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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that targets the central nervous
system (CNS). Statistics show that more than five million people in America face this disease. Several
factors hinder diagnosis at an early stage, in particular, the divergence of 10–15 years between the
onset of the underlying neuropathological changes and patients becoming symptomatic. This study
surveyed patients with mild cognitive impairment (MCI), who were at risk of conversion to AD,
with a local/regional-based computer-aided diagnosis system. The described system allowed for
visualization of the disorder’s effect on cerebral cortical regions individually. The CAD system
consists of four steps: (1) preprocess the scans and extract the cortex, (2) reconstruct the cortex
and extract shape-based features, (3) fuse the extracted features, and (4) perform two levels of
diagnosis: cortical region-based followed by global. The experimental results showed an encouraging
performance of the proposed system when compared with related work, with a maximum accuracy
of 86.30%, specificity 88.33%, and sensitivity 84.88%. Behavioral and cognitive correlations identified
brain regions involved in language, executive function/cognition, and memory in MCI subjects,
which regions are also involved in the neuropathology of AD.

Keywords: Alzheimer’s disease; personalized diagnosis; mild cognitive impairment; computer-aided
diagnosis; sMRI

1. Introduction

Alzheimer’s disease (AD) is considered the best-known neurodegenerative conditions
targeting the central nervous system (CNS). Elderly people make up the preponderance of
the sufferers of AD. However, younger people may be affected by early-onset AD [1]. Sta-
tistically speaking, disease risk increases with age among the elderly population, with 42%
of those diagnosed with AD being 85 years or older, while only 6% of diagnosed cases are
between 70 and 74 years old [2].

The characteristics of AD can be broadly grouped into clinical and anatomical fea-
tures [3]. Features in either category vary from one patient to another. Clinically, AD
patients show progressive deficits in cognition and memory in addition to disturbances in
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thought, perception, and behavior. Pathologically, patients incur a neuronal loss, granulo-
vacuolar degeneration, and the formation of the two definitive diagnostic markers of AD:
neurofibrillary tangles and neuritic plaques [4]. Up-regulated expression of the amyloid-β
precursor protein (APP) is followed by a cascade of processing involving BACE1, PSEN1,
PSEN2, and APH1, resulting in production of amyloid-β peptide, including its pathogenic
species Aβ42. The Aβ42 conformations fuse into oligomers containing up to 100 units
of Aβ42, and form neurotoxic protofibrils. Aβ42 oligomers itself leads to synaptic loss,
neurotoxicity, and neuronal death. Aβ42 oligomers, under the influence of ApoE4, can
undergo aggregation and formation of Aβ seniles plaques in affected brain regions [5].

As a neurodegenerative condition, AD is progressive. The severity of affliction is
typically divided into three phases, beginning with a mild phase, then proceeding to mod-
erate phase, and ending with severe phase [6]. The emergence of the disease’s pathological
features 10–15 years before being clinically discovered hinders the early diagnosis of the
disease. Furthermore, the subject-dependent influence of AD between its sufferers adds
another obstacle to diagnosing the disease in its early stage [4].

Various tests of a patient’s mental and physical state can assist in AD diagnosis,
including urinalysis, blood panels, and neurological, neuropsychological, psychiatric
examinations. The patient’s medical history, as well as brain imaging in various modalities,
can also inform the diagnosis [1]. Regarding brain imaging, these technologies play a
notable role in identifying the disease, specifically speaking in the pre-clinical and MCI
phases [7]. Further information about the impact of brain imaging in this research area
can be found in the study presented by Johnson et al. [8]. Additionally, a scientific work
presented by Jack et al. [9] aimed to illustrate the function of each of the brain biomarkers
along the cascade of AD. Relying on the study findings, for the earliest signs of the disease,
positron emission tomography (PET) amyloid imaging, as well as cerebrospinal fluid
(CSF) levels of amyloid beta (Aβ42), reveal evidence of the underlying Aβ pathology.
CSF levels of tau protein, structural magnetic resonance imaging (sMRI), 2-[18F] fluoro-
2-deoxy-d-glucose (FDG-PET), and the cognitive and clinical symptoms can help follow
patients as pathology accumulates with disease progression. sMRI discloses the structural
abnormalities while FDG-PET or CSF-tau reveal neuronal injury and dysfunction.

Previous scientific research has attempted, through several methodologies, to different
groups defined by cognitive status (normal control (NC), MCI, or AD) using neuroimaging
data. For instance, a computer-assisted diagnostic (CAD) system was presented in [10]
to diagnose AD at its earliest phase using independent component analysis (ICA) as well
as support vector machines (SVM) for the feature extraction and the classification pur-
poses, respectively. Additionally, a CAD system using Gaussian discriminant analysis
was presented in [11] to screen the disease’s phases where the features of the entorhinal
cortex showed significant discriminatory power between both the normal group (NC) and
abnormal group (MCI + AD). Additionally, the study could achieve an improvement re-
garding the classification performance through defining two separate spaces of the decision,
for both hemispheres of the brain (left and right hemispheres), following by combining
their obtained result. Beheshti et al. [12] used feature ranking in addition to genetic algo-
rithms (GA) to propose a CAD system that addressed differentiating between NC, stable
MCI (sMCI), progressive MCI (pMCI), as well as AD groups. The pMCI group comprises
subjects who progressed clinically to the overt AD where their neuropsychological tests
have a poorer performance than the NC group.

On the other hand, the sMCI, who either remains in the stable stage or may improve,
shows no or marginal neuropsychological changes [13,14]. Zhang et al. [15] addressed the
three-way classification problem between the NC, MCI, and AD groups. In this system,
the principle analysis is used for feature detection, while the kernel support vector machine
decision tree (kSVM-DT) was used for the classification purpose. Then, Zhang et al. [16]
used the idea behind the eigenbrains along with the machine learning for building their
CAD system. Therefore, Welch’s t-test was used to find significant eigenbrain while the
prediction task was accomplished using SVM with the implementation of different kernels.
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Tong et al. [17] exploited the multiple instance learning (MIL) method to present a system
aimed to diagnose both AD and MCI phases. In this system, the extracted features were
in the form of local intensity patches. The MIL method was applied to address the case
when some patches may not characterize the morphological association with AD because
of the variable influence of the disease on these patches. Finally, Westman et al. [18] used
orthogonal partial least squares to latent structures (OPLS) analysis to discriminate between
the groups of AD through combining local and global volumetric measures obtained from
MRI scans.

Despite the achievements mentioned above, there are several notes regarding these
achievements that led to making the door still open in front of this research topic, and specif-
ically speaking this AD-related research point (i.e., differentiating between NC and MCI
groups). First, the previously mentioned studies addressed either a diagnosis of whole-
brain findings consistent with impairment or else considered local, brain region-specific
diagnosis while excluding the MCI group. Despite the importance of those researchers’
findings in the diagnosis task, targeting the brain-based regional diagnosis might add
more advantages due to the disease’s subject-dependent influence that could impede the
early diagnosis. Furthermore, the local/regional diagnosis can aid in revealing the disease-
related ambiguity. Secondly, in general, the diagnosis performance when using sMRI in the
AD early stage is fair and still needs more improvements. Due to the literature, the sMRI
scans can be used to follow patients as pathology accumulates with disease progression.
In contrast, at the early stages, the scan might look normal [9,19]. The aim of this paper is
primarily to introduce a system for the local/regional diagnosis, using sMRI technology,
for serving the goal of personalized diagnosis of MCI. Therefore, the proposed system
studies the impact of MCI locally (i.e., in the term of the local brain regions), specifically
speaking its impact on the brain cortical regions. Targeting the cortical regions is due to the
essential role of the medical imaging-based measurement of the cerebral cortex’s shape,
composition, as well as function in the diagnosis of the neurodegenerative conditions and
explicitly speaking in diagnosing AD [20–22]. To support the performed cortical regions
diagnosis, further analysis of the obtained results has been performed to confirm the fitness
of the results with the neurocircuits defined by the National Institute of Mental Health
Research Domain Criteria (RDoC). In addition, the paper offers a global diagnosis where
the results are promising, as evaluated, in addressing the challenging task of differentiating
between the NC and MCI groups primarily through brain structuring features at the early
stage of the disease. This paper is organized as follows. Section 2 explains the used material
as well as the applied methods. Section 3 presents the evaluation results of the proposed
CAD system. Section 4 discusses the obtained findings. In the end, a conclusion of the
proposed study is shown in Section 5.

2. Materials and Methods
2.1. Materials

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu, (Last accessed on 1 July 2021)) was used to build the proposed system. ADNI
is considered to be a standard database, which was established in 2003 as a public-private
partnership under the lead of Michael W. Weiner, MD as a Principal Investigator. The aim
behind the ADNI was to evaluate the role of combining serial MRI, PET, or other markers,
along with the clinical and neuropsychological assessments, in measuring the evolution
of MCI as well as AD. All the data on ADNI are provided for both the informational as
well as the review purposes where according to ADNI, the IRB in approved for research
use only. In the proposed work, we used 146 baseline sMRI scans of 60 normal plus
86 mildly cognitively impaired subjects, classified in ADNI as being either sMCI or pMCI.
Table 1 shows the demographic distribution of the used dataset. As reported by ADNI,
the NC participants represent the control subjects who do not show any depression, MCI,
or dementia signs. On the other hand, the MCI subjects are the subjects with subjective
memory concern that is reported by an informant, a clinician, or oneself. Despite this

adni.loni.usc.edu
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reported concern, the daily living activities of the MCI participants are basically preserved.
The subjects neither show any significant impairment levels in other cognitive domains
nor show dementia signs [23]. Please note here that in our paper, we did not focus on
differentiating between the sMCI and the pMCI groups. This is due to our ultimate goal of
presenting a personalized CAD system of either belonging to the NC or the MCI group
without addressing whether the subject will proceed to AD, as in the pMCI group, or will
remain stable, as in the sMCI group.

Table 1. Demographic data relating to baseline sMRI scans selected from ADNI. Note: MMSE is the
Mini Mental State Examination, and CDR is the Clinical Dementia Rating.

60 Normal Subject 86 MCI

Age (Mean ± std) 75.49 ± 4.78 73.98 ± 7.72
Gender

Women 38 33
Men 22 54

MMSE scores 24–30 24–30
CDR 0 0.5

2.2. Methods

This paper aims to present a cortical region-based CAD system to perform the per-
sonalized diagnosis of MCI through the framework illustrated in Figure 1. The system
begins with preprocessing the scans as well as segmenting the cerebral cortex and parcel-
lating by hemisphere. Second, a triangular mesh reconstruction of the cortical surface is
performed using the marching cubes (MC) algorithm. This is followed by the extraction of
shape-based features at each node of the cortical mesh. The cortical region-based features
are then defined through applying the Automated Anatomical Labeling (AAL) atlas to the
reconstructed cortex. Third, a fusion of the obtained features is performed using canonical
correlation analysis (CCA) to produce more representative features. Fourth, a two-stage
diagnostic classifier is constructed, producing cortical region-specific diagnoses that are
combined into a final diagnosis, of the subject’s cognitive status.

Figure 1. The proposed cortical region-based diagnostic system of cognitive impairment using sMRI.



Sensors 2021, 21, 5416 5 of 16

2.2.1. Preprocessing and Brain Cortex Segmentation

This step serves the cortical regions-based diagnosis goal through standardizing
them to the parcellation atlas space. Using the SPM toolbox, images are resampled and
re-oriented (if necessary), skull-stripped, aligned, and spatially normalized. Skull strip-
ping in this case had already been performed, so we convolved the sMRI scans with
their corresponding brain masks that in turn are provided as part of the ADNI dataset.
Then, the orientation of the atlas template’s space, MNI space, had been matched with
the scans through re-aligning re-orientating, spatial normalize as well as re-slicing the
scans. The data were re-sliced and aligned with the MNI-152 standard template. One
scan, selected as a reference, was rotated and shifted to align as near as possible to the
template, with the line between the anterior and posterior commissures (AC-PC line) of the
template and reference aligning exactly. The rest of the scans in the dataset were registered
to the chosen reference with a rigid body transformation calculated to optimize the mutual
information criterion. The particular choice of reference image is not significant, since
all MRI in the ADNI database have roughly the same spatial orientation. Subsequently,
the algorithm of Ashburner and Friston [24] was used to register each pre-aligned image
precisely with the MNI-152 template using a combination of affine and nonlinear deforma-
tions. Figure 2 shows examples of preprocessed scans overlaid on the atlas template [25].
Following this step, segmentation of the cerebral cortex was performed using the xjview
MATLAB toolbox.

Figure 2. Example of preprocessed and overlaid subjects’ scans with the AAL atlas template
from each studied group where (a) is for a normal subject, while (b) is for a mildly cognitive
impairment subject).

2.2.2. Brain Cortex Reconstruction and Analysis

The shape descriptors to be used later by the algorithm depend upon the accurate
representation of the cortical surface. Therefore, the MC algorithm is initially used for
cortex reconstruction since it is best-known isosurface extraction method and produces
high-resolution results [26,27]. Then, having obtained the triangulated mesh representation
of the cortical surface, several shape features are calculated at each node individually
through Equations (1)–(4) after calculating the principal curvature directions and values.
Algorithm 1 summarizes the steps of the MC algorithm as well as the calculation of the
principal curvature directions and values while Figure 3 illustrates results of cortical surface
reconstruction for both NC and MCI subjects.
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Algorithm 1 The MC algorithm and the calculation of the principal curvature directions
and values.

Input: The dataset of the scalar volumetric
Output: The directions and values of the principle curvature
Steps:
1. Use the volume lattice for defining the cubes (Cl) in which the corner vertices are

defined through the points (P(xi, yj, sk)) of the lattice for the column xi(∀i), yi(∀j)
and the slice Sk(∀n) where n represent the number of the volume slices.

2. Construct, in a sequential form of cube-by-cube manner throughout the rows of
the dataset, a fecetized isosurface. In this procedure and when the value of the
Vi > isovalue (α), mark Vi and keep the remaining ones as unmarked. Conse-
quently, the “active” edges are defined as an edge (Ej) ended with a marked vertex
(Vjm) and an unmarked vertex (Vju). Note: the value of α was calculated through
applying the histogram to the labeled volume, remove the large first max value,
and obtain the value of a middle bar of non-small values as the α value.

3. Use a look-up table to factorize the interacted isosurface of the intersection topolo-
gies in which the linear interpolation is applied for the location estimation of the
intersection between the isosurface-edge through:

I(x, y, s) = Vm(x,y,s) + ρ(Vu(x,y,s) −Vm(x,y,s))

where: ρ = α−Lm
Lu−Lm

, Lm and Lu are the scalars values Vm as well as Vu, respectively.
4. Through the face and vertex lists of the resulting triangulated mesh and to calculate

the principal curvature directions and values, describe the input by XY rather than
XYZ through rotating the input so the current vertex’s normal becomes [−1 0 0].

5. Fit a patch of the least-squares quadratic to the local neighborhood of a vertex
“ f (x, y) = ax2 + by2 + cxy + dx + ey + f ”.

6. Use the hessian-based eigenvectors and eigenvalues to calculate the principal curvature.

Figure 3. Examples of the marching cubes reconstruction output for normal and mildly cognitively
impaired subjects. As shown, although it is not that obvious since it is still the early stage of the
disorder, the brain atrophy starts to take place in the MCI case, where this atrophy defines the
beginning of losing the neurons and the connections that exist between them.

Please note that the sharpness and curvedness features were used as in [28]. Next,
labeling of each of the mesh nodes to its corresponding cortical regions is performed using
the AAL atlas, which defines a total of 76 cortical regions. It is important to note here
that alternative brain parcellation schemes could be used, as in [15,29,30]. In the proposed
system, the AAL atlas was chosen because of its relatively fine granularity. Here, to make
sure of the matching between the labels and the surface, the preprocessing steps of the
proposed framework were first applied to standardize the scans to the geometry of the
atlas template’s space, MNI space. Then, converts MNI coordinate to a description of brain
structure in AAL atlas using a standard list of the MNI space of the parcellation atlas to
label the required brain cortical regions.

CGaussian = λ1λ2 (1)

Cmean =
1
2
(λ1 + λ2) (2)
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Sharpness = (λ1 − λ2)
2 (3)

Curvedness =
√
(λ2

1 + λ2
2)/2 (4)

where λ1 and λ2 denote the principal curvatures. Quantities are estimated at the locus of
each node of the triangulated surface.

Although grey matter volume has a significant impact in the AD research area, where
it is considered to be the most popular cross-sectional quantitative metric [31], the demo-
graphic variability between the subjects can bias results. For this reason, the volume is
used here in conjunction with the previously obtained features to increase the precision of
the results while avoiding this biasing possibility. To calculate the volume: (1) apply the
AAL atlas to the to the preprocessed scans to define the cortical regions of the brain, (2) the
MC algorithm is applied to reconstruct each region separately, (3) calculate the volume for
each of the reconstructed regions separately. By the end of this step, there are a total of five
features calculated for each of the 76 brain cortical regions, and they are now ready for the
next step of fusion.

2.2.3. Shape Feature Fusion

This step aims to fuse the previously extracted features to produce more informative
discriminative features between the tested groups. For this purpose, the CCA-based
technique of feature fusion is used due to its role in finding the associations between
two sets of variables [32]. Obtaining the linear combinations helps in discovering this
association that consequently enlarge the correlation between the two variable sets in the
way that presented in Algorithm 2. Here and due to the number of studied features, five
features, the CCA technique is implemented sequentially working with two features at
a time until ending up with the final fusion-based feature vector for each labeled region.
Note, due to the different scales of the extracted features, before fuse the features using
the CCA technique, each of the features are normalized to be between 0 and 1 using
Equation (5).

normFeat = (oldFeat− oldFeatmin)/(oldFeatmax − oldFeatmin) (5)

Algorithm 2 The algorithm for feature fusion based on CCA technique.

Input: Two matrices of the features, X ∈ Rp×n and Y ∈ Rq×n, of the extracted (p + q)
features for the n samples.
Output: The fused features in the form of matrix.
Steps:
1. Compute the covariance matrix, S, for the two matrices X and Y using:

S =

(
cov(x) cov(x, y)

cov(y, x) cov(y)

)
=

(
Sxx Sxy
Syx Syy

)
where the Sxx ∈ Rp × p and the Syy ∈ Rq × q are within-sets matrices of the covari-
ance of the X as well as the Y, respectively. The Sxy ∈ Rp × q is the matrix of the
between-set covariance while Syx = ST

xy
2. Determine both of the linear combinations X∗ and Y∗ through using CCA to be

able to enlarge the correlations among the matrices X and Y through:

corr(X∗, Y∗) = cov(X∗ ,Y∗)
var(X∗).var(Y∗)

where Wx and Wy represent the matrices of the transformation.
cov(X∗, Y∗) = WT

x SxyWy, var(X∗) = WT
x SxxWx, and var(Y∗) = WT

y SyyWy.
The usage of Lagrange multipliers is to attain the maximization goal by maximizing
cov(X∗, Y∗) with a constrain of var(X∗) = var(Y∗) = 1.
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Algorithm 2 Cont.

3. Determine Wx and Wy by:

(a) Solve the equations of the eigenvalue:

S−1
xx SxyS−1

yy SyxŴx = ∆2Ŵx

where Ŵx and Ŵy are the eigenvectors while ∆2 is the eigenvalues that cor-
responds to either the diagonal matrix or the canonical correlations square.

(b) Determine d that represent the overall non-zero eigenvalues in every afore-
mentioned equation, by d = rank(Sxy(n, p, q)).

(c) Perform a decreasing order-based sorting operation of the previous step
results δ1 ≥ δ2 ≥ ... ≥ δd.

(d) Let the sorted eigenvectors be indicated by Wx and Wy where they con-
sequently represent the non-zero eigenvalues in which X∗ and Y∗ ∈ Rdn

represent the canonical variates.
4. Calculate the sample covariance matrix of the transformed data, S∗, using:

S∗ =



1 0 · · · 0 δ1 0 · · · 0
0 1 · · · 0 0 δ2 · · · 0
...

. . .
...

...
. . .

...
0 0 · · · 1 0 0 · · · δd
δ1 0 · · · 0 1 0 · · · 0
0 δ2 · · · 0 0 1 · · · 0
...

. . .
...

...
. . .

...
0 0 · · · δd 0 0 · · · 1


Concatenate the features-based transformed vectors to obtain the feature fusion
vector through:

Z =

(
X∗

Y∗

)
=

(
WT

x X
WT

y Y

)
=
( Wx 0

0 Wy

)T
(

X
Y

)

2.2.4. Diagnosis

The last step of the proposed system is to use the fused features to train the two diag-
nostic layers: regional and global. For this purpose, a probabilistic SVM (pSVM) support
vector machine (pSVM) is used in the first diagnosis layer, where for each anatomical
region a separate pSVM is trained to produce a probabilistic measure of association of that
particular region’s features with MCI. For this purpose, the fusion feature vector produced
by the CCA technique was used as an input to the pSVM to produce the final probabilistic
regional diagnosis result. Then, a standard SVM is used, in the second layer, where the
probabilistic outputs of the first layer are input to it, and the output is the global diagnosis
of NC or MCI.

3. Results

The system was trained and tested using the 146 baseline scans, previously men-
tioned, downloaded from ADNI. For the evaluation process, three types of experiments
are performed: (1) evaluating the performance of different SVM kernels, (2) comparing the
system’s performance results with several some state-of-the-art methods, and (3) validating
it with related work.

For testing classifier performance, k-fold cross-validation was applied to compare
both the results of the SVM-related kernels, as shown in Figure 4, and our obtained
results against some state-of-the-art methods, as shown in Figure 5. Regarding the k-fold
cross-validation method, K = 4 and K = 10 were used to verify that the proposed system
did not overfit while K = 10 was also used to evaluate the proposed linear-based CAD
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system with some state-of-the-art classifiers. As illustrated in Figure 4, the linear kernel
could, in general, exceeds the overall performance of the other kernels (i.e., polynomial,
and radial basis function (RBF) kernels) with the K = 4, and K = 10. For K = 4, the superior
results of the linear kernel were around 86.3%, 85%, and 87.2% for the accuracy, specificity,
and sensitivity, respectively. For K = 10, these superior results were around 86.3%, 88.33%,
and 84.88% of accuracy, specificity, and sensitivity, respectively. Comparing the obtained
results, at K = 10, with some other state-of-the-art classifiers (i.e., decision tree, ensemble
classifier, and K nearest neighbors (KNN)), Figure 5, also showed that the linear-SVM
generally could achieve better results.

Along with these quantitative performance results, an additional investigation has
been performed to confirm the fitness of the obtained subjects’ cortical regions-based
diagnosis results with the neurocircuits defined by the National Institute of Mental Health
RDoC. Therefore, Table 2 displays the modest correlations between the behavioral and
cognitive data from ADNI and critical brain regions involved in memory and language.
Finally, an illustration of different cortical region-based diagnoses is presented in Figure 6
where the disease’s severity in each cortical region is represented in color.

Figure 4. The results of the k-fold validation method in (%) for different SVM-based kernels
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Figure 5. The comparison evaluation of our linear-based CAD system with some state-of-the-art
classifiers with k-fold = 10.

Table 2. The person correlation for MRI parameters and distinct behavioral tasks in MCI subjects, where: BNTTOTAL: Total
number correct on Boston Naming Test, BNTSPONT: number of spontaneously given correct responses, Partial Score of
BNT, TOTAL11 (ADAS): total score on the 11 item cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS),
FAQTOTAL: functional assessment questionnaire total score, CONMCXLA: number of targets hit on ADNI numbers
cancellation task.

Brain Region Behavioral Task ADNI Category r-Value p-Value

Right Angular Gyrus Language BNTTOTAL 0.37 0.001
Right Angular Gyrus Language BNTSPONT 0.36 0.001
Left Angular Gyrus Language BNTTOTAL −0.35 0.002
Left Angular Gyrus Language BNTSPONT −0.37 0.001

Right Middle Cingulum Language BNTTOTAL −0.29 0.010
Right Middle Cingulum Language BNTSPONT −0.31 0.006

Right Inferior Frontal Opercularis Cognitive TOTAL11 (ADAS) −0.32 0.004
Left Parahippocampal Gyrus Adaptive FAQTOTAL −0.30 0.007
Left Parahippocampal Gyrus Visual Spatial CONMCXLA 0.30 0.008

Figure 6. Different examples that show the cortical regions diagnosis for two different normal,
and two different mildly cognitive subjects. Note: (1) the color-bar-based gradient colors represent
the disease’s severity in every studied region separately. (2) The blue arrows show examples of the
cortical regions that show significant difference in the probabilistic diagnosis results between the NC
and MCI subjects.
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4. Discussion

Patients with mild cognitive impairment present with markedly reduced cognitive
abilities when compared with unaffected people of the same age, and taking a level of
education into account, but without meeting the criteria for dementia. One or more
domains of cognition can be influenced by this impairment: memory, executive function,
language, skills of the visuospatial domain, or attention. Regardless of the aforementioned
impairments, the patients still can accomplish their daily tasks, such as occupational or
social functions without confusion [33]. Therefore, MCI is considered to be an intermediate
condition between typically seen age-related changes in cognition and dementia [33,34].
Although it is not guaranteed that all MCI cases proceed to AD, suffering from MCI
increases the risk factor of ending up with AD [34,35].

To date, sMRI is one of the most developed modalities used for differential patho-
logical diagnosis purposes due to its ability to detect the location and severity of atrophy
through showing the detailed description of the soft tissues of the body [36,37]. sMRI
can discriminate between tissue types through capturing proton density or magnetization
properties (using spin-spin (T2) or spin-lattice (T1) relaxation times). Actually, T1-weighted,
as well as T2-weighted images, are used for qualitative assessment that is designed to both
differentiate between the tissues with a different relaxation time of T1/T2, and to evaluate
the macroscopic lesions as well as tissues changes such as in sulci, cysts and ventricles [38].

Regarding AD, sMRI can, in general, reveals atrophy of the cerebral cortex during
the progression of AD. Furthermore, the regions thought to distinguish AD from MCI
and normal controls include MRI parameters of the putative earlier involved MCI regions
(hippocampus, entorhinal cortex, supramarginal gyrus) vs. earlier involved AD regions
(rate of hippocampal atrophy, cingulate cortex, and parietal cortex) [39]. Additionally,
the analysis of sMRI helps in uncovering the relationship between both the elevated risks
for MCI converting to AD and atrophy where this, in turn, assists in anticipating the future
cognitive-based decline in the healthy adults. Additionally, the volumetric-based analysis
using sMRI can aid in detecting crucial changes in the brain regions’ size that in turn,
effectively assist in the diagnosis procedure [40].

According to the literature, the shape, composition, and function of the cerebral cortex
as measured by imaging modalities has a crucial role in diagnosing the neurodegenerative
conditions, especially in AD [20–22]. Depending on imaging variability and due to the
variability of AD effect among its sufferers, the ultimate goal of this paper is to introduce a
cortical region-based diagnosis of MCI. Additionally, the paper aims to improve the overall
performance of the discrimination between the NC and MCI Group, which is known to be
a difficult task, as seen in the related literature.

We introduced a cortical region-based diagnostic system that serves the subject-
dependent (i.e., personalized) diagnosis of MCI. Additionally, we target improving the
diagnostic performance with respect to the related work. To achieve our goals, and because
of the nature of the disease at this early stage, when underlying anatomical changes are
subtle, it was necessary to choose high-resolution methods to accomplish this task. There-
fore, in the proposed system, the MC algorithm was selected due to its role, as mentioned
above in obtaining high-resolution extraction of isosurface results. Then, the shape-based
features were addressed to serve the discrimination goal due to the nature of the disease’s
influence in the brain that could be detected through the sMRI scans. After obtaining these
features and to present a more informative feature vector to the diagnosis step, as well as to
overcome the biased results that can be obtained using the volume feature, a feature reduc-
tion/fusion process was applied. Finally, and based on its powerful role in addressing this
type of problems as well as to serve the personalized diagnosis role, standard SVM and its
variant, pSVM, was applied to provide two layers, regional followed by global diagnosis.

As previously mentioned, the system’s performance has been evaluated from three
different perspectives, which are evaluating the performance of different SVM kernels,
comparing the obtained performance results with several state-of-the-art methods, and val-
idating the system’s performance with related work. Starting with the first evaluation,
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Figure 4 shows a comparison of different SVM-related kernels’ performance (i.e., poly-
nomial, linear, and RBF) using k-fold cross-validation method, with K = 4, and K = 10 to
exclude the possibility of overfitting, As shown in the figure, the linear kernel achieved
superior results while the RBF kernel performed most poorly. The results of the linear-SVM
reflect the power of the extracted features in providing linear separation between the tested
groups. On the other hand, the low results of the nonlinear kernels can be justified as
the result of the small dataset size that led to lower performance results of RBF-based
SVM compared with the polynomial-based one. Additionally, the power of the extracted
features that caused the superior results of the linear-SVM showed, as shown in the results
that the RBF kernel failed to find a proper separating decision boundary between the
studied groups.

Then, again through using the k-fold cross-validation method and specifically speak-
ing K = 10, we compared the performance of the linear-SVM with some well-known meth-
ods (i.e., decision tree, ensemble classifier, and KNN), as presented in Figure 5. Broadly
speaking, the linear-SVM showed better performance against the other methods. This
indicates the proposed work’s ability to deal with this research issue. In general, this
better performance can be justified by several reasons. First, the discriminative power of
the features that results in better classification performance ability of the linear-SVM to
separate between the groups with linear hyperplanes. Second, the performance power of
SVM, in general, to deal with high-dimensional space’s dataset while this is not the case
with other methods. Finally, the efficiency of SVM to deal with a small size of the datasets
while other methods can suffer from under-performance results and/or overfitting.

Additionally, validating our system’s performance against the literature showed the
promise of the proposed work. For instance, in [15] a classification system was built, using
the principal component analysis (PCA) kSVM-DT, and could reach a maximum accuracy
result of 85%, specificity result of 80%, and sensitivity results of 87%. In [18], the OPLS
analysis was used that led to a specificity result of 73% as well as a sensitivity result of
66%. Finally, in [41], an ICA/SVM system was proposed for the classification and could
achieve accuracy, specificity, and sensitivity of 70.19%, 67.49%, and 72.89%, respectively. It
is noteworthy that the results of the systems above have been obtained from those studies
regardless of using different dataset as well as a different number of scans. The idea here is
to validate our work against prior work focusing on the same research area.

The modest correlations between ADNI behavioral and cognitive data and brain
regions (Table 2) critical to AD, involving memory and language, adds further validation
to our approach. (Additional details about the ADNI categories can be found in [42–47].)
Furthermore, a survey of statistically significant correlations between ADNI behavioral and
cognitive data and brain regions suggest that regions linked to specific deficits in language
(15 regions), executive function and cognition (10 regions), adaptive behavior (5 regions),
and memory (3 regions) may point to early neuropathology in classic AD-involved regions
in MCI subjects. Finally, Figure 6 illustrates some cortical regions-based diagnosis results
of different normal as well as mildly cognitive impaired subjects. As shown in the figure,
the system can visualize the disease’s severity in the cortical regions separately. In turn,
this illustration helps the experts to discover any local abnormality and its degree to
consequently direct the treatment plans.

5. Conclusions

Among the neurodegenerative conditions, AD is considered one of the leading dis-
eases that affect the CNS, where its main sufferers are elderly people. The principal goal of
the presented work is to serve the subject-dependent (i.e., personalized) diagnosis of the
MCI, the early phase of AD. This goal is achieved by demonstrating a cortical region-based
CAD system that helps visualize the severity of the disease in different local brain regions.
Because of the difficulty of addressing the classification task between the normal and the
mildly cognitive impaired groups, our system aims to target a more promising performance
than in the literature and some state-of-the-art methods. To achieve this purpose, the sMRI
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has been used where several shape-based features were extracted, and according to the
obtained results, could provide powerful assistance in the targeted task. Comparing our
system with some state-of-the-art methods and validating it with the related work shows
promising results of ours in the studied research area. Therefore, the proposed system
can be treated as an assistant tool that provides a highly performed diagnosis through
focusing on the crucial related brain regions, cortical regions. Focusing on such areas is
vital due to the variable effect of AD in its sufferers that in turn requires presenting different
medical services to the sufferers according to the nature of the disease’s influence and the
degree of this influence in their cortical regions. Besides that, the proposed system can
help analyze the disease and uncover the ambiguity surrounding it by providing a finely
detailed computer-aided diagnosis system that targets the hardly discriminative early stage
of the disease.

For future work, the authors plan to perform further evaluation of the presented
diagnostic system with other datasets, improve the system’s overall performance, and per-
form additional analysis processes involving multimodal imaging to enhance the goals
in this research area. Additionally, the obtained promising results that in turn helped
in proofing the targeted concept of this paper, encourages using the proposed system in
addressing another AD-based discrimination task that is between the sMCI and pMCI
groups, and evaluating the resulting diagnosis performance for further improvements.
Additionally, regarding the surface reconstruction, the authors will try to implement some
other reconstruction methods and compare their results with the MC algorithm.
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BACE1 β secretase 1
PSEN1 presenilin 1
PSEN2 presenilin 2
APH1 anterior pharynxdefective 1
MCI mild cognitive impairment
PET positron emission tomography
CSF cerebrospinal fluid
Aβ42 amyloid beta
sMRI structural magnetic resonance imaging
FDG-PET 2-[18F] fluoro-2-deoxy-d-glucose
NC normal control
CAD computer-assisted diagnostic
ICA independent component analysis
SVM support vector machines
GA genetic algorithms
sMCI stable MCI
pMCI progressive MCI
kSVM-DT kernel support vector machine decision tree
MIL multiple instance learning
OPLS orthogonal partial least squares to latent structures
RDoC research domain criteria
ADNI Alzheimer’s disease neuroimaging initiative
MMSE mini mental state examination
CDR clinical dementia rating
MC marching cubes
AAL automated anatomical labeling
CCA canonical correlation analysis
MNI Montreal Neurological Institute
AC-PC anterior and posterior commissures
pSVM probabilistic support vector machines
BNTTOTAL total number correct on Boston Naming Test
BNTSPONT number of spontaneously given correct responses
ADAS Alzheimer’s Disease Assessment Scale-Cognitive Behavior
FAQTOTAL functional assessment questionnaire total score
CONMCXLA number of targets hit on ADNI numbers cancellation task
RBF radial basis function
KNN K nearest neighbors
PCA principal component analysis

References
1. Disease and Dementia. What Is Alzheimer’s? 2019. Available online: https://www.alz.org/alzheimers-dementia/what-is-

alzheimers/ (accessed on 23 January 2019).
2. Brown, D. Brain Diseases and Metalloproteins; Pan Stanford: Singapore, 2013.
3. Jenner, P.; Goate, A.; Ashall, F. Pathobiology of Alzheimer’s Disease; Elsevier Science: New York, NY, USA, 1995.
4. Gauthier, S. Clinical Diagnosis and Management of Alzheimer’s Disease; CRC Press: Boca Raton, FL, USA, 2006.
5. Castellani, R.J.; Plascencia-Villa, G.; Perry, G. The amyloid cascade and Alzheimer’s disease therapeutics: Theory versus

observation. Lab. Investig. 2019, 99, 958–970. [CrossRef] [PubMed]
6. Kidd-Madison, N. Alzheimer’s Disease: Living with John, Caring for a Love One; Xlibris US: Bloomington, IN, USA, 2014.
7. Osborn, A.G.; Salzman, K.L.; Jhaveri, M.D.; Barkovich, A.J. Diagnostic Imaging: Brain E-Book; Elsevier Health Sciences: Amsterdam,

The Netherlands, 2015.
8. Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012,

2, a006213. [CrossRef]
9. Jack, C.R.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical

model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [CrossRef]
10. Khedher, L.; Illán, I.A.; Górriz, J.M.; Ramírez, J.; Brahim, A.; Meyer-Baese, A. Independent Component Analysis-Support Vector

Machine-Based Computer-Aided Diagnosis System for Alzheimer’s with Visual Support. Int. J. Neural Syst. 2017, 27, 1650050.
[CrossRef]

https://www.alz.org/alzheimers-dementia/what-is-alzheimers/
https://www.alz.org/alzheimers-dementia/what-is-alzheimers/
http://doi.org/10.1038/s41374-019-0231-z
http://www.ncbi.nlm.nih.gov/pubmed/30760863
http://dx.doi.org/10.1101/cshperspect.a006213
http://dx.doi.org/10.1016/S1474-4422(09)70299-6
http://dx.doi.org/10.1142/S0129065716500507


Sensors 2021, 21, 5416 15 of 16

11. Fang, C.; Li, C.; Cabrerizo, M.; Barreto, A.; Andrian, J.; Loewenstein, D.; Duara, R.; Adjouadi, M. A Novel Gaussian Discriminant
Analysis-based Computer Aided Diagnosis System for Screening Different Stages of Alzheimer. In Proceedings of the 2017
IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, USA, 23–25 October 2017;
pp. 279–284.

12. Beheshti, I.; Demirel, H.; Matsuda, H.; Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s disease and
prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature
ranking and a genetic algorithm. Comput. Biol. Med. 2017, 83, 109–119. [CrossRef]

13. Missonnier, P.; Deiber, M.P.; Gold, G.; Herrmann, F.; Millet, P.; Michon, A.; Fazio-Costa, L.; Ibanez, V.; Giannakopoulos, P. Working
memory load–related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment.
Neuroscience 2007, 150, 346–356. [CrossRef]

14. Wang, P.N.; Liu, H.C.; Lirng, J.F.; Lin, K.N.; Wu, Z.A. Accelerated hippocampal atrophy rates in stable and progressive amnestic
mild cognitive impairment. Psychiatry Res. Neuroimaging 2009, 171, 221–231. [CrossRef]

15. Zhang, Y.; Wang, S.; Dong, Z. Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel
support vector machine decision tree. Prog. Electromagn. Res. 2014, 144, 171–184. [CrossRef]

16. Zhang, Y.; Dong, Z.; Phillips, P.; Wang, S.; Ji, G.; Yang, J.; Yuan, T.F. Detection of subjects and brain regions related to Alzheimer’s
disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 2015, 9, 66. [CrossRef]

17. Tong, T.; Wolz, R.; Gao, Q.; Guerrero, R.; Hajnal, J.V.; Rueckert, D. Multiple instance learning for classification of dementia in
brain MRI. Med. Image Anal. 2014, 18, 808–818. [CrossRef] [PubMed]

18. Westman, E.; Simmons, A.; Zhang, Y.; Muehlboeck, J.S.; Tunnard, C.; Liu, Y.; Collins, L.; Evans, A.; Mecocci, P.; Vellas, B.; et al.
Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage 2011,
54, 1178–1187. [CrossRef]

19. American College of Radiology. Alzheimer’s Disease. 2021. Available online: https://www.radiologyinfo.org/en/info/
alzheimers (accessed on 19 June 2021).

20. Peters, A.; Morrison, J. Cerebral Cortex: Neurodegenerative and Age-Related Changes in Structure and Function of Cerebral Cortex;
Springer: Berlin/Heidelberg, Germany, 1999.

21. Cechetto, D.; Weishaupt, N. The Cerebral Cortex in Neurodegenerative and Neuropsychiatric Disorders: Experimental Approaches to
Clinical Issues; Elsevier Science: Amsterdam, The Netherlands, 2017.

22. Apostolova, L.G.; Thompson, P.M. Mapping progressive brain structural changes in early Alzheimer’s disease and mild cognitive
impairment. Neuropsychologia 2008, 46, 1597–1612. [CrossRef]

23. Alzheimer’s Disease Neuroimaging Initiative. ADNI | Study Design. 2019. Available online: http://adni.loni.usc.edu/study-
design/ (accessed on 22 May 2021).

24. Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [CrossRef]
25. The Wellcome Centre for Human Neuroimaging. SPM12-Statistical Parametric Mapping. Filionuclacuk. 2017. Available online:

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ (accessed on 28 January 201 ).
26. Hansen, C.; Johnson, C. Visualization Handbook; Elsevier Science: Amsterdam, The Netherlands, 2011.
27. Newman, T.S.; Yi, H. A survey of the marching cubes algorithm. Comput. Graph. 2006, 30, 854–879. [CrossRef]
28. Ismail, M.; Soliman, A.; ElTanboly, A.; Switala, A.; Mahmoud, M.; Khalifa, F.; Gimel’farb, G.; Casanova, M.F.; Keynton, R.;

El-Baz, A. Detection of white matter abnormalities in MR brain images for diagnosis of autism in children. In Proceedings of the
2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 6–9.

29. Su, S.S.; Chen, K.W.; Huang, Q. Discriminant analysis in the study of Alzheimer’s disease using feature extractions and support
vector machines in positron emission tomography with 18 F-FDG. J. Shanghai Jiaotong Univ. (Sci.) 2014, 19, 555–560. [CrossRef]

30. Salas-Gonzalez, D.; Segovia, F.; Martínez-Murcia, F.J.; Lang, E.W.; Gorriz, J.M.; Ramırez, J. An optimal approach for selecting
discriminant regions for the diagnosis of Alzheimer’s disease. Curr. Alzheimer Res. 2016, 13, 838–844. [CrossRef]

31. Vemuri, P.; Jack, C.R. Role of structural MRI in Alzheimer’s disease. Alzheimer’s Res. Ther. 2010, 2, 23. [CrossRef] [PubMed]
32. Haghighat, M.; Abdel-Mottaleb, M.; Alhalabi, W. Fully automatic face normalization and single sample face recognition in

unconstrained environments. Expert Syst. Appl. 2016, 47, 23–34. [CrossRef]
33. Yaffe, K. Chronic Medical Disease and Cognitive Aging: Toward a Healthy Body and Brain; Oxford University Press: Oxford, UK, 2013.
34. Anderson, N.; Murphy, K.; Troyer, A. Living with Mild Cognitive Impairment: A Guide to Maximizing Brain Health and Reducing Risk

of Dementia; Oxford University Press: Oxford, UK, 2012.
35. Lopez, O.L. Mild cognitive impairment. Contin. Lifelong Learn. Neurol. 2013, 19, 411–424. [CrossRef] [PubMed]
36. Haidekker, M.A. Medical Imaging Technology; Springer: Berlin/Heidelberg, Germany, 2013.
37. Smith, N.B.; Webb, A. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press:

Cambridge, UK, 2010.
38. Ballabh, P.; Back, S.A. Advances in Neonatal Neurology. Clin. Perinatol. 2014, 41, xvii–xix. [CrossRef] [PubMed]
39. Leandrou, S.; Petroudi, S.; Kyriacou, P.A.; Reyes-Aldasoro, C.C.; Pattichis, C.S. Quantitative MRI brain studies in mild cognitive

impairment and Alzheimer’s disease: A methodological review. IEEE Rev. Biomed. Eng. 2018, 11, 97–111. [CrossRef]
40. Varghese, T.; Sheelakumari, R.; James, J.S.; Mathuranath, P.S. A review of neuroimaging biomarkers of Alzheimer’s disease.

Neurol. Asia 2013, 18, 239–248. [PubMed]

http://dx.doi.org/10.1016/j.compbiomed.2017.02.011
http://dx.doi.org/10.1016/j.neuroscience.2007.09.009
http://dx.doi.org/10.1016/j.pscychresns.2008.05.002
http://dx.doi.org/10.2528/PIER13121310
http://dx.doi.org/10.3389/fncom.2015.00066
http://dx.doi.org/10.1016/j.media.2014.04.006
http://www.ncbi.nlm.nih.gov/pubmed/24858570
http://dx.doi.org/10.1016/j.neuroimage.2010.08.044
https://www.radiologyinfo.org/en/info/alzheimers
https://www.radiologyinfo.org/en/info/alzheimers
http://dx.doi.org/10.1016/j.neuropsychologia.2007.10.026
http://adni.loni.usc.edu/study-design/
http://adni.loni.usc.edu/study-design/
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://dx.doi.org/10.1016/j.cag.2006.07.021
http://dx.doi.org/10.1007/s12204-014-1540-4
http://dx.doi.org/10.2174/1567205013666160415154852
http://dx.doi.org/10.1186/alzrt47
http://www.ncbi.nlm.nih.gov/pubmed/20807454
http://dx.doi.org/10.1016/j.eswa.2015.10.047
http://dx.doi.org/10.1212/01.CON.0000429175.29601.97
http://www.ncbi.nlm.nih.gov/pubmed/23558486
http://dx.doi.org/10.1016/j.clp.2013.11.002
http://www.ncbi.nlm.nih.gov/pubmed/24524461
http://dx.doi.org/10.1109/RBME.2018.2796598
http://www.ncbi.nlm.nih.gov/pubmed/25431627


Sensors 2021, 21, 5416 16 of 16

41. Khedher, L.; Ramírez, J.; Górriz, J.M.; Brahim, A. Automatic classification of segmented MRI data combining independent
component analysis and support vector machines. Innov. Med. Healthc. 2015, 207, 271–279.

42. Nho, K.; Risacher, S.L.; Crane, P.K.; DeCarli, C.; Glymour, M.M.; Habeck, C.; Kim, S.; Lee, G.J.; Mormino, E.; Mukherjee, S.; et al.
Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease.
Brain Imaging Behav. 2012, 6, 551–567. [CrossRef]

43. Gibbons, L.E.; Carle, A.C.; Mackin, R.S.; Harvey, D.; Mukherjee, S.; Insel, P.; Curtis, S.M.; Mungas, D.; Crane, P.K. A composite
score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline
mild cognitive impairment. Brain Imaging Behav. 2012, 6, 517–527. [CrossRef] [PubMed]

44. Park, L.Q.; Gross, A.L.; McLaren, D.G.; Pa, J.; Johnson, J.K.; Mitchell, M.; Manly, J.J. Confirmatory factor analysis of the ADNI
Neuropsychological Battery. Brain Imaging Behav. 2012, 6, 528–539. [CrossRef]

45. Ito, K.; Hutmacher, M.; Corrigan, B. Modeling of Functional Assessment Questionnaire (FAQ) as continuous bounded data from
the ADNI database. J. Pharmacokinet. Pharmacodyn. 2012, 39, 601–618. [CrossRef] [PubMed]

46. Mohs, R.C.; Knopman, D.; Petersen, R.C.; Ferris, S.H.; Ernesto, C.; Grundman, M.; Sano, M.; Bieliauskas, L.; Geldmacher, D.;
Clark, C.; et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s
Disease Assessment Scale that broaden its scope. Alzheimer Dis. Assoc. Disord. 1997, 11, 13–21. [CrossRef]

47. Battista, P.; Salvatore, C.; Castiglioni, I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional
impairment classification: A machine learning study. Behav. Neurol. 2017, 2017, 1850909. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11682-012-9203-2
http://dx.doi.org/10.1007/s11682-012-9176-1
http://www.ncbi.nlm.nih.gov/pubmed/22644789
http://dx.doi.org/10.1007/s11682-012-9190-3
http://dx.doi.org/10.1007/s10928-012-9271-3
http://www.ncbi.nlm.nih.gov/pubmed/22990808
http://dx.doi.org/10.1097/00002093-199700112-00003
http://dx.doi.org/10.1155/2017/1850909
http://www.ncbi.nlm.nih.gov/pubmed/28255200

	Introduction
	Materials and Methods
	Materials
	Methods
	Preprocessing and Brain Cortex Segmentation
	Brain Cortex Reconstruction and Analysis
	Shape Feature Fusion
	Diagnosis


	Results
	Discussion
	Conclusions
	References

