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	   Abstract: Viruses are obligate parasites that exist in an inactive state until they enter the host body. 
Upon entry, viruses become active and start replicating by using the host cell machinery. All plant vi-
ruses can augment their transmission, thus powering their detrimental effects on the host plant. To di-
minish infection and diseases caused by viruses, the plant has a defence mechanism known as patho-
genesis-related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent 
pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and aviru-
lence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in patho-
genicity]) molecules have been identified. The recognition of such a factor results in the plant defence 
mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a 
series of a hypersensitive response (HR) and affect the host plant’s immunity (pathogen-associated 
molecular pattern–triggered immunity and effector-triggered immunity). Avr protein renders the host 
RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards 
the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful 
plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins 
regulate host immunity during plant–virus interactions. Furthermore, we have discussed regarding ri-
bosome-inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle pro-
tein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated pro-
tein degradation, which are crucial in antiviral defences. 
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1. INTRODUCTION 

 Plants are constantly challenged by various phytopatho-
gens [1] present in the environment they grow, and these 
phytopathogens exploit plants’ biosynthetic and energy-
producing proficiencies [2]. The host plant passively protects 
itself against harmful phytopathogens by using its waxy cu-
ticular layers of the skin, which is the first line of defence 
from outside (Fig. 1) [3]. Phytopathogens, including bacte-
ria, fungi, insects, and nematodes, are responsible for caus-
ing biotic stress in plants, thereby interrupting the photosyn-
thate formed by plants [4]. By contrast, viruses employ the 
replication machinery of the host plant for multiplication and 
movement [5]. Biotic stress in cash crop plants results from 
infection or disease these pythopathogens cause in the host 
plant for their growth and nutrient supply [6]. Although mi-
crobes grow and flourish on host plants, they affect plant 
growth and development as well as cause physiological 
changes in plants [7]. Plant microbiota are principally accu-
mulated from external sources or inoculums, which can be in 
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the harmful pathogenic form or beneficial endophytes (evade 
in pathogen transmission). This exerts a significant effect on 
plant health [8]. 
 Most plant viruses possess RNA as their genome along 
with a coat protein called capsid, and a few viruses contain 
DNA [9]. Viral infections cause tremendous damage to crop 
plants, including chlorosis, necrosis, vein clearing, and wilt-
ing, thus affecting the physiology and morphology of plants 
[10, 11]. Once a virus enters the plant cell, it can easily infect 
nearby cells through cell junctions, namely plasmodesmata 
(Fig. 2) [12, 13]. To tackle these phytopathogens, plants 
have two primary defence mechanisms: resistance (plant 
completely immunises itself from the infection) and toler-
ance (despite infection, production levels remain above the 
economic threshold) [14]. The plant defence mechanism 
exerts a negative effect on phytopathogens [15]. Therefore, 
host plants and their phytopathogens modulate the dynamics 
and genetic structure of each other’s population [16]. With 
the course of evolution, plants have developed multilayered 
resistance responses to reduce the growth and spread of sev-
eral disease-causing pathogens [17]. Therefore, new strate-
gies to combat microbial plant diseases are exceedingly re-
quired to stop and reduce the transmission of microbial path-
ogens [18, 19]. 
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Fig. (1). Artwork of the outside world wherein the first encounter of the insect vector sucking saps from the host plant leaf. The host plant 
utilizes its passive protection against the harmful phytopathogens with the help of its waxy cuticular layers of skin: the first line of defense 
from outside. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (2). The interface world diagram is showing the release/spreading/transmission of virus particles in the host plant caused by the insect 
vector through its stylet. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 An improved understanding of defence and counterde-
fence mechanisms employed between plants and pathogenic 
viruses is a prerequisite where both viruses and the host plant 
have developed specific strategies to improve their survival 
and propagation. Taking all this crosstalk between plant vi-
ruses and their hosts into account, in this review article, we 
discuss the latest paybacks and challenges of various viral 
resistance tactics and highlight plants’ microRNA (miRNA) 
pathway. 

2. MAJOR GROUP OF PLANT INFECTING VIRUSES 
AND VIROIDS 

 Plant viruses interact with different defence mechanisms 
of host plants (crops, weeds, and ornamentals). All plant 
viruses can augment their own transmission, thus increasing 
their detrimental effects on host plants. Plant viruses that 
cause viral infection stress in plants are double-stranded 
DNA (dsDNA) viruses, single-stranded (ss) DNA viruses, 

double-stranded RNA (dsRNA) virus, ss positive sense RNA 
viruses, and ss negative sense RNA viruses; these viruses 
consist of 16 families (Table 1) and three orders. These three 
orders have been accepted thus far by the International 
Committee for Taxonomy of Viruses [20]. Of them, the larg-
est group is the Geminiviridae family with nine genera and 
approximately 500 virus species [21, 22]. Viroids, which 
have free RNA molecules of a low molecular weight without 
any protein coat, are similar to viruses, and all viroids resid-
ing in plants for multiplication. Viroids are even smaller in 
size than viruses. To date, there are two known families of 
viroids, namely Pospiviroidae and Avsunviroidae [23, 24]. 
These two families together comprise approximately 30 
known viroid species and cause diseases such as potato spin-
dle tuber disease, apple fruit disease, hop stunt disease, to-
mato bunchy top disease, and chrysanthemum stunt disease. 
Mechanical damage, cross contamination, aphids, and con-
tact of an infected leaf with healthy leaves are the modes of 
viroid transmission [25, 26]. 
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3. RESPONSES IN HOST PLANTS AGAINST PLANT 
VIRUS EFFECTOR PROTEINS 

 The active defence responses of the host against invading 
microbes are regulated by a complex signalling network me-
diated by gene-for-gene interactions [43]. This involves both 
the direct and indirect communication of pathogen aviru-
lence (Avr) gene (effector/elicitor proteins involved in path-
ogenicity) [44] and its matching products (receptor proteins) 
of the plant resistance (R) gene (Fig. 3). R proteins are simi-
lar and categorised on the basis of their structural domains 
and their localisation. R proteins intricated in protein–protein 
interactions consist of a leucine-rich repeat (LRR) domain 
[45-47]. R genes are divided into proteins encoding cyto-
plasmic LRRs (consisting of the nucleotide-binding site) and 
extracytoplasmic LRRs (consisting of the transmembrane 
region). Moreover, some of these R proteins contain a leu-
cine zipper domain or a Toll/interleukin-1 receptor domain 
[48]. Apart from the aforementioned mechanism, there is the 
initiation of several defence allied genes along with patho-
genesis-related genes [49]. Following the infection of some 
tissues, the uninfected parts of the host plant develop system-
ic acquired resistance [50]. This elaborate network of gene-
for-gene interactions is usually understood as a receptor-
ligand model, wherein the Avr protein binds to its corre-
sponding resistance protein, finally switching on the plant 
defence mechanism [51]. 
 Pathogen-associated molecular patterns (PAMPs) and 
microbe-associated molecular patterns are conserved in na-
ture [52]. Once a phytopathogen launches an attack, releas-

ing enzymes and proteins, several PAMPs are produced by 
plant cell receptors (pattern recognition receptors [PRRs]), 
activating their immunity. In response to this, pathogens fur-
ther release effector proteins or Avr proteins to interfere with 
host receptors. In retort, the host plant battles pathogen inva-
sion by producing effector-specific R proteins encoded by R 
genes, resulting in a hypersensitive reaction (HR) that makes 
the host plant resistant to the pest [53-55]. Examples of 
PAMPs are bacterial flagellins, lipopolysaccharides, fungal 
chitin, and oomycete heptaglucosides, and PAMPs are not 
yet recognised in plant viruses to date. In plants, RNA si-
lencing, which is evolutionarily conserved in nature, is be-
lieved to be the first level of their defence against pathogen 
attack from within the plant [56].  
 The plant RNA silencing mechanism (also called as post-
transcriptional gene silencing [PTGS]) [57] and its innate 
immunity (i.e. PAMP-triggered immunity [PTI] and effector-
triggered Immunity [ETI]) control gene expressions and are 
generally sequence specific [58]; they can readily suppress 
or degrade foreign nucleic acids (viral DNAs/RNAs) (Fig. 3) 
[59] and even transposons [60]. PTI and ETI involve rapid 
ion fluxes, antioxidative burst, and transcriptional repro-
gramming to handle viral infection [61, 62]. In addition to 
RNA silencing, ribosome-inactivating proteins (RIPs), ubiq-
uitin proteasome system (UPS), translation repression (nu-
clear shuttle protein-interacting kinase 1), DNA methylation, 
dominant resistance genes, and autophagy-mediated protein 
degradation (AMPD) are crucial in antiviral defences [63-
66].

Table 1. Major plant infecting virus species. 

S. No. Family Example References 

1 Rhabdoviridae Lettuce necrotic yellows virus [27] 

2 Bromoviridae Brome mosaic virus [28] 

3 Sequiviridae Rice tungro spherical virus [29] 

4 Bunyaviridae Tomato spotted wilt virus [30] 

5 Tombusviridae Tomato bushy stunt virus [31] 

6 Rheoviridae Fiji disease virus [32] 

7 Closteroviridae Beet yellows virus [33] 

8 Caulimoviridae Cauliflower mosaic virus [34] 

9 Tymoviridae Turnip yellow mosaic virus [35] 

10 Comoviridae Cowpea mosaic virus [36] 

11 Circoviridae Banana bunchy top virus [37] 

12 Geminiviridae Grapevine red blotch virus [38] 

13 Partiviridae White clover crypto virus [39] 

14 Flexiviridae Carnation latent virus [40] 

15 Luteoviridae Barley yellow dwarf virus [41] 

16 Potyviridae Barley yellow mosaic virus [42] 
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Fig. (3). Schematic overview of the inside world wherein plant R gene mediating resistance in host plant against the virus infections showing 
Hypersensitive Response (HR) resulted in typical symptoms of necrotic and mosaic patterns generated from the cell death. Several signalling 
molecules are induced during infection. Further plant antiviral pathways and viral counter-defenses are shown in the cytosol as a medium of 
plant–virus interactions. Wherein the viruses encode proteins to execute all parts of the infection cycle and the host factors target viral pro-
teins and nucleic acids to restrict virus infection. Mechanism highlighted in the artwork was RNA silencing, Ribosome-inactivating proteins 
(RIPs), Ubiquitin Proteasome System (UPS), Translation Repression [Nuclear Shuttle Protein (NSP) Interacting Kinase 1 (NIK1)], DNA 
Methylation, Dominant Resistance genes and Autophagy Mediated Protein Degradation (AMPD). (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

3.1. NB–LRR Proteins Hydrolysing Viral Genome 

 Initially, a pathogen is recognised by the extracellular 
surface PRR, followed by a series of kinases that are activat-
ed upon activation of PTIs (e.g. somatic embryogenesis re-
ceptor-like kinase and mitogen-activated protein kinases) 
[67-69]. However, viral PAMPs and plants’ PRR mechanism 
are still under research. Many of the identified R gene prod-
ucts (i.e. R proteins) are of the nature of nucleotide-binding–
LRR (NB–LRR) proteins and constitute a subgroup under 
the STAND (signal transduction ATPases with numerous 
domains) family [70, 71]. NBS-LRR proteins are some of 
the largest proteins known in plants, ranging from approxi-
mately 860 to 1900 amino acids. They have at least four dis-
tinct domains joined by linker regions: a variable amino-
terminal domain, the NBS domain, the LRR region, and var-
iable carboxy-terminal domains. NB–LRR proteins stipulate 
gene-for-gene resistance against phytopathogens and cooper-
atively establish a complete pathogen detection system. Mul-
tidomain NB–LRR proteins can bind to the foreign viral ge-
nome (DNA/RNA) and hydrolyse them into monomeric 
forms [72, 73]. One particular Avr molecule might corre-

spond to one specific or matching R protein. Another essen-
tial thing to consider is that upon activation, R proteins trig-
ger programmed cell death, and its directive by the host cell 
is quite essential [74]. This autoinhibition occurs due to in-
tramolecular interactions among various domains necessary 
to keep R proteins inactive under plants’ normal conditions 
(uninfected) [75]. 

3.2. What’s Happening in Hypersensitive Response (HR) 

 Approximately 500 species of plant pathogenic viruses 
that are responsible for various diseases are considered an 
intracellular parasite [76]. Because viruses encode relatively 
few proteins, such as coat proteins, replication proteins, P25 
protein, RNA-dependent RNA polymerase, helicase, P3 pro-
tein, HcPro proteins, NIa protease, NSs protein, viral protein 
genome-linked, and virus movement proteins, all are known 
to assist as Avr factors in different plant/viral systems [77]. 
The basic noticeable feature of gene-for-gene mediated re-
sistance is the development of an HR by the plant against 
phytopathogens [78] wherein necrotic lesions or ringspots 
are developed at the location of infection on leaves, stems, 
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and fruits, confining the phytopathogen within it and thus 
protecting noninfected tissues (Fig. 3) [79]. Furthermore, 
during an HR, modifications occur in the plant cell wall 
structure, such as an increase in the calcium ion concentra-
tion; an oxidative burst (superoxide and nitric oxide); and 
upsurges in endogenous salicylic acid, jasmonic acid, and 
hydrogen peroxide levels [80, 81]. In addition, during an 
HR, numerous caspase-like proteinases, such as vacuolar-
processing enzymes, are triggered, acting as effectors of cell 
death [82]. 

3.3. Plant Protecting RIPs, AMPD and UPS 

 RIPs are scattered all over the plant body and can inacti-
vate viral proteins. One such example is Phytolacca ameri-
cana (pokeweed) whose protein possesses antiviral activity 
(i.e. the pokeweed antiviral protein). Several examples have 
been well documented in suppressing viral activities, such as 
those of cucumber mosaic virus, potato virus X (PVX), and 
potato virus Y [83, 84]. The family of dominant resistance 
genes generally encodes for the lectin family of proteins, 
which confirm strong resistance against plant viruses. For 
example, Arabidopsis-restricted Tev movement 1 provides 
resistance against potyviruses, CIP-29 from Cyamopsis 
tetragonoloba (L.) suppresses Sunn-hemp mosaic virus, 
BanLec-1 from Musa paradisiacal inhibits tobacco mosaic 
virus, and Tm-1 from tomato provides protection against 
tomato mosaic virus. Likewise, tobacco plant N protein rec-
ognises and suppresses TMV replicase and potato plant re-
sistance proteins, Rx, Rx2, and Green Peach Aphid 2, help in 
the recognition of PVX coat protein and confirms resistance 
against the same. Even Arabidopsis jacalin-type lectin, 
JAX1, confers resistance against multiple potexviruses 
(PVX, PLAMV, white clover mosaic virus, and asparagus 
virus 3) [85-88]. Similarly, in case of autophagy-mediated 
protein degradation, several genes have been identified that 
suppress virus replication, such as autophagy-related gene 6, 
which interacts with the nuclear inclusion protein B of po-
tyviruses, and ATG8 that interacts with the C1 of cotton leaf 
curl Multan virus betasatellite to inhibit its replication [89, 
90]. UPS regulates plant cellular activities such as the cell 
cycle, transcription, and signal transduction. UPS with its 
various enzyme complexes are employed by plants to defend 
against pathogenic viruses (Fig. 3) such as tobacco mosaic 
virus, turnip yellow mosaic virus, and tomato yellow leaf 
curl Sardinia virus [91]. 

3.4. Host Plant PTGS/RNAi Shield Against Viruses 

 According to optimal defence theory, new plant leaves 
serve as a basis of healthier nutrition to pathogenic attack 
compared with older leaves because the photosynthetic appa-
ratus in new leaves is intact. Hence, the young leaves of host 
plants exhibit higher biotic stress responses compared with 
old leaves [92]. When plants are under multiple stresses, 
they become more tolerant or resistant to different stresses, 
which is known as cross-tolerance that makes host plants 
adapt rapidly to a changing environment [93]. PTGS in 
plants is an RNA-mediated virus resistance technique used to 
silence the expression of one or more pathogenic virulence 
genes [94]. In this technique, resistance depends on tran-
scribed RNA. Plant RNA silencing was first recognised as an 
antiviral mechanism that protected plants against RNA  

viruses or the random integration of transposable elements 
[95]. With time, it was revealed that several miRNA genes 
are conserved evolutionarily, and their primary function is to 
cleave complementary sequence miRNAs [96]. Apart from 
these microRNAs, there are trans-acting small interfering 
RNAs (ta-siRNAs), natural-antisense RNAs, repeat-
associated siRNAs, viral siRNAs (vsiRNAs), and virus-
activated siRNAs. Each of these has its own specificity in 
terms of origin, biosynthesis, or mode of action. However, 
they all share some common features. Either encoded by the 
plant genome or originated from a viral pathogen, the gener-
ation of these RNAs involves certain dedicated enzymatic 
activities. dsRNA produced by pathogenic viruses activates 
the RNAi mechanism, which is acknowledged and processed 
into short 20-24 nucleotides by the host cell Type III endori-
bonucleases (DICER-like proteins) (Fig. 3). Fragmented 
nucleotides, the so-called RNA duplexes, are integrated into 
ARGONAUTE (AGO) proteins, finally forming the RNA-
induced silencing complex (RISC). The RISC complex then 
tends to recognise and cleaves the virus homologous nucleo-
tide, thus suppressing viral protein translation [97, 98]. 

3.5. Studies Enabling PTGS/RNAi Resistance 

 This evidence was based on demonstrations that were 
related to the involvement of short miRNA molecules in 
RNA silencing in plants. Examples include the silencing 
mechanism used against tomato leaf curl virus, PVX, Citrus 
tristeza virus, and many more [99, 100]. This natural method 
of showing tolerance to viruses and viroids is known as the 
PTGS or RNAi mechanism. Excess hormone production in 
crop plants renders the multiplication of viruses; for exam-
ple, suppression of tobacco necrosis virus (TNV) was ob-
served in the cytokinin-overproducing transgenic tobacco 
line (CTKm), delaying the senescence of CTKm plants 
[101]. This also results in the reduction of virus disease 
symptoms, and a low titre of coat protein was found in host 
cells. In addition, less production of ethylene, ethane, and 
hydrogen peroxide as well as a low level of lipid peroxida-
tion were observed. Hence, the host plant becomes quite 
efficient in reactive oxygen species (ROS)-scavenging abil-
ity, thus making the plant tolerant to TNV [102]. The expres-
sion of animal antiapoptotic genes, bcl-xL and ced-9, into 
tomato plants enhanced plant survival under biotic stress 
against the D satellite RNA (satRNA) [103]. The same ap-
proaches are observed in viroids. In addition to this, the 
overexpression of host proteins reduces viroid replication 
through AGO proteins and Dicer-Like endonucleases [104-
106].  

4. VIRUSES RETORTS FOR ITS SURVIVAL 

 Pathogenic viruses have a deficiency of proofreading its 
genome, and this results in a considerably high rate of muta-
tions in its genetic material. The host immune response is 
activated upon recognition of a specific miniature sequence 
present in viral AVR proteins by R proteins (Fig. 3). Mutated 
viruses easily escape from the host immune response, and 
this escaping is known as resistance breakdown [107, 108]. 
Likewise, these viruses also hinder the plant RNAi mecha-
nism, PTI signalling, host ubiquitination pathways, host ROS 
production, and SA accumulation and suppress host autoph-
agy pathways through its various encoded proteins [109]. In 
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the case of RNA viruses (in the majority of plant viruses), 
the replication process comprises a step where dsRNA is 
generated, which can trigger the process against the viral 
genome. For DNA viruses, overlapping bidirectional read-
through transcripts or highly structured viral transcripts may 
play the triggering role. This never-ending battle between 
hosts and parasite viruses has resulted in the development of 
mechanisms against this potent plant defence route. Plant 
viruses hinder the RNAi pathway either by regulating en-
dogenous miRNA expression or suppressing endogenous 
gene expression through vsiRNAs. For example, the viral 
suppressor of RNA silencing (p19) of the cymbidium ring-
spot virus can downregulate the transcripts of AGO proteins 
[110]. 

5. GROUND REALITY FOR FARMERS 

 Self-defence mechanisms employed by plants against 
viruses are much more complex than those against other 
phytopathogens such as fungi and bacteria [111]. This holds 
true because in comparison with fungi and bacteria, viruses 
reside as an intracellular parasite in host plants, wherein its 
genetic material is directly in access to acquire plant intracel-
lular factors for its own well-being [112]. A true battle situa-
tion occurs in this face to face interaction between the two, 
where the plant attempts to evolve itself to develop new de-
fence mechanisms to launch a stronger attack against patho-
genic viruses [113]. Plant viruses benefit themselves in this 
face-off by identifying lacunae to escape or survive by using 
defence mechanisms [114]. CRISPR/cas9 is the most recent-
ly developed genome-editing tool with a range of genome-
editing possibilities. CRISPR/Cas9 has been used to induce 
resistance in Arabidopsis to make it resistant against turnip 
mosaic virus by introducing a mutation on the elF (iso) 4E 
locus [115]. Similarly, CRISPR/cas9 was used to develop 
resistance in cucumber against viral diseases, including cu-
cumber vein yellowing virus, zucchini yellow mosaic virus, 
and papaya ring spot virus, by modifying its elF4E gene 
[116-118]. Developing virus-resistant varieties of plants is 
the best step for managing diseases because it is the cheapest 
and effective approach to reduce economic yield losses 
caused by plant viruses [119]. Virus resistance can be specif-
ic or nonspecific [120]. The natural plant immune system 
contains dominant and recessive resistance genes [121]. 
Knowledge of these genes helps in implementing an appro-
priate preventive measure against viruses. The development 
of biotechnological approaches, such as the identification of 
viruses, control measures through RNA interference, and 
CRISPR-Cas9 [122], may not directly help farmers, but they 
can be advised to use comprehensive, integrated strategies 
for viral disease management [123, 124]. 

CONCLUSION AND TAKE AWAY 

 Plant virus effector proteins play a crucial and dynamic 
role in understanding the mechanism of plant–microbe inter-
actions. There is a practical intersection between R gene-
mediated resistance and the RNA silencing mechanism. It 
still remains unclear how plant defence mechanisms, includ-
ing pathogenesis-related genes, hypersensitive responses, 
systemic acquired resistance, PAMPs, RNA silencing, PTI, 
and ETI, act as an antiviral defence to manipulate resistance 
in plants. It will be quite interesting to study how host and 

virus influence each other in confirming disease resistance 
mechanisms in plants. Plant viruses have developed a variety 
of mechanisms to overcome the regulatory machinery of the 
host and interact tightly with the host protein synthesis ma-
chinery such that host genes can function as recessive re-
sistance genes. Understanding virus effectors (Avr factor) 
and host targets (R proteins) and their mode of action can 
help to define the evolutionary pressure acting upon host–
virus interactions. By discussing different plant effector pro-
teins in this article, we hope to provide new directions to 
solve the mystery of host–virus interactions. The eventual 
goal of plant–virus interaction studies is to create sustainable 
virus resistance stratagems, implement better management 
practices, perform early diagnosis of viral diseases, and de-
velop virus-resistant crops ethically for ensuring better food 
safety of the mounting human population in the current cen-
tury. 
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