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Bacterial small RNAs (sRNAs) play a vital role in pathogenesis by enabling rapid, efficient
networks of gene attenuation during infection. In recent decades, there has been a surge
in the number of proposed and biochemically-confirmed sRNAs in both Gram-positive
and Gram-negative pathogens. However, limited homology, network complexity, and
condition specificity of sRNA has stunted complete characterization of the activity and
regulation of these RNA regulators. To streamline the discovery of the expression of
sRNAs, and their post-transcriptional activities, we propose an integrative in vivo data-
mining approach that couples DNA protein occupancy, RNA-seq, and RNA accessibility
data with motif identification and target prediction algorithms. We benchmark the
approach against a subset of well-characterized E. coli sRNAs for which a degree of in
vivo transcriptional regulation and post-transcriptional activity has been previously
reported, finding support for known regulation in a large proportion of this sRNA set.
We showcase the abilities of our method to expand understanding of sRNA RseX, a
known envelope stress-linked sRNA for which a cellular role has been elusive due to a lack
of native expression detection. Using the presented approach, we identify a small set of
putative RseX regulators and targets for experimental investigation. These findings have
allowed us to confirm native RseX expression under conditions that eliminate H-NS
repression as well as uncover a post-transcriptional role of RseX in fimbrial regulation.
Beyond RseX, we uncover 163 putative regulatory DNA-binding protein sites,
corresponding to regulation of 62 sRNAs, that could lead to new understanding of
sRNA transcription regulation. For 32 sRNAs, we also propose a subset of top targets
filtered by engagement of regions that exhibit binding site accessibility behavior in vivo. We
broadly anticipate that the proposed approach will be useful for sRNA-reliant network
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characterization in bacteria. Such investigations under pathogenesis-relevant
environmental conditions will enable us to deduce complex rapid-regulation schemes
that support infection.
Keywords: data mining, bioinformatics, bacterial small RNA, regulatory RNA networks, post-transcriptional
regulation of gene expression
INTRODUCTION

Bacterial small RNAs (sRNAs) enable rapid post-transcriptional
regulatory responses to external stressors that are often present
within host environments (Villa et al., 2018), including envelope
stress and carbon and metal ion limitation (Holmqvist and
Wagner, 2017). Most commonly, these 50-500 nucleotide
transcripts (Villa et al., 2018) are induced under distinct
environmental conditions and do not encode proteins, with a
few exceptions (Gimpel and Brantl, 2017). Instead, sRNAs
usually reduce expression of their targets, either via base
pairing with mRNAs to occlude the Shine Dalgarno (SD)
sequence or recruitment of RNases to degrade mRNAs (Villa
et al., 2018; Jørgensen et al., 2020). Less common trans-acting
sRNA functions enhance mRNA expression by stabilizing
mRNAs or activating translation via altering accessibility of the
SD (Villa et al., 2018; Jørgensen et al., 2020) or ribosome
enhancer regions (Azam and Vanderpool, 2020). Other
regulatory consequences of trans-acting sRNA-mRNA
interactions, such as modulation of Rho-facilitated termination,
have also been acknowledged (Bossi et al., 2020). Trans-acting
sRNAs frequently regulate multiple mRNA targets via imperfect
complementarity of binding sites to a cognate mRNA region; this
enables multiplicative targeting by a single sRNA and
complicates prediction of sRNA-dependent regulatory
networks. Additionally, sRNAs can serve as sponges to
sequester molecules, including mRNAs (i.e., toxin-antitoxin cis
sRNA regulation) (Fozo et al., 2008), other sRNAs (Denham,
2020), or regulatory global proteins (Jørgensen et al., 2020).
Importantly, the varied mechanisms of sRNA-facilitated
regulation are not exclusive [e.g., ArrS targets in cis and in
trans (Melamed et al., 2016), McaS targets in trans and
sequesters CsrA (Jørgensen et al., 2013)]. The interest in
understanding sRNA roles within larger stress-response
networks has increased in recent years due to recognized links
to pathogenicity (Chakravarty and Massé, 2019) and antibiotic
resistance (Mediati et al., 2020).

The past decade has marked a shift from fortuitous sRNA
discovery to rational sRNA prediction. Indeed, omics studies,
often coupled with unique computational screenings, have
enabled identification of numerous sRNAs in both model and
non-model bacteria (Leonard et al., 2019; Haning et al., 2020),
finding that sRNAs are pervasive in all eubacterial kingdoms
(Barquist and Vogel, 2015). In E. coli alone, over 85 sRNAs have
had their expression biochemically confirmed (Hör et al., 2020).
However, condition-specific expression combined with limited
sequence conservation among species (Jose et al., 2019) has made
rapid detailed sRNA characterization difficult to achieve (Vogel
y | www.frontiersin.org 2
and Sharma, 2005). Even for sRNAs whose native expression has
been confirmed, a key question continues to be: how do they
enable bacterial survival under stress?

Omics datasets have been crucial for characterizing sRNA
target networks by enabling identification of putative sRNA-
specific expression and ribosome occupancy effects (Barquist and
Vogel, 2015) and of sRNA-enriched binding partners (Carrier
et al., 2016). However, given that many sRNAs regulate multiple
shared targets simultaneously, there has been a recent focus on
method development to offer global resolution. Global in vivo
methods have been developed to take advantage of the frequent
sRNA mechanistic reliance on chaperone RNA Binding Proteins
(RBPs), i.e., Hfq (Santiago‐Frangos Andrew, 2018) and ProQ
(Holmqvist et al., 2020). For example, crosslinking- and ligation-
based methods can uncover unique components of the global
sRNA interactome through enrichment via their RBP
associations (Hör and Vogel, 2017; Hör et al., 2018;
Desgranges et al., 2020). These methods have uncovered
thousands of putative regulatory sRNA-mRNA interactions
and revealed at least one example of how multiple RBPs (i.e.,
ProQ and Hfq) co-affect sRNA-sRNA degradation (Melamed
et al., 2020).

Although global in vivo sRNA profiling methods have
provided valuable insights, these methods offer limited
resolution for lowly expressed sRNAs that cannot effectively
compete for binding to RBPs as well as for sRNAs that do not
rely on characterized RBPs for their regulatory activity. This is
reflected in the limited characterization of Hfq-independent
sRNAs, compared to Hfq-dependent sRNAs, even when
regulating shared targets (Guillier et al., 2006). For example,
Hfq-dependent sRNA RybB has >15 accepted targets with
corresponding molecular interactions characterized (Gogol
et al., 2011) while the Hfq-independent phage sRNA IpeX has
1 currently annotated likely-direct target (Castillo-Keller et al.,
2006). In light of this challenge, we have developed a global
plasmid-based technique to interrogate the regional binding
landscape of user-selected sRNAs, independent of RBPs,
termed INTERFACE (Mihailovic et al., 2018). Inspired by the
ability of trans-acting sRNAs to regulate multiple targets with
distinct seed regions, this method quantifies the ability of a
perfectly complementary antisense RNA (asRNA) to establish
basepairs with user-defined 9-16 nt RNA regions in vivo; if
interaction occurs, this base pairing disrupts a downstream
hairpin to enable transcriptional elongation reporter activity.
The quantifiable output of this method has previously been
coupled to computational predictions (Mann et al., 2017) to
enrich for true sRNA targets, identifying mRNA-binding activity
in 6 previously uncharacterized sRNAs (Mihailovic et al., 2018).
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sRNA-enabled stress response is facilitated by transcriptional
regulation that links timing of sRNA expression to dynamic
cellular changes. For example, sE-dependent transcriptional
activation of MicA and RybB in response to extracytoplasmic
stress activates control of their target mRNA networks that
support envelope integrity (Gogol et al., 2011). sRNA-
regulating DNA binding proteins (DBPs) have been slowly
uncovered by ChIP-seq methods that elucidate binding regions
and consensus DNA recognition sequences of select DBPs (Hör
et al., 2020). However, while some sRNAs have a handful of
known regulators, such as MicF and GadF with 8 and 10
reported respectively (Keseler et al., 2011), most sRNAs have
few, if any, transcriptional regulators that have been identified.
Indeed, less than half of the ~100 annotated sRNAs in E. coli
have their imparted transcriptional regulation and imparting
post-transcriptional regulation characterized (Hör et al., 2020).
Furthermore, as roughly 20% of the documented interactions
regulating sRNAs involve sigma factors that respond to a
multitude of general stresses, it is likely that precise regulation
of these individual sRNAs involves tuning by other, more specific
regulators (Gottesman, 2019). This underscores the need for
standardized global methods that incorporate stress conditions
relevant to sRNA expression.

Fortunately, the growing number of publicly-available
microarray and omics data stored on multiple databases
(Clough and Barrett, 2016) offer a wealth of knowledge on
regulatory network logic, reducing the need for exploratory
and large-scale experimentation to achieve multiple-condition
insights. For example, distinct anticorrelation patterns, observed
in a sRNA-centric network inference study considering >40
independent datasets, supported the discovery of reciprocal
regulation between sRNA GcvB and the amino acid
metabolism transcriptional regulator Lrp (Modi et al., 2011).
Recently, the value of integrating global datasets from unique
methods to understand regulators has been emphasized (Hör
et al., 2018). Indeed, in a recent characterization of the Csr
network, an Integrative 4D Omics Approach incorporates
multiple unique omics experiments (transcriptomics,
proteomics and CLIP-seq) performed in many distinct cell
strains and environmental conditions to identify 17 new true
targets of the global post-transcriptional regulator CsrA (Sowa
et al., 2017). While it is evident that integration of multiple
datasets representing many conditions and methods is
advantageous for uncovering complex networks, it remains to
be widely adopted in a systematic way that investigates the
sRNA-ome.

Recently, a global high-resolution in vivo protein occupancy
display method (IPOD-HR), in which no enrichment for a
specific protein is performed, has been shown to capture
condition-specific DNA-protein interactions genome-wide
(Freddolino et al., 2021). Coupled with motif search, this
method offers potential to capture transcriptional regulation by
less common factors; to date, this possibility has not been
evaluated for sRNAs as IPOD-HR data has only been analyzed
in the context of protein coding operons (Freddolino et al.,
2021). In this work, we develop an integrative, two-node,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
datamining approach that utilizes publicly-available omics
datasets to understand cellular regulation of and by any sRNA
of interest. We name this approach Integrative Datamining for
sRNA Regulators ‘n Activity (ID-sRnA). In the transcriptional
node of the ID-sRnA approach, IPOD-HR data, coupled with
sequence motif searches, is used to suggest DBPs of sRNAs; DBP
predictions are then corroborated with available RNA-seq data
to assemble a list of high-confidence DBP regulators. In the post-
transcriptional node, top-5 high-confidence mRNA targets are
compiled from streamlining computational target predictions
with regional sRNA accessibility data. We apply this
computational approach to 91 annotated E. coli K-12 MG1655
sRNAs, showcasing the ability to capture known sRNA
regulation and activity. We further propose novel, high-
confidence DBP-based regulation of 62 sRNAs and trans-
targets for 32 sRNAs that are supported by regional
accessibility data. In combination, ID-sRnA suggests both
putative transcriptional regulation and post-transcriptional
activity for 21 sRNAs.

Experimental follow-ups showcase the power of ID-sRnA for
the case of RseX, an exemplary enigmatic sRNA originally
identified from a computational sRNA screening (Chen et al.,
2002) that enhances survival in the absence of cytoplasmic sE

activity via post-transcriptional regulation of outer membrane
proteins (OMPs) (Douchin et al., 2006). This survival effect is
reminiscent of those corresponding to overexpression of multi-
target sE-regulated sRNAs, RybB and MicA (Gogol et al., 2011).
However, to date, native RseX expression has not been detected
despite numerous independent attempts (Chen et al., 2002;
Douchin et al., 2006; Raghavan et al., 2011). Using our
integrative analyses, we confirm that RseX transcription is
enabled in a strain deleted for the nucleoid-associating protein,
H-NS, and validate two novel mRNA targets, fimB and ihfB, on
the basis of their direct interaction with and regulation by RseX
in vitro and in vivo, respectively. Overall we demonstrate the use
of integrative methods to elucidate hidden 3-layer regulatory
systems, in which DBPs regulate transcription of sRNAs, which,
in turn, regulate stability and translation of mRNA targets.
MATERIALS AND METHODS

Selection of sRNA Coordinates for Analysis
The mature sRNA transcript coordinates were defined by
RegulonDB (Gama-Castro et al., 2016) for a K-12 MG1655
genome (RefSeq Sequence: NC_000913.3) (Supplementary
Data 1). For relevant IPOD-HR (Freddolino et al., 2021) data
extraction, sRNA coordinates were selected to contain 200
nucleotides (nts) upstream from the nearest RegulonDB
transcription start site (TSS) through the mature sRNA
transcript region to 10 nts downstream. Therefore, sRNAs that
are processed from within or at the 3’ end of longer transcripts
(such as 3ETSleuZ, CpxQ, GadF, MicL, nc2, PspH, SroC, SroD,
SroE, Tpke11) have the entire upstream transcript included up to
the TSS. If no documented TSS existed, the start of the mature
transcript region was used as a pseudo-TSS.
July 2021 | Volume 11 | Article 696533
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Identification of sRNA-Associated
Differential Protein Occupancy From
IPOD-HR Data
Previously, z-scaled MG1655 genomic protein occupancy (PO)
data IPOD-HR in three distinct conditions (log phase in rich
defined medium (RM), stationary phase in RM, and log phase in
minimal media) were evaluated by continuous wavelet transform
peak calling as implemented in the SciPy python library
(Freddolino et al., 2021). Briefly, normalized protein occupancy
values across the genome were scanned for maxima in signal
above an expected noise threshold. This process was repeated at
increasing signal-to-noise (SNR) thresholds of [0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40,
and 50], resulting in a list of PO peaks across the genome and the
maximum SNR value at which each can be detected. Here, these
data were reduced to a sRNA-specific subset by identifying peaks
that overlap (by at least 5 nucleotides) with genomic regions
surrounding sRNA genes (200 upstream of sRNA start to 10 nts
downstream of sRNA terminator end for each accepted sRNA
sequence). This process was performed on each of three PO
datasets, and extracted peaks present in at least one condition
were identified. Peaks from different conditions were considered
equivalent if they overlapped by at least 50 nts. From this list,
each peak was evaluated for differential occupancy defined by (i)
peak absence in at least once condition or (ii) SNR ratio ≧ 2 for
any condition combination. For each peak corresponding to
differential occupancy, the longest possible DNA sequence was
exported to a FASTA file.

Putative DBP Curation and Identification
Probable DBP motifs were identified from genomic sequences
with observed differential PO using locally-installed MEME
FIMO 4.11.2 (p-value maximum of 1.0e-4) against MEME E.
coli databases SwissRegulon (Pachkov et al., 2013) and
DPInteract (Robison et al., 1998), as well as an E. coli-specific
database curated in-house from Prodoric2 (Eckweiler et al.,
2018). DBPs whose motifs were searched are listed in
Supplementary Data 2 , along with sRNAs in which
corresponding motif-harboring differential PO peaks
were identified.

RNA-Seq Curation and Analysis
sRNAs not listed in the K-12 MG1655 genomic GFF (RefSeq
Assembly: GCF_000005845.2), were manually inserted using K-
12 MG1655 (RefSeq Sequence: NC_000913.3) coordinates of the
documented mature transcript defined by RegulonDB (Gama-
Castro et al., 2016) (Supplementary Data 1).

Appropriate RNA-seq datasets were selected using Gene
Expression Omnibus Database (Clough and Barrett, 2016) for
E. coli K12 MG1655 strains with dataset types limited to
expression profiling by high throughput sequencing. Selected
datasets contained either DBP deletions or stress conditions of
interest. Datasets used with GenBank accession numbers and
descriptions are provided in Supplementary Data 3.

All datasets were downloaded from the Sequence Read
Archive and quality checked by FastQC (http://www.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
bioinformatics.babraham.ac.uk/projects/fastqc/) prior to further
analysis. Using Cutadapt (Martin, 2011), all datasets were quality
trimmed for bases with <20 quality scores, and datasets with
>15% adapter content had adapters trimmed. Reads were aligned
using BWA mem (Li and Durbin, 2010) with alignment quality
filter of 30, and gene counts assigned using HT-Seq (Anders
et al., 2015) with the above-described genomic GFF.
Strandedness was determined based on reported library
preparation kits if available. If not available, strandedness was
inferred based on “no feature” counts.

Differential expression (DE) analysis was performed in DESeq2
(Love et al., 2014) in R (v. 3.6.3) (https://www.R-project.org/) via
LRT test over condition of interest. Statistical significance of sRNA
DE was defined as an adjusted p-value < 0.05. To account for
DESeq2 bias towards long transcript length, datasets containing
fewer than 20 sRNAs differentially expressed were subject to an
additional filter to include sRNAs with low base mean counts that
would otherwise be excluded from the p-adj filter (base mean
count >3 AND p-value < 0.1 AND |Log2FC|>1.5). The log2FC
and p-adj values are provided in Supplementary Data 3, with the
p-adj values that were not reported due to low base mean counts
are provided post-analysis through silencing the independent filter
in DESeq2. Due to varying degrees of sRNA depth between
datasets, statistically significant sRNAs were limited to 20 for
each dataset.

DBP motifs corresponding to sequences with differential
protein occupancy are listed alongside DE conditions found for
each sRNA in Supplementary Data 2. Well-known co-factors,
activation or repression conditions, and function for each DBP
that strongly corresponded with a DE condition tested was noted
and compared for each motif and sRNA pair (Supplementary
Data 2). Of the 102 DBPs searched by FIMO, 48 had at least one
corresponding DE condition. High-confidence DBP matches
were determined if a DE condition for an sRNA supported the
DBP’s known activity.

Selection of Putative Functional Regions
From Accessibility Data
Putative sRNA functional regions were selected from previously-
published high-throughput regional RNA accessibility datasets
in E. coli BW25113 (Mihailovic et al., 2018) (GSE117939) based
on activity reminiscent of toehold behavior, namely, drastic
accessibility changes between neighboring regions. To capture
toehold-like behavior of RNA regions in vivo, regional
accessibilities from 66 previously-profiled sRNAs shared with
the sRNA pool in this work were evaluated for stark accessibility
differences between their next-door or overlapping target region
neighbors. Specifically, regions with extreme accessibility
compared to at least one neighboring region (accessibility
difference >0.7 on a normalized 0-1 scale, Student’s 2-tailed t-
test p-value < 0.05) were compiled as likely-functional sRNA
regions. Importantly, only target regions that were selected based
on a machine-learning-based approach were considered; those
that were intentionally targeted due to their known binding
activity were intentionally excluded from downstream analysis
(Mihailovic et al., 2018).
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Computational Target Prediction Filters
and Compilation
IntaRNA predictions were collected for all sRNAs investigated in
this work against a curated genome-wide mRNA-representative
sequence list (Mann et al., 2017). This sequence list was compiled
to correspond to annotated mRNA TSS [corresponding to the
longest known transcript (Gama-Castro et al., 2016)] to +100, or,
for unannotated mRNA TSS, -100 to +100 nts around the start
codon was used. Importantly, only the most favorable interaction
between a sRNA and each mRNA sequence was considered
for downstream processing. Predictions corresponding
to each sRNA were subject to exclusion criteria based on
thermodynamically-predicted (most favorable) interaction
reliance on the likely-functional region, as previously described
(Bowman et al., 2020). Briefly, the engagement of at least 80% of
the likely-functional region in the predicted interaction was
required. Upon exclusion of predicted targets not meeting this
threshold, top-5 target predictions were compiled for each likely-
functional region (Supplementary Data 4) and further flagged if
meeting either of two criteria: mRNA function aligned with
reported high-confidence sRNA induction conditions (from this
study or prior works/documentation, including Gene Ontology
annotations) or mRNA identity aligned with sRNA-mRNA pair
previously reported from any of 4 independent ligation-based
studies (RIL-seq and/or CLASH methods) relying on
coimmunoprecipitation of Hfq, ProQ, or RNase E (Melamed
et al., 2016; Waters et al., 2017; Iosub et al., 2020; Melamed
et al., 2020). For these CLASH and RIL-seq studies, only sRNA-
mRNA pairs with FDR < 0.05 and pairs with > 39 chimeras [as
identified as a reliable cutoff in (Iosub et al., 2020)] were
considered for flagging, respectively.

Northern Blotting
To measure RseX expression, BW25113, kanR-cured
BW25113Dhns, and hns::neo mutant strains (Yamada et al., 1991),
were grown overnight and seeded in LB. Samples were taken at
various time points corresponding to distinct growth phases:
exponential (4 hours post seeding, OD600 ~2.4), transitionary (7
hours, OD600 ~3.8), mid stationary (24 hours, OD600~3.3), and late
stationary (48 hours post seeding, OD600 ~3.4). Total RNA was
extracted following standard methods (Mihailovic et al., 2018) with
slight modifications: 300mL instead of 200 mL of 24:1 chloroform:
isoamyl alcohol for separation, 1mL IPA with 1 mL GlycoBlue
Coprecipitant (Ambion) instead of the sodium citrate and sodium
chloride solution for overnight precipitation, and 95% instead of
75% ethanol/water was used for the first pellet wash. The total RNA
was then subjected to previously described northern blot analysis
(Haning et al., 2020). In summary, DNA oligonucleotide probes
designed complementary to a 5’ region of RseX (Supplementary
Table 1), as well as the ladder [FX174 DNA/HinfI (Promega)],
were labeled individually using 20 pmol of olignoucleotide or ladder
in a 20 mL kinase reaction consisting of 25 mM [g-32P]-ATP and 20
units T4 polynucleotide kinase (NEB) at 37°C for 1 hour. Total
RNA (~20 mg) for each sample were separated on a 10% denaturing
polyacrylamide-urea gel and then transferred to a membrane
(Hybond N+, GE Life Sciences) for blotting. Probe hybridization
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
to the membrane was performed using PerfectHyb Plus
Hybridization Buffer (Sigma-Aldrich) overnight at 42°C, and then
washed three times (first wash: 5 × SSC, 0.1% SDS at 30°C for 20
minutes; second and third wash:1 × SSC, 0.1% SDS at 42°C for
15min). Membranes were then exposed to a phosphor screen for 72
hours prior to visualization on a Typhoon 9500 (GE). Sizes were
estimated by (i) inclusion of an RseX IVT product (known 91
nucleotides) on northern gels and (ii) comparison of band
separation of a low-range ssRNA ladder (NEB) to the DNA
ladder used in northern gels (FX174 DNA/HinfI). RseX
quantification using ImageJ (Schneider et al., 2012) was
normalized to 5S RNA, which was probed second following the
same protocol.

In Vitro Transcription, sRNA Binding and
Probing Assays
Binding assays were performed as previously described (Bowman
et al., 2020). Briefly, DNA corresponding to RseX and representative
mRNA sequences (observed 5’ start from previously published RNA
expression data (Sowa et al., 2017) to at least 30 nts downstream of
proposed interaction site) were amplified from genomic K-12
MG1655 DNA with an overhanging forward primer to enable in
vitro transcription (IVT) via T7 MegaSCRIPT kit (Thermo Fisher)
(Supplementary Table 1). For binding assays, RseX was internally
phosphor-labeled by replacing up to 75% of UTP with [a-32P]-
UTP in the IVT reaction. All IVT reactions were performed for 6
hours, DNased, then purified via RNA Clean and Concentrator-5
kit (Zymo Research). Non-incorporated labeled nucleotides were
removed using Performa DTR gel filtration cartridges (EdgeBio).

For binding assays, 12 uL reactions containing 1.3 pmol
internally-labeled RseX and 0-80 (or 0-140 in the case of
ompA) pmol unlabeled mRNA fragments were suspended in a
reaction mixture containing 1X EMSA binding buffer and 10%
glycerol. Reactions were denatured at 70°C for 5 minutes and
incubated at 37°C for 1.5 hours prior to loading onto a 5% non-
denaturing polyacrylamide gel and running at 150V in 0.5X TBE
buffer. Phosphor screens were exposed overnight to EMSA gels
prior to imaging on a Typhoon 9500.

For probing assays, representative mRNA transcripts were
excised from a 7M urea PAGE gel and recovered prior to
dephosphorylation via Calf Intestinal Phoshatase (NEB) and
5’-labeling with [g-32P]-ATP using T4 polynucleotide kinase
(NEB). Each sample was then cleaned and concentrated (RNA
Clean and Concentrator Kit-5, Zymo Research) prior to lead
acetate (PbAc) probing. PbAc probing reactions were performed
as previously described (Desnoyers et al., 2009). Briefly,
approximately 0.1 mM radiolabeled mRNA transcripts were
incubated with or without 1 mM RseX, and reacted with 5mM
PbAc at 37°C for 2 minutes. For OH and guanine ladder
synthesis, mRNA transcripts were incubated with alkaline
buffer (Ambion) for 5 min at 90°C, or RNase T1 (Ambion) for
5min at 37°C. Samples and ladders were loaded on a 0.4mm
thickness 10% acrylamide 7M urea sequencing gel and migrated
at 38W (OWL S4S Aluminum-backed Sequencing System,
Thermo Scientific). Gels were dried for 30 min at 80°C prior to
overnight phosphor screen exposure.
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In Vivo Reporter Assays
Reporter assays were performed to evaluate regulation of RseX on
newly-identified binding partners fimB and ihfB by quantifying
expression of inducible mRNA-representative sequences fused to
gfp (from a pBTRK derivative) (Youngquist et al., 2013) upon RseX
or “empty” induction [from pNM12, (Majdalani et al., 2001)] via
flow cytometry. For experimental purposes, the pBTRK plasmid
was altered in three ways: (i) replacement of pTrc with pLacO, (ii)
replacement of kanR gene with catR and (iii) shortening of sequence
between the multiple cloning sequence and rrnB1 terminator
(relevant oligonucleotides in Supplementary Table 1).
Representative mRNA sequences for these reporter assays were
chosen as the sequences from annotated transcription start sites
(fimBp1 for fimB) (Gama-Castro et al., 2011) to at least 30
nucleotides downstream of proposed interaction site
(Supplementary Table 1). These sequences were amplified from
the K-12 MG1655 genome and, along with a GFP fragment
amplified from pHL1756 (Sowa et al., 2017), inserted into a
digested (SalI & HindII, NEB) pBTRK plasmid derivative via
Gibson Assembly. Similarly, the RseX sequence (+26 nucleotides
downstream of the transcription stop site, to keep some semblance
of the native chromosomal context) were amplified from the K-12
MG1655 genome and inserted into the pBAD-DsrA (Lalaouna
et al., 2015) plasmid to replace the DsrA sequence via Gibson
Assembly. Corresponding RseX and fimB mutations were
stringently designed to keep minimum free energy structure
consistent (as evaluated via Nupack (Zadeh et al., 2011); < 0.3
kcal/mol deviations tolerated) and, in the case of fimB, to
additionally maintain similar codon frequencies to the wildtype
sequence. RseX mutations were achieved via a Q5 SDM Kit (NEB);
the minimal fimB mutant sequence was synthetically constructed
(IDT) with Gibson Assembly overhangs. All relevant primer and
gBlock sequences are supplied in Supplementary Table 1.

Plasmids were double-transformed into a kanR-cured K-12
MG1655 RseX deletion (Hobbs et al., 2010) in tested
combinations. Overnights grown in biological triplicates were
seeded 1:100 into six 20 mL LB flasks containing 170 µg/L
chloramphenicol and 100 µg/mL carbenicillin. After 1 hr of
growth at 37°C and 200 rpm (OD ~0.15), all samples were
induced with 1 mM IPTG and 0.05% arabinose. Green
fluorescence of ~100,000 cells per sample were measured with
BD FACSCalibur and median fluorescence normalized to
corresponding empty plasmid controls calculated. Fold changes
were statistically compared using Student’s 2-tailed t-test.
RESULTS

Development of Integrative Data-Mining
Approach to Uncover Regulators and
Targets of sRNAs
We have developed a computational approach (ID-sRnA) for
identifying experimentally-supported regulators and targets of
bacterial sRNAs by coupling multiple large and distinct omics
datasets as well as bioinformatic prediction tools. The ID-sRnA
approach is split into two distinct characterization nodes– for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
transcriptional (Figure 1A) and post-transcriptional regulation
(Figure 1B). The outputs of these two nodes, respectively, are (i)
identities and putative binding positions of IPOD-HR- and Next
Generation Sequencing (NGS)-supported DBPs, namely,
transcription factors (TFs), sigma factors, or nucleoid-
associating proteins (NAPs), that may influence sRNA-specific
expression, and (ii) computational sRNA target predictions
informed by sRNA regional hybridization patterns in vivo,
many of which are further supported by Gene Ontology
analysis. In this work, the ID-sRnA approach is exemplified for
91 annotated sRNAs in E. coli K-12 MG1655 (Supplementary
Data 1); however, the approach can be applied to any bacterium
of interest pending data availability. Notably, all sRNAs
investigated in this work have homologs in the pathogenic
EHEC O157:H7 strain (Supplementary Data 1).

To uncover putative native transcriptional regulation of
sRNAs, the transcriptional node corroborates conditional
global DNA protein occupancies (POs) with corresponding
RNA expression in a stepwise filtering process. First, for 91
biochemically-confirmed sRNA sequences (Supplementary
Data 1), we performed a search of condition-specific PO on
genomic positions from -200 to +10 of the corresponding
encoding DNA (a wide span to include potential NAPs) within
a publicly-available IPOD-HR dataset (Freddolino et al., 2021)
under three distinct growth conditions (rich media log phase,
minimal media log phase, rich media stationary phase).
Importantly, this method captures genome-wide PO
independent of traditional immunoprecipitation (Freddolino
et al., 2021). By normalizing to RNA Polymerase-derived
occupancies, these datasets encompass protection by any DBP.
IPOD-HR has previously been successful in capturing known
condition-specific TF binding, including nutrient-dependent
ArgR at the argA promoter under minimal media conditions
(Freddolino et al., 2021). To capture the environmental-
responsive nature of sRNAs that is critical to pathogenesis
(Chakravarty and Massé, 2019), the first step of the ID-sRnA
approach was the selection of 284 DNA PO peaks based on their
condition-specific occupancy behavior (signal-to-noise ratio,
SNR, ≥ 2 between 2 conditions, or no appreciable peak in at
least 1 condition). To identify putative DBPs corresponding to
these 284 sequences, motif scanning was performed against 3
curated E. coli databases representing 102 unique DBPs (see
Methods) using FIMO 4.11.2 (Grant et al., 2011) with user-
specified constraints (p-value < 1e-04).

The final step (step 3) of the transcriptional node consults
publicly available RNA-seq data to lend support or opposition to
putative DBP-based transcriptional regulation as inferred from
steps 1 and 2. For this step, we mined 19 experimental RNA
expression datasets, representing 15 unique DBP deletion strains
as well as numerous host infection-mimicking conditions
including nutrient limitation, metal ion limitation, and low pH
(listed in Supplementary Data 3). Importantly, this collected set
of RNA expression profiles contains well-known activation or
repression conditions corresponding to 48 (of 102 total) DBPs
with associated motifs that were utilized for scanning in step 2
(Supplementary Data 2). Using DEseq2 (Love et al., 2014),
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sRNAs with differential expression were compiled for each
analyzed condition (see Methods). This analysis narrowed the
list of putative sRNA-regulating DBPs down to 163 (18% of those
suggested by coupled PO analysis and motif search alone),
hereafter referred to as our high-confidence pool (Figure 1C)
(bolded in Supplementary Data 2). A few of these promising
DBP-sRNA pairs are further detailed in the discussion.
Interestingly, 30% of high-confidence putative sRNA regulators
involve TF or sigma factor motifs downstream of the
transcription start site, which may suggest important
regulation outside of RNAP recruitment to or occlusion of the
promoter region (see Discussion).
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In the post-transcriptional node of the ID-sRnA pipeline, we
integrate omics-enabled regional (9-16 nt) RNA accessibility
data, previously collected for a large pool of E. coli sRNAs,
(Mihailovic et al., 2018) with computational target predictions to
compile an accessibility-informed, filtered set of top-5 (arbitrary
cutoff for rank comparison purposes) putative trans targets. The
method of informing computational predictions with in vivo
information, i.e., extremely accessible sRNA regions, was
previously shown to increase positive predictive value for a
subset of E. coli sRNA targets (Mihailovic et al., 2018; Bowman
et al., 2020). It is important to note that our selection of likely
functional regions in this approach differs from previous efforts;
sRNA
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FIGURE 1 | An integrative top-down datamining approach utilizes publicly-available omics datasets to understand cellular regulation of and by any sRNA of interest.
(A) The ID-sRnA approach is split into two distinct nodes. In the transcriptional regulation characterization node, DNA sequences corresponding to relevant sRNA
transcription sequence space [-200 to +10] are narrowed to those that exhibit condition-specific occupancy. For selected 60-185 nt genomic fragments, DBP motif
searching is performed to compile a set of putative regulators. High-confidence regulators are selected as DBPs for which differential RNA expression corroborates
putative DBP binding. (B) The post-transcriptional sRNA characterization node of ID-sRnA relies on coupling of high-throughput regional accessibility data with
computational target predictions. Region 3 (shaded) is selected as a likely functional region due to its toehold-like activity; namely, high accessibility with surrounding
low accessibility. Target predictions are flagged by reliance of the lowest energy sRNA-mRNA interaction on the proposed sRNA functional region (dark) and re-
ranked to exclude those that do not rely on the functional region for interaction. (C) Specific number of sRNAs and datasets used for each step of the ID-sRnA
pipeline are highlighted, quantifying the amount of filtering performed at each step. 91 sRNAs were considered in which 62 and 32 sRNAs remain in the transcription
and post-transcriptional regulation nodes, respectively. Fifty-three accessibility-informed targets corresponding to 21 sRNAs are supported by sRNA regulation
factors identified through node 1 and/or previously documented sRNA characterization. Results for RseX are followed-up experimentally to confirm a negative DBP
regulator (H-NS) as well as two novel targets, fimB and ihfB.
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as opposed to focusing on extreme accessibility, we instead
exploit the unique characteristic of high regional accessibility
with neighboring low accessibility which appeared suggestive of
seeding or toehold regions in sRNAs DsrA and RprA (Mihailovic
et al., 2018). Specifically, for 66 sRNAs with clear accessibility
profiles in wildtype BW25113 (Mihailovic et al., 2018), putative
regulatory sites were selected as sRNA regions with high
accessibility delta (difference > 0.7 on a normalized scale, 2-
tailed t-test p-value < 0.05) compared to at least 1 nearest
neighboring regions (Figure 1B). Using this selection criterion
and further excluding antisense sRNAs that regulate toxic
proteins, we identified 41 regions within 32 sRNAs as likely
functional sites (Supplementary Data 1). For sRNAs with
known Hfq dependencies, reduced accessibility of 5 putative
regulatory sites in a kanR-cured isogenic Dhfq strain (Methods)
lent further confidence to region selection (Supplementary Data
1) given the accepted role of Hfq in rearranging sRNA structure
for optimal target base-pairing (Santiago‐Frangos Andrew, 2018)
that has previously been captured by regional accessibility studies
(Mihailovic et al., 2018).

These 41 sites were used as filters for IntaRNA predictions to
rank all predictions from highest to lowest likelihood of being
true sRNA targets, as previously described (Bowman et al., 2020).
Briefly, predicted target mRNAs were reranked under the
constraint that 80% of the proposed sRNA seed region was
involved in predicted mRNA binding. Upon combing of
predictions, top-5 putative targets for each of the 41 sites were
compiled for a total of 201 targets. In light of regulatory sRNA
activity commonly being tailored to corresponding induction
conditions (Gottesman, 2019), we flagged top-5 predicted
mRNA targets with documented protein function that aligns
with sRNA expression regulation (as inferred by previously
documented regulators and/or high-confidence regulators from
node 1) or Gene Ontology. This analysis supports a quarter of the
compiled high-confidence putative targets (Supplementary
Data 4). We additionally flagged top-5 predicted mRNA
targets that are reinforced by previously-published large scale
in vivo interactome data, finding that approximately 5% of
putative sRNA-target interactions have been observed in these
large studies (Melamed et al., 2016; Waters et al., 2017; Iosub
et al., 2020; Melamed et al., 2020). This low proportion can
be partially attributed to the complete lack of representation
in interactome studies for 9 of 32 considered sRNAs
(Supplementary Data 4) (Melamed et al., 2016; Waters et al.,
2017; Iosub et al., 2020; Melamed et al., 2020), likely due to low
abundance or RBP independence.

The proposed ID-sRnA approach integrates data from
multiple independent high-throughput studies to propose
sRNA regulators and targets with high confidence. In total, for
91 annotated E. coli sRNAs, high-confidence regulators and/or
targets are listed for 65— 21 sRNAs with both transcriptional
and post-transcriptional regulation (Figure 2), 3 with only post-
transcriptional regulation (Figure 2), and 41 for which only
transcriptional regulation is suggested (Figure 3). We investigate
these results in detail for signatures of expected regulation as well
as novel regulation in the following sections.
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Known Transcriptional sRNA Regulation
Captured by Integrative Pipeline
To validate the effectiveness of ID-sRnA in capturing sRNA
regulation, we benchmarked the transcriptional node of the
integrative pipeline against 39 sRNAs that have documented
DBP-facilitated transcriptional regulation (Keseler et al., 2011;
Hör et al., 2020). Importantly, IPOD-HR data alone is able to
capture PO expected of known sRNA regulators in the tested
conditions. For example, two PO peaks upstream of the CsrB
sRNA that are present during stationary phase (-222 to -142 and
-56 to 25) align well with in vivo-determined UvrY binding sites
(Zere et al., 2015) (Figure 4A). Notably, the downstream PO
peak (-56 to +25) persists during log growth although the
upstream occupancy is severely diminished. These results
support prior in vitro footprinting that identified only the
upstream binding site (-192 to -174) (Zere et al., 2015),
suggesting that other factors facilitate UvrY binding at the
promoter region in a nutrient-specific manner. Although the
IPOD-HR support of UvrY-CsrB regulation is favorable, this is
one example of many potential DBP-sRNA pairs that will not be
flagged as “high-confidence” due to the lack of a known
consensus motif of the associated DBP (UvrY) that limits
identification in the motif-search step of the pipeline. This
observation emphasizes the conservative nature of our stepwise
method, as well as highlights that many of putative sRNA
regulators outside of the high-confidence pool (Supplementary
Data 2) may merit experimental follow-up.

For many DBPs that have documented consensus motifs,
corresponding known sRNA regulation was successfully
identified via motif search within condition-specific PO peaks
(~40%, Supplementary Data 2). In Figures 4B–E, we showcase
the ability of the transcriptional node to capture RyhB and MgrR
regulation by tailored metal-specific factors (Fur, Fe2+-regulated,
and PhoP, Mg2+-regulated, respectively). Importantly, these two
sRNAs have been recently shown to directly post-
transcriptionally regulate expression of the locus of enterocyte
effacement in EPEC (Bhatt et al., 2017), emphasizing the
importance of metal ion response networks in pathogenicity.
Using FIMO, an expected Fur motif (p-value < 1e-06) was
identified within strong, differential PO peaks in the RyhB
promoter region during log growth in minimal media
(SNR>10); an additional identified Fur motif (p-value < 1e-04)
aligns with the smaller PO peak in log growth in rich media
(SNR>4.5) (Figure 4B). Although iron ion (Fe2+) concentrations
between these two medias are equivalent, it is likely that iron
uptake rates vary considerably due to altered nutrient
availability, contributing to the dynamic PO peaks. Similarly,
expected PhoP regulation is accurately suggested from motif
search of condition-specific peaks upstream of the MgrR
transcription start site (TSS) (Figure 4C) (Moon and
Gottesman, 2009). Importantly, the PO peak corresponding to
the PhoP motif identified is nonexistent in rich media-based
stationary growth, and grows in magnitude and width between
minimal and rich media-based log growth. This seemingly
reflects the activation of PhoP regulator PhoQ under Ca2+

deficiency (4µM in rich media vs 400 µM CaCl2 in minimal
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media), a documented response that is appreciable although less
efficient than response to Mg2+ deficiency (Véscovi et al., 1997).

Many of these proposed DBP-sRNA pairs are further
supported by differential RNA expression behavior, binning
them into a high-confidence sRNA regulator pool (163 total,
corresponding to 62 sRNAs). Twelve sRNAs (of 39 sRNAs with
known regulators) have at least one previously-documented DBP
association represented within this list (Table 1 and
Supplementary Figure 1), including RyhB and MgrR. For
example, differential RyhB expression is observed under Fur
knockout, supporting RyhB as a target within the Fur regulon
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(Seo et al., 2014) (Figure 4D). In contrast, the PhoP-MgrR
regulon is one of many DBP-sRNA pairs that can be
categorized as high confidence despite DBP-specific RNA-seq
(i.e., +/- PhoP) being unavailable; rather, a stress known to
induce expression of PhoP is considered (divalent cation
depletion). In this way, MgrR regulation by PhoP is further
corroborated by differential expression of MgrR observed
between 10 mM and 50 mM Mg2+ (McClune et al.,
2019) (Figure 4E).

Altogether, these results support the identification of true
sRNA-regulating DBPs from the transcriptional node of the ID-
FIGURE 2 | High-confidence regulators and/or targets for 24 sRNAs are suggested by the ID-sRnA approach. Upon using the ID-sRnA approach for a set of 91 E.
coli sRNAs, both transcriptional and post-transcriptional regulation are proposed for 21 sRNAs and post-transcriptional regulation only is suggested for 3. Genomic
context of each sRNA is shown, with (i) marked position ranges corresponding to identified motifs for putative high-confidence sRNA-regulating DBPs (repressors as
red, activators as green, and dual-functions as blue) (ii) marked ranges corresponding to thermodynamically-predicted binding positions for putative high-confidence
mRNA targets (magenta). Arrows indicate position of the TSS.
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FIGURE 3 | High-confidence regulators only are proposed for 41 sRNAs using the ID-sRnA approach. Transcriptional regulation only is proposed for 41 sRNAs that did
not have a seed region identified from the post-transcriptional ID-sRnA node. Genomic context of each sRNA is shown, with (i) marked position ranges corresponding to
identified motifs for putative high-confidence sRNA-regulating DBPs, as in Figure 2 (repressors as red, activators as green, and dual-functions as blue). Arrows indicate
position of the TSS.
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FIGURE 4 | Coupling IPOD-HR with FIMO captures known condition-specific protein occupancy upstream of sRNA promoter regions. Protein occupancies (PO)
corresponding to 3 environmental conditions are displayed by line color (top) for K-12 samples collected in log or stationary phase grown in rich or minimal media
(RM, MM). Shaded regions correspond to differential PO peaks (light grey), known binding sites (BS, grey), or FIMO-identified motifs (Motifs, blue), as listed. (A) Two
differential PO peaks within -250 to +10 (with respect to TSS) of sRNA CsrB were identified. These regions overlap two previously-identified binding sites of UvrY
(DNase I Footprinting: -192 to -174, ChIP-exo: -222 to -142 (not shown) and -56 to +25) (Zere et al., 2015). The binding of UvrY is known to activate CsrB
transcription, however, coordination between sites is not well understood. Interestingly, the two peaks differ in presence between log and stationary phase, and
between RM and MM, suggesting varying UvrY modes of binding. A UvrY consensus sequence was not in any of the tested motif databases, and therefore could
not be captured by the FIMO search. B/C. PO of approximately [-200 to +10] nucleotides of the sRNAs RyhB (B) and MgrR (C) with documented BS and FIMO
captured motifs of the iron-responsive Fur regulator [EMSA: -30 to +1 (Chen et al., 2007)] and the cation-responsive PhoP regulator [consensus motif identification:
-52 to -36 (Moon and Gottesman, 2009)], respectively. (D) RNA-seq comparison between a fur deletion and wildtype in the presence of iron (Seo et al., 2014)
supports the role of Fur repressing RyhB transcription, enabling Fur-RyhB to be captured as a high-confidence DBP-sRNA pair by the data-mining approach.
(E) MgrR is highly expressed under magnesium deprivation (McClune et al., 2019). As PhoP is known to activate transcription in response to magnesium
deprivation, among other divalent cation limitations, it is likely that IPOD-HR data captured calcium-dependent differential PhoP occupancy between RM (4µM CaCl2)
and MM (400µM CaCl2) (C).
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sRnA approach. It is interesting to note that consideration of a
few, nutrient-tailored IPOD-HR conditions enabled the pointed
capture of sRNA-regulating DBPs whose accepted inducing
stresses are not necessarily represented within these data (e.g.,
acid stress of GadE-ArrS). In addition to showcasing the power
of this approach to identify a novel regulator for sRNA RseX in
the results below, we examine other promising predicted
regulator-sRNA pairs in the Discussion.

Known Post-Transcriptional sRNA
Regulation Captured by Integrative Pipeline
To benchmark sRNA post-transcriptional regulation suggested
by ID-sRnA, namely, the restriction of target predictions to sRNA
regions previously observed to exhibit toehold-like accessibility
behavior, we considered 12 characterized sRNAs from the pool of
32 with accessibility-identified functional regions. These trans-
acting sRNAs were selected on the basis of in vivo-characterized
target regulation (ArcZ, CyaR, DsrA, FnrS, GcvB, IstR, MicL,
MgrR, OxyS, RybB, RyhB, Spot42) (Mihailovic et al., 2018).
Within this subset, our proposed functional regions overlaps
known mRNA-binding coordinates of nine of these sRNAs
(ArcZ, DsrA, FnrS, GcvB, IstR, MgrR, RybB, RyhB, Spot42)
(Supplementary Data 1). Upon filtering corresponding target
predictions by position coordinates outlined in Supplementary
Data 1, known targets are captured in the filtered top-5 high-
confidence targets for 6 sRNAs: DsrA, FnrS, GcvB, MgrR, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
Spot42 (Supplementary Data 4). Notably, true targets
corresponding to half of these sRNAs would not have been
captured within the top-5 without the functional region filter
(FnrS:sodB, GcvB:inaA, MgrR:pitA). It is interesting to note that
the phenotypic relevance of true targets captured for each of the
referenced examples aligns well with accepted stress-specific
expression of the sRNA although the INTERFACE assay was
performed in non-stress (i.e., non-enriched) conditions.
However, some true sRNA-target pairs were not captured in
top-5 by our approach, despite correctly assigning a region
overlapping a known regulatory site as likely functional (e.g.,
ArcZ). This may be attributed to low thermodynamic ranking of
known targets (#4014 for known target eptB) from inaccurate
reflection of true in vivo mechanisms.

These observations may additionally harbor worthwhile
molecular insights for even previously-documented post-
transcriptional sRNA regulation. For example, the post-
transcriptional node of the ID-sRnA pipeline successfully
captured known MgrR target pitA, encoding for an inorganic
phosphate transporter, but not other known targets [e.g., eptB,
soxS, ygdQ (Hör et al., 2020)]. Indeed, all targets, including pitA,
are known to bind within an extremely low-accessibility MgrR
region (region 7, Supplementary Figure 2); however, pitA is the
only target with predicted binding extending through the
extremely accessible likely-functional region (region 6,
Supplementary Figure 2) (Yin et al., 2019). It will be
TABLE 1 | Documented DBP-sRNA regulons are captured by node 1 of the ID-sRnA approach.

sRNA sRNA Function DBP DBP Function Suggested
DBP Effect

DESeq Evidence Reference of DBP
Binding Site

ArrS Stabilizes gadE maturation,
Regulates acid response

GadE Regulates acid response Activator –DgadE Ma, J Bacteriol (2004)

CyaR Represses porin synthesis and
group behavior

Crp Catabolism of secondary
carbon sources

Activator –Dcrp/Glucose, –Dcrp/Glycerol Johnson, J Mol Biol
(2008)

Represses porin synthesis and
group behavior

CpxR Regulates envelope stress
response

Repressor -H2O2 Vogt, J Bacteriol
(2014)

GadF unknown, generated from 3’ UTR
of gadE

Crp Catabolism of secondary
carbon sources

Repressor, Dual ++Dcrp/glucose, ++Dcrp/fructose, +
+Dcrp/Glycerol, ++Acetate

Hirakawa, J Bacteriol
(2006)

ArcA Regulates anaerobic
metabolism

Activator +Anaerobic Deng, Front Microbiol
(2013)

H-NS Nucleoid-Associated Repressor ++Dhns Krin, BMC Microbiol
(2010)

GadY Activates acid response RpoS Stationary phase regulator Activator –DrpoS, +MidStat Opdyke, J Bacteriol
(2004)

IsrB Contains peptide coding sequence Crp Catabolism of secondary
carbon sources

Repressor –Fructose, –Acetate Hemm, J Bacteriol
(2010)

McaS Regulates flagellar motility and
biofilm formation

Crp Catabolism of secondary
carbon sources

Activator –Dcrp/Glucose, –Dcrp/Glycerol Thomason, Mol
Microbiol (2012)

MgrR Represses modified
lipopolysaccharide

PhoP PhoPQ two-component
system

Activator ++Low Mg Moon, Mol Microbiol
(2009)

RnpB Subunit of ribonuclease Fis Nucleoid-Associated Activator –Dfis Choi, Mol Cells (2005)
RyhB Represses production of iron-

containing proteins
Fur Iron regulator Repressor ++Dfur/Fe+, -Anaerobic Chen, NAR (2007)

Spot42 Represses galactokinase
degradation

Crp Catabolism of secondary
carbon sources

Activator, Dual –Dcrp/Glucose, –Acetate, –Fructose, –
Glycerol

Polayes, J Bacteriol
(1988)

SroD Unknown, generated from 3’ UTR FadR Fatty acid regulator Repressor ++DfadR Feng, PLoS One
(2012)

SsrS Represses polymerase and s70

activity
Fis Nucleod Associated Activator –Dfis Neusser, Biol Chem

(2008)
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Of 39 sRNAs with well-characterized transcriptional regulators, 12 were captured as high-confidence DBPs by the integrative approach. Bold factors are documented in a recent sRNA
review (Hör et al., 2020). Characters (+/-) indicate log2 fold change strength with double characters (++/–) signifying greater/less than |1.5|.
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interesting to identify whether this extended interaction range
allows for competitive displacement of other MgrR targets
by pitA.

Overall, these results highlight the utility of combining
multiple datasets to suggest high-confidence in vivo regulation
of sRNAs. Furthermore, selected putative functional regions that
do not corroborate with corresponding documented regulatory
sites at all may point to undiscovered binding sites or
unrecognized sRNA regulatory activity, as we later discuss.

Integrative Approach Uncovers H-NS as
Negative Regulator of sRNA RseX
To challenge the ID-sRnA pipeline, we investigated an sRNA
with limited accepted stress-survival post-transcriptional
activity, and elusive native expression conditions. RseX, RNA
suppressor of extracytoplasmic stress protease, was initially
identified as a suppressor of RseP deletion toxicity from a
plasmid-based screening. RseP is one of two mandatory
regulators responsible for activating the sE-mediated response
by relieving it from membrane sequestration upon
extracytoplasmic stress. The role of RseX in cellular survival
under the toxic RseP deletion has been attributed to post-
transcriptional, Hfq-dependent repression of ompA and ompC
(Douchin et al., 2006). The ability of an sRNA to compensate for
the widespread transcriptional and post-transcriptional envelope
homeostasis regulation of sE raises questions concerning: under
which cellular conditions is such complementation
advantageous? In other words, when is RseX natively expressed?

Previously, 5’ end mapping on a strain containing a plasmid
from which RseX suppressor activity was originally identified
suggested that RseX is produced as a primary transcript
(Douchin et al., 2006). This is in agreement with an upstream
s70 consensus sequence and Rho-independent terminator that
enabled its identification as a putative sRNA almost two decades
ago (Chen et al., 2002). However, the role of RseX as an
extracytoplasmic stress-responsive regulator remains elusive
due to (i) lack of a consensus binding sequence for any
extracytoplasmic stress-associated DBP (e.g., sE, OmpR) and
(ii) undetectable native expression.

We first tested the ability of ID-sRnA to uncover RseX
regulators that would indicate cellular conditions under which
RseX is natively produced. The ID-sRnA transcriptional node
proposes three putative RseX regulators as high-confidence
(Figure 5A and Supplementary Data 2): Fis, corresponding
to an upstream stationary phase-specific peak at -143 to -118
(p-value = 6.08e-05), H-NS, corresponding to the stationary
phase-specific peak at -42 to -32 (p-value = 4.7e-05), and Rob,
corresponding to log phase-specific peak at +1 to +20 (p-value =
5.2e-05). Given the proximity between the RseX promoter and the
identified motif corresponding to the H-NS global silencer, we
suspected that H-NS was in part responsible for the lack of native
RseX detection. It should be noted that H-NS is a nucleoid-
associating protein (NAP) that acts via chromatin structure
remodeling at curved, often AT-rich sites (Fang and Rimsky,
2008). Importantly, the hypothesized role of H-NS in RseX
regulation was strongly supported by RNA-seq datasets in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
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FIGURE 5 | Protein occupancy data and native expression probing support
transcriptional RseX repression by nucleoid-structuring protein, H-NS.
(A) PO data for the approximate [-200, +10] accepted RseX genomic region
(bounded by dashed vertical lines). Three significant PO peaks are observed
that contain motifs corresponding to Fis (p-value of 6.1e-05), H-NS (p-value
of 5.8e-05), and Rob (p-value of 5.2e-05). (B) RNA-seq counts
corresponding to pooled strains of H-NS knockouts versus pooled strains
with no modifications to genomic hns (Srinivasan et al., 2013). Expression of
RseX and surrounding areas is enhanced in the absence of H-NS.
(C) Northern blotting for RseX in wildtype BW25113, and an isogenic, cured
hns-deletion strain, grown in LB, at exponential transition to stationary (T, 7
hours post seeding), mid stationary (MS, 24 hours post seeding) and late
stationary (LS, 48 hours) growth phases. Lanes for the different cell strains are
indicated. RseX expression (documented sRNA, ~91nt) is seen in the Dhns
strain at all sampled timepoints besides exponential phase (not shown). A
smaller band corresponding to RseX, “RseX short” (~75 nt, size estimated
from ladder interpretation, left, as described in Methods), suggests post-
transcriptional processing or early transcription termination. RseX expression
is not observed in a wildtype strain at any growth phase. Expression of the
~75 nt RseX short transcript is normalized to a 5S rRNA control (bottom).
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relevant genomic deletions (Figure 5B) (Srinivasan et al., 2013).
Specifically, significantly increased expression of RseX was
identified between pooled samples of hns deletions (Dhns, Dhns/
stpA, Dhns/hha, Dhns/ygdT) compared to a wildtype strain
(log2FC = 5.77 and padj = 7.24E-03); interestingly, the observed
increase in RseX expression was heightened in the hns/stpA
double-deletion when analyzed alone with respect to wildtype
(log2FC = 7.23, padj = 4.26E-07) compared to insignificant
differential expression in the single H-NS mutant alone
(log2FC = 3.39 and padj = 0.43). This behavior is indicative of
epistatic H-NS regulation, in which non-essential gene repression
by H-NS is “backed up” by StpA [a phenomenon oftentimes seen
for horizontally acquired genes (Srinivasan et al., 2013)], aligning
with possible Salmonella origins of RseX given its genomic
proximity to yedS (Douchin et al., 2006). Importantly, the
magnitude and significance of transcriptional upregulation in
pooled Dhns strains was distinct for RseX compared to other
sRNAs implicated in OMP regulation (sE-activated RybB, MicA
and EnvZ/OmpR- activated MicF, OmrA/B, MicC)
(Supplementary Figure 3). These expression patterns suggested
unique H-NS-mediated transcriptional regulation of RseX
compared to other shared-target regulators.

To validate transcriptional insights predicted by the ID-sRnA
approach, native RseX northern blotting was performed using a
radiolabeled oligonucleotide targeting near the 5’end of the
transcript (nts +12 to +38 from 5’ of longest 5’ RACE-detected
sequence) (Douchin et al., 2006) within total RNA extracted
from BW25113 and an isogenic Dhns strain (Baba et al., 2006).
RNA samples were collected at multiple growth phases—
exponential (not shown), transitionary, mid stationary, and
late stationary (Figure 5C). In accordance with previous efforts
to detect RseX expression (Chen et al., 2002), no transcript was
observed in total RNA extracted from wildtype cells, regardless
of growth phase. In contrast, RseX-specific expression
corresponding to the expected size (~91 nts) was detected
under H-NS deficiency in most growth phases (with the
exception of exponential phase, not shown), suggesting that
RseX transcription is negatively regulated by this histone-like
NAP. Lack of observable RseX expression in a Dhns strain during
exponential growth may be an effect of compensatory silencing
by the H-NS partner protein StpA, whose expression is
predominantly limited to the exponential growth phase (Ali
Azam et al., 1999).

It is also important to note that for all conditions under which
RseX expression was detected, smaller overlapping transcript
products were also observed, with a prominent band at
approximately 75 nucleotides (size estimated as described in
Methods). In light of experimental 5’ RACE support of a putative
s70 RseX promoter (Douchin et al., 2006), it is possible that the
shorter transcripts detected are due to 3’ end processing or early
termination. Distinct bands corresponding to the ~75 nucleotide
RseX product were also observed in all growth phases (including
exponential) in an H-NS-mut strain, hns::neo (Yamada et al.,
1991) (Supplementary Figure 4), which genetically encodes for
only the last 37 amino acids. This mutation strain is believed to
support some dimerization function (Ueguchi et al., 1997),
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ultimately providing a less strenuous genetic landscape
compared to full H-NS deletion. In all, our pipeline
successfully identified a putative repressor for RseX, which we
were able to validate by northern blotting. Notably, RseX was
natively undetected for almost two decades since its discovery,
highlighting the strength of this integrative approach, even for
lowly-expressed sRNAs.

Integrative Approach Uncovers Hidden
Post-Transcriptional Regulation by
sRNA RseX
Because of the ability of RseX expression to enable survival under
functional sE deficiency, we hypothesized that its entire target
repertoire remains to be discovered. The notion of an expanded
RseX sRNA targetome is further supported by the observation
that some characterized sRNAs within the E. coli sE regulon (e.g.,
RybB) have over 15 confirmed direct targets (Gogol et al., 2011).
To date, RseX has been shown to post-transcriptionally regulate
ompA/C in an Hfq-dependent manner (Douchin et al., 2006),
likely via thermodynamically-predicted base-pairing within
region 5, annotated in Figure 6A (Guillier et al., 2006). It is
important to note that the low native expression of RseX (in cells
producing H-NS) puts this sRNA at a disadvantage for
competition with match-making proteins, explaining its limited
representation in RIL-seq and CLASH interactome studies (see
Methods for analysis details) (Supplementary Data 4)
(Melamed et al., 2016; Waters et al., 2017; Iosub et al., 2020;
Melamed et al., 2020). Thus, to expand our knowledge of the
target regulation network of RseX, we derived RseX-specific
insights from the ID-sRnA post-transcriptional activity node
(Figure 1B). From this analysis, we selected RseX region 1 as a
putative regulatory region based on its high accessibility that
contrasts that of neighboring region 2 (Figure 6B). Lending
further confidence to the selection of this region is the significant
reduction in accessibility in an hfq-null strain (p-value < 0.05, 2-
tailed t-test) (Figure 6C). Importantly, the ability of sRNAs to
utilize multiple distinct portions of themselves for unique target
binding activity is not unprecedented; this has been observed in
multiple sRNAs including GcvB and FnrS (Durand and Storz,
2010; Lalaouna et al., 2019).

Upon constraining RseX-specific target predictions to its
accessibility-inferred putative binding site, we considered the
top-5 potential targets (Figure 6D), yccM, fimB, rpiA, eutM, ihfB.
We hypothesized that suppression of RseP is enabled by global
RseX activity, in which RseX regulates the expression of
important regulators beyond known outer membrane proteins.
In accord with this hypothesis, we select potential targets with
known transcriptional regulation activity, i.e., fimB, and ihfB.
Importantly, we confirmed that RseX interacts with both fimB
(Figures 7A, B) and ihfB (Figures 7C, D) (Kd 0.38 and 0.49 nM
for 0.11 nM RseX) transcripts via in vitro electrophoretic
mobility shift assays (EMSAs). Interestingly, our results show
that the affinities of RseX for fimB and ihfB are higher than that
of previously-confirmed target ompA (Kd 1.1 nM,
Supplementary Figure 5). We further validate RseX-fimB and
RseX-ihfB interactions, as predicted by IntaRNA, via lead acetate
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(PbAc) probing, revealing regions within 5 ’-labeled
representative mRNA sequences that are protected from
cleavage in the presence of RseX (Figures 8A, B, respectively).
For both fimB and ihfB, this probing confirms the most-
protected binding sites as those proximal to the start codon
(black trace, Figure 8 and Figures 9A, B). Importantly, only
slight protection is observed at the 3’-most sites predicted to
interact with the ID-sRnA-selected likely functional region of
RseX (grey trace); this further supports a role for this highly
accessible region (Figure 6B) in serving as a toehold for a
stronger interaction.

To test for the regulatory significance of these interactions in
vivo, we next performed gfp-based reporter assays in a K-12 DrseX
strain using inducible mRNA-gfp (pBTRK-derivative plasmid) and
sRNA (pNM12-based plasmid) expression (Figure 9).
Importantly, the pBTRK is a low copy plasmid (1-3 copies at
OD 0.4 in glucose-supplemented LB) (Youngquist et al., 2013) and,
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in this way, enables near-native copy numbers of the corresponding
synthetic mRNA-GFP constructs, namely ompA (well-established
target), fimB, and ihfB. As expected in the case of the ompA-gfp
control, ompA levels were repressed in the RseX-overexpressed
strain (via plasmid pBAD-RseX, whose strong induction was
confirmed via northern blotting, Supplementary Figure 6),
relative to the empty pNM12 plasmid (E) (no RseX) control (p-
value < 0.001). This is consistent with knownmechanisms of RseX-
ompA repression, as supported by previous northern blotting upon
RseX overexpression (Douchin et al., 2006). Significant repression
was also observed in the case of fimB-gfp and ihB-gfp (p-value <
0.001) upon expression of WT RseX (R) relative to empty plasmid
control (E) at OD600 1 (Figure 9C); this was largely expected based
on predicted RseX-mediated occlusion of the RBS and start codon,
respectively (Figures 9A, B). It is worth noting that the magnitude
of repression of both targets is comparable to that of known
target ompA.
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yccM puta�ve 4Fe-4S membrane protein oxida�on-reduc�on process 2 -44 19 -26.38

fimB regulator for FimA DNA recombina�on for FimS phase-varia�on 
switching

4 -15 52 -24.52

rpiA ribose-5-phosphate isomerase A pentose phoshate pathway 28 -13 22 -20.35

eutM puta�ve ethanolamine catabolic 
microcompartment shell protein

cell membrane integrity 38 -19 25 -19.58

ihfB integra�on host factor subunit β transcrip�on regula�on, DNA recombina�on 41 -10 25 -19.44

FIGURE 6 | Target predictions informed by accessibility profiles suggest global post-transcriptional activity of RseX. (A) In vivo accessibility profile of RseX previously
determined using a high throughput regional RNA accessibility quantification assay termed INTERFACE (Mihailovic et al., 2018). Targeted regions are indicated above
the accepted RseX sequence. The region targeted by asRNA 5 corresponds to the predicted ompA binding site (Guillier et al., 2006). (B) RseX accessibility in WT E.
coli BW25113 as collected in (Mihailovic et al., 2018). Results are normalized from 0 to 1 to allow for comparison across conditions (i.e., varying abundance). Colors
correspond to traditional visual representation of in vivo accessibility data (red = highly accessible, blue = lowly accessible). Error bars represent standard error of the
mean. (C) RseX normalized accessibility in a kanR-cured isogenic Dhfq strain (Baba et al., 2006). Likely-functional region 1 decreases accessibility (p-value < 0.05 2-
tailed Student’s t-test) in the absence of match-maker Hfq, unlike likely-functional region 8. (D) Top-5 filtered target predictions of RseX at functional region 1. Two
predicted targets, ihfB and fimB, were identified as most interesting given the newly confirmed global silencer (H-NS) of RseX, as both mRNAs encode for accepted
transcriptional regulators. Start and end coordinates of putative RseX binding are listed for each mRNA with respect to translational start.
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For each proposed novel target, we also designed and tested
target-specific RseX mutations (RseXf* for fimB and RseXi* for
ihfB) in an attempt to limit interaction with confirmed RseX-
protected regions (Figure 8). Four unique point mutations
corresponding to two most-stable predicted consecutive
interacting regions were selected for each RseX mutant, RseXf*
and RseXi* (Figures 9A, B); final sequences were chosen based on
minimization of changes within the predicted secondary structure.
Importantly, RseX mutants that abolish interactions with ompA
were not constructed given that specific RseX-ompA binding sites
have not been mapped. For both fimB-gfp and ihfB-gfp, we
observed repression relief by corresponding point mutations to
the RseX sequence (RseXf* and RseXi*) (p-value < 0.05, 0.001,
respectively) (Figure 9C). We hypothesize that diminished
disruption to the RseX-fimB interaction relative to the RseX-ihfB
interaction occurs due to the extremely stable RseX-fimB
interactions, predicted to span over 50 nucleotides. Notably, in
conditions of reduced RseX overexpression (arabinose 0.01%
instead of 0.05%), full repression relief is achieved
(Supplementary Figure 7).

To provide additional validation of the RseX-fimB and RseX-
ihfB interactions in vivo , we attempted to construct
compensatory fimB and ihfB mutations to re-establish
interaction with RseXf* and RseXi*, respectively. However,
given that predicted binding sites within fimB and ihfB involve
coding sequence and occur at regions predicted to have high
secondary structure, compensatory mutations were limited or
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
entirely unfeasible, respectively. Indeed, in the case of ihfB, there
were no viable compensatory mutations that met specified
structure and codon frequency maintenance constraints. For
fimB , one point mutation (of four total desired) met
established mutation criteria and was predicted to partially
reestablish regulation (Supplementary Figure 7). This
“minimal” fimB mutant partially re-compensated repression by
the corresponding RseX mutant, RseXf* (p-value < 0.05),
although no significant differences on fimB-gfp mutant were
detected between WT and RseXf* expression (Supplementary
Figure 7). Altogether, these results confirm that the target
repertoire of RseX is larger than previously appreciated and
can be uncovered using the post-transcriptional node of the ID-
sRnA approach.
DISCUSSION

Here we have developed a new approach, ID-sRnA, for the
simultaneous analysis of multiple high throughput datasets to
uncover putative regulators and targets of bacterial sRNAs. By
incorporating multi-modal data collected under multiple
environmental and genetic conditions, ID-sRnA can be used to
capture the stress-responsive nature of sRNAs. We benchmark
this fully-computational approach to showcase its ability to
capture the sRNA contributions to larger transcriptional
networks for a set of well-known sRNAs.
A  B

C D

FIGURE 7 | In vitro binding assays confirm direct interaction between RseX and (A, B). fimB (-46 to +83 with respect to translational start) and (C, D). ihfB (-53 to
+70 with respect to translational start). 1.3 pmol RseX was included in each 12 mL binding reaction. Dissociation constants (Kd) as shown in B/D were calculated
using the modified Hill equations (Ryder et al., 2008). Notably, both targets have lower Kd values than previously reported target ompA (Supplementary Figure 5),
suggesting stronger interactions for fimB and ihfB.
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A  B

FIGURE 8 | Results of PbAc probing of representative 5’-labeled fimB (A) and ihfB (B) transcripts confirm RseX protection in IntaRNA-predicted regions. Position of
various G residues (as concluded from guanine “T1” and alkaline “OH” ladders) are labeled to the left of the probing images, numbered with respect to the start codon
(green, no fill). Control reactions without PbAc indicate initial levels of cleavage. By comparing the mRNA levels of cleavage with and without RseX, regions exhibiting
strong (black) and weak (grey) protection were identified as interaction sites and are outlined to the left of the probing images. Nucleotides thermodynamically predicted to
interact with RseX (shaded), start codon (green, no fill), as well as corresponding regions of strong and weak RseX protection (black, grey traces) are overlaid on
corresponding Nupack-predicted secondary structures (Zadeh et al., 2011) of the mRNA 5’ UTRs through the predicted RseX interaction sites.
A  C

B

FIGURE 9 | A fluorescent reporter system confirms direct translational regulation of mRNAs fimB and ihfB by RseX in vivo. (A) IntaRNA-predicted interaction
between RseX and fimB. Start codon is outlined in bold green font; regions that are strongly (black) and weakly (grey) protected from cleavage in the presence of
RseX, as determined by PbAc probing, are traced. RseX sequence mutations used in reporter assays, designed to limit changes in predicted structure, are listed in
orange. (B) IntaRNA-predicted interaction between RseX and ihfB. Start codon, in vitro RseX-protected regions, and point mutations are outlined as in panel (A).
(C) gfp assays elucidate repressive in vivo effects of RseX on previously-confirmed (ompA) and novel (fimB, ihfB) targets at OD600 1. DrseX strains harboring pNM12
(black), pBAD-RseX (dark grey) or pBAD-RseX mutant (light grey, RseXf* or RseXi* for fimB and ihfB, respectively) were induced by addition of 0.05% arabinose at
OD600 ~ 0.15; respective pLacO-ompA/fimB/ihfB-gfp constructs were simultaneously induced with 1 mM IPTG. Illustrated means represent median fluorescence as
normalized to respective pNM12 controls; samples for each median were collected in at least triplicate. Error bars represent propagated standard deviation of the
mean and asterisks indicate significant differences as evaluated by unpaired Student’s t-test (p-value < 0.001, < 0.01, < 0.05 are represented as ***, **, and *,
respectively). Positive control ompA as well as novel targets fimB and ihfB are repressed upon RseX expression, as compared to an empty control (p-value < 0.001).
Repression of fimB by RseX is alleviated partially by 4 point mutations in RseX (RseXf*) outlined in (A) (p-value < 0.05). Repression of ihfB by RseX is fully abolished
by 4 point mutations in RseX (RseXi*) (p-value < 0.001).
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We additionally use ID-sRnA to identify H-NS as a negative
regulator of RseX expression, a sRNA whose characterization
within greater stress-response networks has been impeded for
almost two decades due to its lack of known native expression
conditions. Besides repressing the expression of hundreds of
coding transcripts, including pathogenicity islands in Salmonella,
H-NS has also been implicated in rapid post-transcriptional
regulatory networks. For example, sRNAs MicF, GadF, and
SsrS (6S) all have documented H-NS-dependent expression
(Hör et al., 2020); furthermore, DsrA, an acid- and
temperature-responsive sRNA (Lease et al., 2004), is known to
rapidly downregulate hns in E. coli (Lalaouna et al., 2015). More
recently, DsrA has been identified as a critical regulator for
epithelial cell invasion in Salmonella, possibly owed to
downstream de-repressive effects on virulence genes through
its regulation of hns (Ryan et al., 2016). This suggests RseX may
serve as a part of a larger stress response network in response to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 18
harsh host conditions. Aside from the unwinding of condensed
DNA with decreased abundance of H-NS, it is likely that an
activator is required to enable RseX expression. It is possible that
the identified MarA/SoxS/Rob motifs near and within the 5’
RseX sequence acts as an activation site; potential RseX
regulation by the antibiotic-resisting MarA/SoxS/Rob regulon
agrees with previous studies that observe RseX overexpression
improving cefalotin resistance (Kim et al., 2015). Interestingly,
the post-transcriptional ID-sRnA pipeline further suggests
RseX regulation that may be relevant in host-relevant stress
response. Specifically, the discovery of type I fimbrial switch
(FimS) regulator, fimB, as an RseX target supports previously
identified phenotypic effects of RseX overexpression on
biofilm formation and cell motility (Bak et al., 2015), Notably,
a different fimbrial mRNA, fimZ, has previously been
identified as an RseX binding partner in previous microarray
analyses (Douchin et al., 2006), suggesting an broader RseX
A  C

B D

FIGURE 10 | Promising novel DBPs suggest FnrS and PsrD play wider roles in stress response networks. (A) A CpxR motif was identified within a strong PO peak
near the promoter of FnrS. CpxR is activated in response to inner membrane disruption, such as conditions of alkaline pH and high osmolarity. (B) RNA expression
data (Gao et al., 2018) illustrate FnrS induction in alkaline conditions, supporting CpxR as a potential regulator of FnrS. (C) PsrD, an sRNA with no documented
function, contains both FNR and Fur motifs within the annotated coding region near an embedded secondary promoter (FNR: +5 to +26 of accepted PsrD TSS, -55
to -34 of alternate TSS; Fur: +32 to +49 accepted TSS, -28 to –11 of alternate TSS). (D) RNA-seq counts (Seo et al., 2014) [GSE72113] highlight PsrD transcription
induction under iron-rich and aerobic conditions (as compared to iron-poor and anaerobic conditions, respectively) and additionally showcase the activity of the
secondary promoter (purple dashed line) that is ideally positioned to be regulated by the proposed FNR and Fur binding sites. Full-length transcripts have previously
been detected at late stationary growth phases (Argaman et al., 2001).
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role in fimbrial-modulated epithelial attachment and perhaps
colonization (Schwan et al., 2002). It will be interesting to further
investigate a colonization role of RseX between different
Enterobacteriaceae, including Shigella and Citrobacter sp
(Nawrocki et al., 2015).

Beyond RseX, multiple sRNAs had exciting potential
transcriptional regulation uncovered by the ID-sRnA pipeline,
ripe for experimental follow-up. Indeed, 163 DBPs corresponding
to 62 sRNAs were designated as high confidence (bolded in
Supplementary Data 2). Importantly, many of these present
potentially yet-undiscovered regulation for sRNAs with known
regulators. For example, FnrS has a striking differential PO peak
located near the promoter region, shown in Figure 10A, that does
not align with the known binding site of the anaerobic-responsive
FNR. Rather, the center of the peak harbors a motif for a key
player in the Cpx two-component envelope stress response
system, CpxR. CpxR is phosphorylated under a variety of
conditions in response to inner membrane disruption,
including alkaline pH and high osmolarity (Hunke et al., 2012).
In support of the proposed regulation by CpxR, FnrS was found
to be significantly induced in high pH conditions (log2FC of 3.95,
p-adj of 3.88e-10) (Figure 10B) (Gao et al., 2018). Interestingly,
the third predicted target corresponding to the identified
function region [84,95] encodes for inner membrane protein
yohJ (Supplementary Data 4), aligning with the accepted CpxR
role in mitigating envelope stress via regulation of inner
membrane composition.

PsrD (also known as SraB), a confirmed sRNA with no
documented function to date, is another notable instance in
which the ID-sRnA pipeline offers compelling putative
regulators and targets that may be worth experimental
validation. The transcriptional node of the pipeline suggests
both Fur and FNR as high-confidence regulators of a short,
alternative transcript likely initiated by an internal promoter 60
nt from the accepted 5’ TSS (Figure 10C). Indeed, a ~105 nt
alternate PsrD transcript has previously been observed in both
log and stationary phase growth; additionally, transcription
termination read-through has been proposed in log growth
(Argaman et al., 2001). Interestingly, protein occupancy peaks
corresponding to the Fur and FNR motif locations are observed
downstream of the accepted TSS only in log growth (RM SNR >
2.5, MM SNR > 0.5), overlapping the promoter region of the
alternate TSS (-28 to –11 and -55 to -34, respectively).
Supporting the influence of the Fur and FNR regulators on
PsrD expression, the alternate-PsrD product is significantly
downregulated in iron-depleted conditions as well as under
oxygen-limited biofilm conditions (Figure 10D). It is also
worth noting that network links between divalent cation
regulation and oxygen levels have been previously established
(Beauchene et al., 2017). Furthermore, many top-5 filtered
targets (wecA, hypE, cusS and narU) corresponding to two
likely-functional PsrD regions (Supplementary Data 4) have
established links to cation binding and/or regulation (e.g.,
copper/silver export) as well as to anaerobic regulation (e.g.,
nitrate/nitrite transport). We anticipate that using insights from
the sRnA-ID pipeline to characterize alternate transcription and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 19
associated regulators of an unknown sRNA is one of many
utilities of the large set of supplementary data.

When considering all proposed sRNA regulators,
identification of putative DBP regulation within the accepted
sRNA sequence (as opposed to upstream of the annotated TSS),
was not isolated to PsrD. We detected putative internal motifs
distal from promoters for several expected DBP-sRNA pairs
(CRP-McaS, CpxR-CyaR, RpoS-GadY) within our high-
confidence list. Perhaps their characterized DBP-sRNA
regulation is augmented by these additional, non-traditional
sites. Indeed, this has been observed of the well-studied LacI-
lac operon regulation in which a LacI site located hundreds of
nucleotides downstream from the promoter contributes to
activation site blocking via DNA looping (Oehler et al., 1990).
Furthermore, transcription termination efficiency at Rho-
dependent terminators can be increased via H-NS-enabled
colocalized DNA supercoiling (Kotlajich et al., 2015). Although
DBP-enabled termination regulation at Rho-independent
terminators has not yet been characterized in bacteria,
transcriptional antitermination of sRNAs has been established
as a sRNA-regulating mechanism; for instance, transcriptional
read-through of DsrA and SgrS is reduced at low temperatures
and under glucose-phosphate stress, respectively, enabling
the accumulation of functional sRNA (Chen et al., 2019).
However, associated regulators are not known, nor whether the
mechanism of termination efficiency is due to interactions
on the DNA or RNA level. Many high-confidence regulator-
sRNA pairs picked up by this study potentially act via
sRNA termination regulation, as inferred based on DBP
motif location (e.g., Fur-GlmY, Fur-IpeX, CRP-RyeG, Ada-
FnrS, Supplementary Data 2). These pairs may merit further
molecular characterization to understand potential contributions
to DNA looping, RNAP pausing, disruption of RNAP-sigma
factor interactions (Chen et al., 2019) or antiterminator complex
formation (Santangelo and Artsimovitch, 2011) to affect
sRNA termination.

We broadly anticipate that the proposed ID-sRnA approach
will be useful for sRNA-reliant network characterization in
all bacteria; however, we recognize its limited utility in
organisms for which there is not an abundance of high
throughput PO, RNA expression, or RNA accessibility and
interactome data. Even within selected E. coli datasets, it is
likely that many sRNAs under examination have multiple,
environment-dependent regulation and activity that may not
be captured in the considered IPOD-HR or INTERFACE
conditions. Similarly, desired RNA-seq data was sometimes
inaccessible due to lack of relevant deletion strains or reliance
on sample preparation methods causing inadequate resolution
of sRNAs. In light of these perceived limitations, it is important
to note that the approach is amenable to modifications or
exclusions at various steps. For example, in the absence of
IPOD-HR protein occupancy data, motifs could be predicted
corresponding to promoter regions only. We expect the utility
of this approach to expand to more organisms with higher
accuracy as more omics data elucidating conditional DBP-
DNA interactions, RNA expression, and regional accessibility
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become available. Such investigation under pathologically-
relevant environmental conditions will enable us to deduce
complex rapid-regulation schemes that support infection.
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RNA Represses Both Hns and RbsD mRNAs Through Distinct Mechanisms in
Escherichia Coli. Mol. Microbiol. 98 (2), 357–369. doi: 10.1111/mmi.13129

Lease R. A., Smith D., McDonough K., and Belfort M. (2004). The Small
Noncoding Dsra RNA is an Acid Resistance Regulator in Escherichia Coli. J.
Bacteriol 186 (18), 6179–6185. doi: 10.1128/jb.186.18.6179-6185.2004

Leonard S., Meyer S., Lacour S., Nasser W., Hommais F., and Reverchon S. (2019).
APERO: A Genome-Wide Approach for Identifying Bacterial Small Rnas From
RNA-Seq Data. Nucleic Acids Res. 47 (15), e88–e88. doi: 10.1093/nar/gkz485

Li H., and Durbin R. (2010). Fast and Accurate Long-Read Alignment With
Burrows-Wheeler Transform. Bioinformatics 26 (5), 589–595. doi: 10.1093/
bioinformatics/btp698

Love M. I., Huber W., and Anders S. (2014). Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data With Deseq2. Genome Biol. 15 (12),
550. doi: 10.1186/s13059-014-0550-8

Majdalani N., Chen S., Murrow J., St John K., and Gottesman S. (2001). Regulation
of RpoS by a Novel Small RNA: The Characterization of Rpra. Mol. Microbiol.
39 (5), 1382–1394. doi: 10.1111/j.1365-2958.2001.02329.x

Mann M., Wright P. R., and Backofen R. (2017). Intarna 2.0: Enhanced and
Customizable Prediction of RNA–RNA Interactions. Nucleic Acids Res. 45
(Web Server issue), W435–W439. doi: 10.1093/nar/gkx279

Martin M. (2011). CUTADAPT Removes Adapter Sequences From High-
Throughput Sequencing Reads. EMBnet J 17 (1), 10–12. doi: 10.14806/ej.17.1.200

McClune C. J., Alvarez-Buylla A., Voigt C. A., and Laub M. T. (2019). Engineering
Orthogonal Signalling Pathways Reveals the Sparse Occupancy of Sequence
Space. Nature 574 (7780), 702–706. doi: 10.1038/s41586-019-1639-8

Mediati D. G., Wu S., Wu W., and Tree J. J. (2020). Networks of Resistance: Small
RNAControl of Antibiotic Resistance. Trends Genet. doi: 10.1016/j.tig.2020.08.016

Melamed S., Adams P. P., Zhang A., Zhang H., and Storz G. (2020). RNA-RNA
Interactomes of Proq and Hfq Reveal Overlapping and Competing Roles.Mol.
Cell 77 (2), 411–425.e417. doi: 10.1016/j.molcel.2019.10.022

Melamed S., Peer A., Faigenbaum-Romm R., Gatt Y. E., Reiss N., Bar A., et al.
(2016). Global Mapping of Small RNA-Target Interactions in Bacteria. Mol.
Cell 63 (5), 884–897. doi: 10.1016/j.molcel.2016.07.026
July 2021 | Volume 11 | Article 696533

https://doi.org/10.1016/j.bbagrm.2020.194506
https://doi.org/10.1038/emboj.2009.116
https://doi.org/10.1074/jbc.M600819200
https://doi.org/10.1111/j.1365-2958.2010.07044.x
https://doi.org/10.1111/j.1365-2958.2010.07044.x
https://doi.org/10.1093/nar/gkx1091
https://doi.org/10.1016/j.mib.2008.02.011
https://doi.org/10.1111/j.1365-2958.2008.06394.x
https://doi.org/10.1371/journal.pbio.3001306
https://doi.org/10.1093/nar/gkq1110
https://doi.org/10.1093/nar/gkv1156
https://doi.org/10.1093/nar/gky752
https://doi.org/10.1111/mmi.13558
https://doi.org/10.1073/pnas.1109379108
https://doi.org/10.1074/jbc.REV119.005593
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1101/gad.1457506
https://doi.org/10.3389/fmicb.2019.02987
https://doi.org/10.1128/jb.00873-09
https://doi.org/10.1016/j.bbagrm.2020.194596
https://doi.org/10.1016/j.bbagrm.2020.194596
https://doi.org/10.1042/bst20160363
https://doi.org/10.1016/j.molcel.2017.12.023
https://doi.org/10.1128/ecosalplus.ESP-0030-2019
https://doi.org/10.15252/embj.201696072
https://doi.org/10.1111/j.1574-6968.2011.02436.x
https://doi.org/10.1111/j.1574-6968.2011.02436.x
https://doi.org/10.7554/eLife.54655
https://doi.org/10.1016/j.bbagrm.2020.194504
https://doi.org/10.1101/gad.214734.113
https://doi.org/10.1042/bst20180171
https://doi.org/10.1093/nar/gkq1143
https://doi.org/10.1093/jac/dkv042
https://doi.org/10.7554/eLife.04970
https://doi.org/10.1111/mmi.14168
https://doi.org/10.1111/mmi.13129
https://doi.org/10.1128/jb.186.18.6179-6185.2004
https://doi.org/10.1093/nar/gkz485
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1111/j.1365-2958.2001.02329.x
https://doi.org/10.1093/nar/gkx279
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/s41586-019-1639-8
https://doi.org/10.1016/j.tig.2020.08.016
https://doi.org/10.1016/j.molcel.2019.10.022
https://doi.org/10.1016/j.molcel.2016.07.026
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Mihailovic et al. Uncovering sRNA Regulators and Targets
Mihailovic M. K., Vazquez-Anderson J., Li Y., Fry V., Vimalathas P. , Herrera D.,
et al. (2018). High-Throughput In VivoMapping of RNA Accessible Interfaces
to Identify Functional sRNA Binding Sites. Nat. Commun. 9 (1), 1–16.
doi: 10.1038/s41467-018-06207-z

Modi S. R., Camacho D. M., Kohanski M. A., Walker G. C., and Collins J. J. (2011).
Functional Characterization of Bacterial Srnas Using a Network Biology Approach.
Proc. Natl. Acad. Sci. U.S.A. 108 (37), 15522–15527. doi: 10.1073/pnas.1104318108

Moon K., and Gottesman S. (2009). A Phoq/P-Regulated Small RNA Regulates
Sensitivity of Escherichia Coli to Antimicrobial Peptides. Mol. Microbiol. 74
(6), 1314–1330. doi: 10.1111/j.1365-2958.2009.06944.x

Nawrocki E. P., Burge S. W., Bateman A., Daub J., Eberhardt R. Y., Eddy S. R., et al.
(2015). Rfam 12.0: Updates to the RNA Families Database. Nucleic Acids Res.
43 (D1), D130–D137. doi: 10.1093/nar/gku1063

Oehler S., Eismann E. R., Krämer H., and Müller-Hill B. (1990). The Three
Operators of the Lac Operon Cooperate in Repression. EMBO J. 9 (4), 973–979.
doi: 10.1002/j.1460-2075.1990.tb08199.x

Pachkov M., Balwierz P. J., Arnold P., Ozonov E., and van Nimwegen E. (2013).
Swissregulon, a Database of Genome-Wide Annotations of Regulatory Sites:
Recent Updates. Nucleic Acids Res. 41 (Database issue), D214–D220.
doi: 10.1093/nar/gks1145

Raghavan R., Groisman E. A., and Ochman H. (2011). Genome-Wide Detection of
Novel Regulatory RNAs in E. Coli. Genome Res. 21, 1487–1497. doi: 10.1101/
gr.119370.110

Robison K., McGuire A. M., and Church G. M. (1998). A Comprehensive Library of
DNA-Binding Site Matrices for 55 Proteins Applied to the Complete Escherichia
Coli K-12 Genome. J. Mol. Biol. 284 (2), 241–254. doi: 10.1006/jmbi.1998.2160

Ryan D., Ojha U. K., Jaiswal S., Padhi C., and Suar M. (2016). The Small RNADsra
Influences the Acid Tolerance Response and Virulence of Salmonella Enterica
Serovar Typhimurium. Front. Microbiol. 7, 599. doi: 10.3389/fmicb.2016.00599

Ryder S. P., Recht M. I., and Williamson J. R. (2008). Quantitative Analysis of
Protein-RNA Interactions by Gel Mobility Shift. Methods Mol. Biol. 488, 99–
115. doi: 10.1007/978-1-60327-475-3_7

Santangelo T. J., and Artsimovitch I. (2011). Termination and Antitermination:
RNA Polymerase Runs a Stop Sign. Nat. Rev. Microbiol. 9 (5), 319–329.
doi: 10.1038/nrmicro2560

Santiago-Frangos AndrewW. S. A. (2018). Hfq Chaperone Brings Speed Dating to
Bacterial sRNA. WIREs RNA 9, e1475. doi: 10.1002/wrna.1475

Schneider C. A., RasbandW. S., and Eliceiri K. W. (2012). NIH Image to Imagej: 25
Years of Image Analysis. Nat. Methods 9 (7), 671–675. doi: 10.1038/nmeth.2089

Schwan W. R., Lee J. L., Lenard F. A., Matthews B. T., and Beck M. T. (2002).
Osmolarity and Ph Growth Conditions Regulate Fim Gene Transcription and
Type 1 Pilus Expression in Uropathogenic Escherichia Coli. Infect. Immun. 70
(3), 1391–1402. doi: 10.1128/iai.70.3.1391-1402.2002

Seo S. W., Kim D., Latif H., O’Brien E. J., Szubin R., and Palsson B. O. (2014).
Deciphering Fur Transcriptional Regulatory Network Highlights its Complex
Role Beyond Iron Metabolism in Escherichia Coli. Nat. Commun. 5 (1), 4910.
doi: 10.1038/ncomms5910

Sowa S. W., Gelderman G., Leistra A. N., Buvanendiran A., Lipp S., Pitaktong A.,
et al. (2017). Integrative Fourd Omics Approach Profiles the Target Network of
the Carbon Storage Regulatory System. Nucleic Acids Res. 45 (4), 1673–1686.
doi: 10.1093/nar/gkx048
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 22
Srinivasan R., Chandraprakash D., Krishnamurthi R., Singh P., Scolari V. F.,
Krishna S., et al. (2013). Genomic Analysis Reveals Epistatic Silencing of
“Expensive” Genes in Escherichia Coli K-12. Mol. Biosyst. 9 (8), 2021–2033.
doi: 10.1039/c3mb70035f

Ueguchi C., Seto C., Suzuki T., and Mizuno T. (1997). Clarification of the
Dimerization Domain and its Functional Significance for the Escherichia
Coli Nucleoid Protein H-NS 11Edited by I. B. Holland. J. Mol. Biol. 274 (2),
145–151. doi: 10.1006/jmbi.1997.1381
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