-lipid in design [86]. Class II inhibitors target the 
hydrophobic pocket (including GRI-918013, none of which 
are in trials), obstructing binding of LPC to ATX [83]. Class 
III inhibitors are allosteric tunnel inhibitors, which act non-
competitively to deter the release and transport of hydrolyzed 
LPA, which includes the inhibitor PAT-347 by PharaAkea Inc. 
[87]. Class IV inhibitors, described as pocket-tunnel hybrids, 
include ziritaxestat, and essentially represent inhibitors with 
combined features of both class II and III inhibitors [83]. Fi-
nally, steroid-derived hybrids which function as both orthos-
teric and allosteric inhibitors that do not form interactions with 
the catalytic sites have recently been described and represent 
the latest class (class V) to be proposed [88]. In general, the 
most potent ATX inhibitors belong to classes II, III, IV, given 
how closely they interact or block access to the zinc ion-con-
taining active site [86]. The history of ATX inhibition design 
has been summarized in several good reviews [83, 89-93].

Within the last year, two new phase 1 clinic trials have been 
initiated for first in-class inhibitors. IOA-289, a mixed type II/
IV inhibitor, is a potent mitigator of lung fibrosis biomarkers, 
and inhibits tumor outgrowth and lung and bone metastasis 
in both 4T1/Balb/c and E0771/C57BL/6 murine breast cancer 
models [26, 63]. Another recent study has shown this inhibitor 
to reduce cell growth and migration of gastrointestinal tract 
cell lines in both two-dimensional (2D) and three-dimensional 
(3D) in vitro models [94]. This inhibitor is currently being in-
vestigated in a phase 1b, open label, dose-escalation study ei-
ther alone or in combination with gemcitabine/nab-paclitaxel 
in patients with metastatic pancreatic cancer, the first ATX in-
hibitor to enter a clinical trial for cancer [95]. Finally, a phase 
1 study in healthy volunteers examined the pharmacology and 
tolerability of a new inhibitor FTP-198, which demonstrated 
superior inhibition of LPA18:2 formation compared to ziri-
taxestat, without safety or tolerability concerns [96]. Another 
practical approach to decreasing the activation of the ATX-
LPA-inflammatory cycle is to decrease tumor necrosis factor 
(TNF)-α-induced inflammation with infliximab, a monoclonal 
antibody that binds to TNF-α to attenuate its inflammatory ac-
tions and activation of ATX expression. This approach was ef-
fective in decreasing lung metastasis by 60% in the 4T1/Balb/c 
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breast cancer model [97].
To date, no LPAR inhibitors have been tested in cancer 

patients, though numerous LPAR1 inhibitors, including BMS-
986020 and BMS-986278, have reached phase 2 trial status 
for IPF [98, 99], and SAR100842 for systemic sclerosis [100]; 
but to date, their efficacy has not been well established. Most 
of these inhibitors were trialed in the late 2010s, and interest, 
particularly in the IPF field, has shifted to ATX inhibitors with 
ziritaxestat and cudetaxestat. Despite this, multiple agonists 
and antagonists for LPAR1-5, and at least two agonists against 
LPAR6, have been developed for experimental use, and are 
well reviewed elsewhere [66, 101, 102].

Currently, there are no known LPP2 inhibitors, which 
could have potential therapeutic benefit in breast cancer, as 
previously described [41, 103]. We have previously reported 
that tetracycline can increase LPP1 and LPP3 protein stabil-
ity in breast cancer cells [104]. Additionally, LPP1 expression 
is inducible by dexamethasone treatment via inflammatory 
signaling repression, and this is accompanied by a decrease 
in the expressions of ATX and LPAR1 [105]. Although doxy-
cycline and dexamethasone are exerting these effects on the 
LPPs though nonspecific functions and they may have limited 
therapeutic utility, the results do provide proof of principle 
that LPP1 and LPP3 levels can be pharmacologically manipu-
lated to decrease the impact of chronic activation of the ATX-
LPA-inflammatory cycle [103]. Pharmacological induction 
of LPP1/LPP3 expression to increase the turnover of LPA in 
the breast tumor microenvironment also remains an intriguing 
area for further research.

Future Perspective on Modern ATX and LPA 
Signaling Translational Research

LPA production by extracellular ATX represents the initiat-
ing event of a massive signaling cascade that interacts at some 
level with every major pathway in tumor biology. As to be ex-
pected for such a potent mediator of complex cancer signal 
transduction, our simplistic model of ATX autocrine overpro-
duction by cancer cells, which then signals though LPARs to 
elicit pro-tumorigenesis phenotypes, has evolved, particularly 
in the context of breast cancer. Over the last 10 years, our 
understanding of LPA signaling in breast cancer has become 
deeply interwoven into the elaborate and nuanced additional 
complexities that describe the myriad of cellular interactions 
within the tumor microenvironment. Essentially, our charac-
terization of this interplay is akin to a phenotypic description 
rather than a deciphering of the mechanistic networks that link 
LPA signaling to downstream effects that mediate tumor biol-
ogy. Decoding these pathways and their modulators will re-
quire insights from multiple omics platforms with subsequent 
testing and validation in realistic but manipulable models and 
simulators of tumor dynamics.

Fundamentally, we still do not understand how ATX/LPA 
signaling that mediates inflammatory processes for physi-
ological wound healing purposes is subverted into mediating 
chronic inflammatory disease states, which in some cases can 
lead to and propagate tumorigenesis. It is likely LPA signaling 

is a dual-edged sword to the host organism in cancer initiation. 
For example, in situations where cancer initiation is highly 
associated with chronic inflammation, such as inflammatory 
bowel disease in colorectal cancer, hepatitis in hepatocellular 
carcinoma or obesity-related low-grade inflammation in breast 
cancer, LPA signaling as a mediator of upregulated inflamma-
tory cytokine production acts from the onset as a central or-
chestrator of the inflammation tropism central to the hallmarks 
of tumorigenesis in these malignancies (Fig. 3). However, in 
cases where tumorigenesis initiation is primarily mediated by 
other cancer hallmarks, such as genomic instabilities, LPA 
signaling enrichment derived from upregulated ATX expres-
sion in the stroma of the early tumor microenvironment may 
still retain its wound healing phenotype. This could explain 
why in early human breast cancers increased ATX was associ-
ated with better patient survival metrics [40], but the opposite 
in more advanced disease stages [27, 28]. However, through 
a combination of inflammatory signaling dysregulation and 
immune system evasion, breast cancers and other malignan-
cies are able to temporally subvert LPA signaling to become 
maladaptive. This is ultimately responsible for driving tumor 
growth, metastasis, and resistance to therapeutic interventions 
(Fig. 3).

Now that inhibitors against LPA signaling have entered 
clinical trials, and ATX inhibitors are now in phase I trials for 
metastatic pancreatic cancer [63, 95], it should only be a mat-
ter of time before these inhibitors enter trials for breast cancer 
patients. While the ultimate goal of LPA signaling inhibition 
is to disrupt communication between the tumor microenvi-
ronment and cancer cells, and therapeutically mitigate tumor 
growth, metastasis, and the development of treatment resist-
ance, further research is needed to determine the setting in 
which LPA inhibition would be most beneficial. Despite the 
fact that high ATX expression in early breast tumors appears to 
mitigate tumor growth, these same cancers also have increased 
expression of gene sets related to tumor stemness and treat-
ment resistance, suggesting that these tumors maintain the pro-
pensity to subvert LPA signaling for nefarious purposes [40]. 
Under what conditions these cancers temporally hijack LPA 
for tumor propagation will be an ongoing area of investigation. 
Determining which tumors, and when they might benefit the 
most for LPA pathway signaling inhibition will likely be deter-
mined in part through applications of an LPA pathway-related 
gene signature to patient tumor characterization.

In addition to ongoing development and deducing the ap-
plication of ATX inhibitors in breast cancer, targeting the LPA 
pathway via LPAR inhibition is likely to be most effective via 
inhibition of either LPAR2, given its high tumorigenic proper-
ties [15, 57], or LPAR5 to minimize its mediation of immune 
system evasion [59, 61]. Such inhibitors, however, may not 
have the intended therapeutic potency if the other LPARs can 
adequately compensate following their blockage, but further 
investigation in animal models will be required to determine 
this. If this were to be the case, a combination compound in 
the form of a dual ATX-inhibitor and selective LPAR inhibitor 
might be able to provide robust adjuvant therapy, as has been 
demonstrated with dual ATX-LPAR1 inhibition in metastatic 
melanoma models [86, 106]. Finally, pharmacological target-
ing of the LPPs remains an essentially untapped area of inves-
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tigation. To date, there are no known selective LPP2 inhibitors. 
Similar to the argument for the LPARs, combination treatment 
with an ATX inhibitor might have synergistic effects by both 
depriving the tumor microenvironment of LPA, and addition-
ally impeding cell cycling through blockade of LPP2-mediated 
cell cycling gene sets [41, 74].

In summary, over 30 years of basic science and recent 
translational investigations have started to unravel the intrica-
cies of LPA signaling in the breast tumor microenvironment, 
and multiple pharmacological inhibitors are currently being 
investigated to treat a host of inflammatory-related diseases, 
including cancers. The ability to rationally design therapies 
against the LPA signaling pathway presents opportunities to 
target this signaling cascade both broadly and selectively at 
multiple levels. This affords the opportunity to potentially de-
sign treatments that may work as adjuncts to improve treat-
ment effectiveness, either through increasing the therapeutic 
index of existing regimens, or improving drug bioavailability 
by blocking resistance mechanisms. Overall, LPA pathway in-
hibition represents an attractive strategy for improving patient 
care, not only for breast cancer, but multiple pathological con-
ditions.
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