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A B S T R A C T   

Background: Previous multimodal neuroimaging studies analyzed each dataset independently in subjective 
cognitive decline (SCD) and mild cognitive impairment (MCI), missing the cross-information. Multi-modal fusion 
analysis can provide more integral and comprehensive information regarding the brain. There has been a paucity 
of research on fusion analysis of sMRI and DTI in SCD and MCI. 
Materials and Methods: In the present study, we conducted fusion analysis of structural MRI and DTI by applying 
multimodal canonical correlation analysis with joint independent component analysis (mCCA-jICA) to capture 
the cross-information of gray matter (GM) and white matter (WM) in 62 SCD patients, 99 MCI patients, and 70 
healthy controls (HCs). We further analyzed correlations between the mixing coefficients of mCCA-jICA and 
neuropsychological scores among the three groups. 
Results: A set of joint-discriminative independent components of GM and fractional anisotropy (FA) exhibited 
significant links between SCD and HCs, as well as between MCI and HCs. The covariant abnormalities primarily 
involved the frontal lobe/middle temporal gyrus/calcarine sulcus-anterior thalamic radiation/superior longitu-
dinal fasciculus in SCD, and middle temporal gyrus/ fusiform gyrus/caudate necleus-forceps minor/anterior 
thalamic radiation in MCI. There was no significant difference between SCD and MCI groups. 
Conclusions: The covariant GM-WM abnormalities in SCD and MCI were found in specific brain regions involved 
in cognitive processing, which confirms the simultaneous GM and WM changes underlying cognitive decline. 
These findings suggest that multimodal fusion analysis allows for a more comprehensive understanding of the 
association among different types of brain tissues and its crucial role in the neuropathological mechanism of SCD 
and MCI.  
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1. Introduction 

Subjective cognitive decline (SCD) has been proposed to represent a 
transitional stage to AD according to the National Institute on Aging/ 
Alzheimer’s Association (NIA/AA), and it is thought to be an interme-
diate stage between healthy controls (HCs) and individuals with mild 
cognitive decline (MCI) (Jessen et al., 2020). Previous neuroimaging 
studies revealed that the brain changes of SCD were intermediate be-
tween MCI and HC (Wang et al., 2012; López-Sanz et al., 2017; Lazarou 
et al., 2019). Increasing studies were focus on the neuroimaging of SCD 
with the aim of the identification of underlying pathological changes, 
but the results remain controversial. A growing number of multimodel 
neuroimaging studies have provided more complete understanding of 
the disease, while there is still a lack of consensus on the relationship of 
SCD and AD neuroimaging biomarkers. Previous studies using multi-
model brain imaging analyzed each dataset independently, resulting in 
the loss of cross-information between imaging modalities. Multi-modal 
fusion analysis may directly and reliably reveal underlying in-
terrelationships of changes in each modality, and provide more integral 
and comprehensive information regarding the brain. It is favorable to be 
applied for the detection of complicated and potentially weak effects 
which are hidden in a high-dimensional data sets(Calhoun and Sui, 
2016). Thus, multi-modal fusion analysis may help to better elucidate 
the pathophysiological mechanisms of the disease, and provide relevant 
imaging biomarkers. Furthermore, it can provide robustness to noise 
(Calhoun and Sui, 2016). Sui et al. (Sui et al., 2013b) has proposed a data 
fusion model—namely multimodal canonical correlation analysis with 
joint independent component analysis (mCCA-jICA)—which synthesizes 
and complements the specific advantages of each modality and has 
potential to uncover associations among abnormalities found in multiple 
modalities. The mCCA-jICA is a data-driven multivariate fusion method 
that can obtain the interaction between different imaging modalities and 
cross-modal joint information (Sui et al., 2011; Sui et al., 2014). More 
precisely, mCCA is first used to find maximally correlated components 
between multiple modalities, and then jICA is used to decompose these 
correlated components into spatially independent components (ICs), 
which are concatenated spatial maps of different modalities. In other 
word, the spatial maps of different modalities in one IC are correlated 
between modalities, while spatial maps of different ICs are independent 
with each other. A previous study conducted multimodal fusion analysis 
using mCCA-jICA and found results supporting and extending previous 
findings derived from single modality analyses, and also provided a 
more comprehensive understanding of the underlying relationship be-
tween functional and structural abnormalities in schizophrenia (Lott-
man et al., 2018). Furthermore, these selected group-discriminating 
components might be useful for diagnosing schizophrenia (Sui et al., 
2013a; Yang et al., 2010). Additionally, Ouyang et al. (Ouyang et al., 
2015) applied fusion analysis to GM and WM data in AD to demonstrate 
the reliability of the results, and expanded our knowledge of neuro-
pathological mechanisms from the perspective of covariate patterns in 
AD. 

To the best of our knowledge, there has been a paucity of research on 
fusion analysis of sMRI and DTI in SCD and MCI. We hypothesized that 
there exist covariant GM-WM abnormalities in SCD and MCI, and these 
covariant GM-WM abnormalities are associated with cognitive perfor-
mance. In the present study, we fused abnormalities in GM and frac-
tional anisotropy (FA) via mCCA-jICA to investigate the covariate 
pattern of GM and WM in SCD and MCI as well as the correlation be-
tween the mixing coefficients and the cognitive assessments. 

2. Materials and methods 

2.1. Participants 

Sixty-two SCD and 99 MCI patients as well as 70 HCs matched with 
the patients by age, gender, and years of education were enrolled in the 

present study. All participants were recruited from the First Affiliated 
Hospital of Guangxi University of Chinese Medicine and its Renai Branch 
Hospital, as well as from several aged-community activity centers in 
Nanning, Guangxi Province. All participants signed an informed consent 
prior to enrollment. This study was permitted by the Medicine Ethics 
Committee of First Affiliated Hospital of Guangxi University of Chinese 
Medicine. 

The inclusion criteria for patients were as follows: (1) aged 55–75 
years; (2) right-handed; (3) self-reported changes in cognition; (4) un-
affected daily life activities and occupation. Exclusion criteria for pa-
tients with MCI or SCD were as follows: (1) advanced, severe, or 
unstable diseases such as liver, kidney, and other serious primary dis-
eases; (2) severe hearing and/or visual impairment; (3) dementia, ce-
rebral infarction, or any physical or mental illness that can cause brain 
dysfunction; (4) taking drugs that may cause cognitive changes or 
important organ failure (e.g., heart, brain, and kidney) prior to the 
experiment; (5) did not meet requirements for undergoing MRI scan-
ning, such as patients with claustrophobia, metal dentures, or other 
metal implants that could not be removed. The diagnostic criteria for 
MCI (Albert et al., 2011) was as follows: (1) self-reported memory loss 
that was confirmed by an informed individual; (2) relatively intact or 
only slightly damaged other cognitive functions; (3) daily life activities 
not affected; (4) did not reach the diagnostic criteria for dementia; (5) 
Clinical Dementia Scale (CDR) score was 0.5, the Mini-Mental State 
Examination (MMSE) (Folstein et al., 1975) score was 24–27, the 
Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) score 
was < 26; and the Global Deterioration Scale (GDS) score was 2–3. Then, 
participants with a normal objective performance level(the MMSE score 
> 27, MoCA score ≥ 26, the CDR score = 0, and the GDS score = 1) 
underwent the following six tests in three cognitive domains: Auditory 
Verbal Learning Test (AVLT delayed recall and AVLT-recognized) for 
memory, Animal Fluency Test (AFT) and 30-item Boston Naming Test 
(BNT) for language, and Part A (STT-A) and Part B (STT-B) of Trail 
Making Test for executive functions. Participants were excluded if each 
of the three cognitive domains had an impaired score [defined as > 1 
standard deviation(SD)]; or if abnormalities occurred on two measures 
in the same cognitive domain, defined as > 1 SD (Edmonds et al., 2015). 
Next, individuals with complaints of memory decline were regarded as 
the SCD group (Jessen et al., 2014), whereas individuals without com-
plaints and whose cognitive functions passed neuropsychological tests 
were included in the HC group. The demographic information of all 
participants is shown in Table 1. 

2.2. Data acquisition 

All MRI data were acquired by a 3.0-Tesla Siemens Magnetom Verio 
scanner (Siemens Medical, Erlangen, Germany). A Siemens standard EPI 
function head coil was utilized to reduce head movement. High- 
resolution structural images were collected with a volumetric three- 
dimensional spoiled gradient recall sequence with the following pa-
rameters: TR/TE = 1900/2.22 ms, field of view (FOV) = 250 × 250 
mm2, matrix size = 256 × 256, flip angle = 9◦, slice number = 168, and 
voxel size = 0.98 × 0.98 × 1 mm3. DTI data were obtained with a single- 
shot, echo-planar imaging sequence. The diffusion sensitizing gradients 

Table 1 
Demographic information of all participants.  

Demographic variable HC 
(n = 70) 

SCD 
(n = 62) 

MCI 
(n = 99) 

Age (mean ± SD, years) 64.64 ± 5.76 64.85 ± 5.62 65.11 ± 6.55 
Gender (female/male) 44/ 26 42/ 20 71/ 28 
MMSE 29.13 ± 0.74 28.89 ± 0.85 25.85 ± 1.03 
MoCA 26.11 ± 2.01 24.85 ± 2.49 21.36 ± 3.0 

Note: HC: healthy control; SCD: subjective cognitive decline; MCI: mild cogni-
tive impairment; MMSE: Mini-Mental State Examination; MoCA: Montreal 
Cognitive Assessment 
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were applied along 30 noncollinear directions (b = 1000 s/mm2) with 
an acquisition without diffusion weighting (b = 0 s/mm2). The imaging 
parameters were 45 contiguous axial slices with a slice thickness of 3 
mm, TR = 6800 ms, TE = 93 ms, data matrix of 128 × 128, and FOV of 
240 × 240 mm2. 

2.3. Data analysis 

2.3.1. Preprocessing and feature extraction 
The sMRI data were preprocessed using the VBM Toolbox 

(http://dbm.neuro.uni-jena.de/vbm) in Statistical Parametric Mapping 
(SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). In the 
VBM analysis, we obtained the average template (i.e., the mask) from 
the images of all subjects so that the GM extracted from original data can 
register into the Montreal Neurological Institute (MNI) space. First, each 
participant’s MRI data was segmented into GM, WM and cerebrospinal 
fluid (CSF) images using adaptive maximum a posteriori (MAP) (Raja-
pakse et al., 1997) and partial volume estimations (PVE) (Tohka et al., 
2004). Next, the DARTEL (Ashburner, 2007) algorithm was used to 
create the GM average template of all individuals and then each in-
dividual’s GM images were registered to the average template. After 
registration, the normalized GM images were multiplied by the non-
linearly deformed Jacobian determinant to preserve the absolute vol-
umes of GM in each individual’s native space. The dimension of the 
template and all registered GM images is 121 × 145 × 121. Finally, all 
GM images were smoothed with an 8-mm full-width at half-maximum 
(FWHM) Gaussian kernel. 

DTI images were analyzed via the FMRIB Software Library (FSL) 
(https://fsl.fmrib.ox.ac.uk/fsl). For the diffusion-weighted images of 
each participant, the eddy currents and head motions were corrected to 
the non-diffusion-weighted images in the FMRIB’s Diffusion Toolbox 
(FDT) 2.0. Then the volumes without diffusion weighted (b0 images) 
were averaged and the non-brain tissues of b0 images were discarded 
using the Brain Extraction Tool (BET). FA maps were generated based on 
the diffusion tensors reconstructed with the DTIfit program. Next, the 
TBSS (Smith et al., 2006) was performed on all participants’ FA images 
to obtain the FA skeleton images. Firstly, the FA image of each partici-
pant was nonlinearly normalized to the MNI space. Then the mean FA 
image was calculated and the mean FA skeleton image was created with 
the threshold at FA > 0.2. Subsequently, the FA image aligned by each 
subject was projected onto the mean FA skeleton image by calculating 
the maximum FA values from the nearest tract center and filling the 
corresponding position in the skeleton. Finally, all subjects’ skeletonized 
FA images were calculated in the standard 1 × 1 × 1 mm3 MNI space, 
and smoothed with a 8-mm FWHM Gaussian kernel. The dimensionality 
of FA data was 182 × 218 × 182. 

2.3.2. Multimodal CCA- joint ICA 
To reduce the redundancy of high-dimensional MRI data, the fea-

tures of either modality (GMV for sMRI and FA for DTI) were extracted 
after preprocessing and were then fused by the mCCA-jICA method. 
Here, features were a subset of variables extracted from one imaging 
modality (GMV from sMRI and FA from DTI), which were measures of 
structural abnormalities in GM and WM of the brain (Calhoun and Adali, 
2008). 

The fusion analysis of mCCA-jICA was performed with the Fusion 
ICA Toolbox (FITv2.0d, http://mialab.mrn.org/software/fit/). Fig. 1 
shows a flowchart of mCCA-jICA. Following feature extraction, features 
of two modalities, GMV and FA were reshaped into feature matrices X_1 
and X_2 respectively, and the dimensionality of both X_1 and X_2 was 
[number of participants] × [number of voxels]. Each row of a feature 
matrix represents a stacked 3D map of a participant. Next, both feature 
matrices were normalized to z-scores so that they have the same sum-of- 
squares (computed across all participants and all voxels). Normalization 
was necessary because GM and FA data have largely different ranges 
(Sui et al., 2011). After normalization, a minimum description length 

(MDL) criterion was used to estimate the number of ICs for either dataset 
(Li et al., 2007) and dimensionality reduction of the feature matrices was 
performed using singular value decomposition (SVD). More precisely, 
the SVD of an m × n matrix M is a factorization of the form UΣV* , 
where U is an m× m unitary matrix, Σ is an m × n rectangular diagonal 
matrix with non-negative real numbers on the diagonal (singular 
values), and V is an n × n unitary matrix. The columns of U are the left- 
singular vectors of M , and the columns of V are the right-singular 
vectors of M . The singular values in the diagonal matrix Σ can be 
used to understand the amount of variance explained by each of the 
singular vectors. Therefore, we can limit the number of vectors (fea-
tures) to the amount of variance we wish to capture, and reducing the 
number of vectors can help eliminate noise in the original data set. More 
details about SVD and its applications on dimensionality reduction can 
be found in any classical book about statistical learning or matrix 
computation, such as (Strang, 1993). The number of features to be 
retained by SVD was determined by the scree plot in the FIT toolbox. 
Next, mCCA was performed on the dimensionally-reduced matrices to 
obtain the canonical variant matrix, [ B1 , B2 ], and the associated 
component matrix, [ C1 , C2 ], for either modality. Subsequently, the 
jICA algorithm was applied to the associated component matrix, [C1,C2]

, to obtain the maximized joint-independence component matrix, [S1, S2]

, and the mixing coefficient matrix, D . The final mixing coefficient 
matrix, [ A1 , A2 ], was calculated by obtaining the product of the ca-
nonical variant matrix and the mixing coefficient matrix of the jICA (B1 , 
D for GM; B2 , D for FA), which represent the source differences between 
the SCD and HC groups for either modality. The columns of the resulting 
matrices represent the weights from each IC. Thus, the final mixing 
coefficient matrix, [A1 , A2 ], and its corresponding sources contain both 
shared and unique information across modalities. The outputs of the 
mCCA-jICA fusion are joint ICs and the corresponding mixing co-
efficients. One joint IC (one row of [S1,S2]) consists of a spatial map of 
GMV (one row of S1) and a spatial map of FA (one row of S2), which 
represent the GMV or FA values of all voxels or vertexes of this IC. The 
mixing coefficient of each IC and each individual indicates how much of 
the IC is required to reconstruct the individual’s source data (A1 for GMV 
and A2 for FA) (Lerman-Sinkoff et al., 2017). The group discriminant 
components can be obtained by comparing the mixing coefficients of 
each modality so that the brain’s spatial maps (GMV or FA) with sig-
nificant between-group difference can be found. 

2.3.3. Statistics inference of mixing coefficients 
We first used the Kolmogorov-Smirnov test to examine the normality 

of mixing coefficients (A1 and A2) to be compared among groups (HC vs. 
SCD, HC vs. MCI, SCD vs. MCI). We found that the mixing coefficients of 
all sMRI joint components were normally distributed but most of the 
mixing coefficients of DTI joint components were not normally distrib-
uted (see Supplementary Table 1 and Supplementary Figs. 1 and 2 for 
details). Because sMRI_GMV and DTI_FA have different statistical dis-
tributions, we applied different statistical tests in the revised manu-
script. More precisely, we used one-way ANOVA on the mixing 
coefficients of sMRI_GMV and Kruskal-Wallis test (the nonparametric 
alternative to ANOVA) on the mixing coefficients of DTI_FA compo-
nents. Both ANOVA and Kruskal-Wallis test were followed by post-hoc 
Tukey-Kramer test. Those components with significant group differ-
ences between the mixing coefficients of two groups are referred to as 
group-discriminative components. If statistical significance was reached 
for the same IC from both modalities, such a component was considered 
as a joint group-discriminative IC, which can differentiate groups in both 
sMRI and DTI. The significant sources (the row of the joint source ma-
trix) were converted to Z-scores and then reshaped into 3D brain maps 
(GM regions and WM regions). Previous studies have shown that 2–3 is a 
reasonable range of Z-scores representing significantly-activated voxels 
(Sui et al., 2011; Kim et al., 2015; Ouyang et al., 2015; Yang et al., 
2019). Here we set a threshold at |Z|≥2 to only show brain regions with 
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greater GMV/FA values in the 3D spatial map of each joint IC. For the 
results of GM, we used the Automated Anatomical Labeling (AAL) atlas 
(Tzourio-Mazoyer et al., 2002) to summarize the structures. For the 
results of WM, we used the Johns Hopkins University (JHU) white- 
matter tractography atlas in FSL to locate those group-discriminative 
regions. The ICs with the frames in the same color stand for joint ICs. 

2.3.4. Correlation analysis between mixing coefficients and behavioral 
indexes 

Correlation analysis was performed between the mixing coefficients 
of group discriminative ICs and behavioral indexes, including MMSE 
and MoCA. Specifically, we calculated the Pearson correlation coeffi-
cient between MMSE/MoCA and the mixing coefficients of group- 
discriminative ICs within either group, and then examined whether 
such a relationship was significantly different between any two groups. 
The p values with asterisk (*) passed FDR-corrected threshold of 0.05. 

2.3.5. Correlation between mixing coefficients and cognitive performance in 
SCD 

We performed correlation analysis between the mixing coefficients 
and measurements of six cognitive tests for three cognitive domains in 
SCD patients. These measurements from different cognitive tests were 
composed of delayed recall (AVLT-dr) and recognition of the AVLT, STT- 
A and STT-B, AFT, and the 30-item BNT. 

3. Results 

By using the mCCA-jICA method together with the MDL criterion, we 
identified in total 15 joint ICs, each of which is a concatenation of 
correlated GMV and FA features. 

For a better understanding of the results, in the following we explain 
(1) what is a joint component, and (2) why a joint component may only 
have one modality showing significant difference between groups. 

First, the outputs of the mCCA-jICA method are a series of joint ICs 
and the corresponding mixing coefficients. One joint IC consists of two 
parts: a vector of GMV features and a vector of FA features. These two 
types of features are concatenated together to form the joint IC and they 
are correlated with each other. Here, “joint” means these two types of 
features are correlated with each other and they are treated as a whole 
when performing joint independent component analysis (jICA). In 
another word, all ICs decomposed by mCCA-jICA were joint ICs. A 
“joint” IC means that features of two modalities are concatenated and 
are decomposed together, but it does not mean both modalities should 
have the same properties when performing between-group comparisons. 

Second, the correlation between two modalities of one joint IC does 
not mean both modalities should show the same level of statistical 

difference between groups. Inter-group statistical tests were performed 
for each modality separately, because they were used to compare mixing 
coefficients, which have different values for different modalities. Hence, 
it is quite possible that one modality of a joint IC is different between 
two groups but the other modality of this joint IC is not different be-
tween two groups. 

3.1. Group-discriminative independent components 

By applying intergroup statistical analysis to the mixing coefficients 
of each component, three components of sMRI (IC01, IC05, and IC07) 
and one component of DTI (IC07) were identified as group discrimina-
tive components between HCs and SCD patients (Fig. 2). The regions in 
these identified ICs of sMRI mainly included the precentral gyrus, 
postcentral gyrus, middle frontal gyrus, and middle temporal gyrus, as 
well as DTI-identified regions consisting of the anterior thalamic radi-
ation and superior longitudinal fasciculus. Meanwhile, six components 
of sMRI (IC01, IC03, IC04, IC05, IC07, and IC09) and one components of 
DTI (IC09) were found to be group-discriminative between HCs and MCI 
patients (Fig. 3). The main GM regions in these ICs included the thal-
amus, insula, precentral gyrus, inferior temporal gyrus, superior tem-
poral gyrus, middle temporal gyrus, fusiform gyrus, middle frontal 
gyrus, precentral gyrus, caudate nucleus, hippocampus, and the para- 
hippocampal gyrus. In addition, the main discriminative FA tracts be-
tween HCs and MCI patients included the forceps minor, anterior 
thalamic radiation. Four sMRI components (IC04, IC06, IC07, and IC09) 
and one DTI components (IC03) were revealed to be group- 
discriminative between SCD and MCI patients (Fig. 4). Specifically, 
GMV changes existed mainly in the thalamus, hippocampus, fusiform 
gyrus, precentral gyrus, postcentral gyrus, superior frontal gyrus, su-
perior temporal gyrus, middle temporal gyrus, and caudate nucleus. 
Furthermore, WM tracts mainly differed in the cingulate gyrus, 
cingulum (hippocampus), anterior thalamic radiation, inferior longitu-
dinal fasciculus, superior longitudinal fasciculus, and corticospinal tract. 
The details of group-discriminative ICs are listed in Supplementary Ta-
bles 2 and 3. Additionally, correlations between mixing coefficient 
matrices (A1 and A2) for all the components are listed in Table 2. 
Importantly, these correlations can reveal latent covariant relationships 
across multiple morphological measurements. Take IC7 as an example. 
When comparing SCD and HC, GM_IC7 and FA_IC7 were group- 
discriminative components, which contained abnormal regions 
including the frontal lobe, middle temporal gyrus, and calcarine sulcus 
in sMRI, and the anterior thalamic radiation and superior longitudinal 
fasciculus in DTI. Because GM_IC7 and FA_IC7 are correlated (p = 5.899 
× 10− 5), we can infer the latent covariant relationship between GMV 
and FA as follows. The anterior thalamic radiation (as found by analysis 

Fig. 1. Flowchart of mCCA-jICA for fusion analysis of sMRI and DTI images. Firstly, the features of two modalities (GMV for sMRI and FA for DTI) were extracted 
after pre-processing, and the GMV and FA features were reshaped into feature matrices X1 and X2 , respectively. After normalization and dimensionality reduction, 
mCCA was performed on X1 and X2 to obtain the canonical variants [B1,B2] and the associated components [C1,C2] . Then jICA was applied to the associated 
component [C1,C2] to obtain the maximized joint-independence component matrices [S1, S2] and the mixing coefficient matrix D . The final mixing coefficient matrix 
A1 and A2 were calculated as A1 = B1∙D (for GM V) and A2 = B2∙D (for FA), while the original data matrices can be denoted as X1 = A1∙S1 and X2 = A2∙S2.
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of DTI) connects the anterior and medial regions of the thalamus to the 
frontal lobe, and the superior longitudinal fasciculus projects from the 
frontal lobe to the temporal, parietal, and occipital lobes. The regions in 
the sMRI can be found to overlap with the regions connected by the 
anterior thalamic radiation and the superior longitudinal tract. These 
results indicate that GM changes in these regions may share a latent 
covariant relationship with FA abnormalities. 

3.2. Correlation between IC mixing coefficients and behavioral indexes 

For HCs and MCI patients, three ICs showed significant correlations 
between the mixing coefficients and MoCA (Fig. 5). Specifically, the 
mixing coefficients of GM_IC05 in MCI patients showed a significant 
positive correlation with the corresponding MoCA (R = 0.258, *p =
0.010), while the mixing coefficients of this IC in HCs did not show a 
significant correlation with MoCA (R = 0.062, p = 0.611). The mixing 
coefficients of GM_IC05 in both HCs and MCI patients also showed a 
significant correlation with MoCA (R = 0.317, *p = 2.613 × 10-5). For 
GM_IC07, the mixing coefficients in MCI patients showed a significant 
positive correlation with MoCA (R = 0.251, *p = 0.012), whereas the 
mixing coefficients in HCs of this IC were not significantly correlated 
with MoCA (R = 0.082, p = 0.498). The mixing coefficients of GM_IC07 
in both HCs and MCI patients showed a significant negative correlation 
with MoCA (R = -0.325, *p = 1.611 × 10-5). As for GM_IC09, the mixing 
coefficients in HCs and MCI patients were not significantly positively 
correlated with MoCA (HCs: R = -0.130, p = 0.282, MCI patients: R =
-0.158, p = 0.119), whereas the mixing coefficients of GM_IC09 in HCs 
and MCI patients were significantly negatively correlated with MoCA (R 
= -0.563, *p = 5.829 × 10-14). No significant correlation was found 
between the mixing coefficients of group-discriminative ICs extracted 
from DTI and MoCA. There was no significant correlation between the 
group-discriminative mixing coefficients and MMSE for either HCs or 
MCI patients. 

For SCD and MCI, two ICs were found to be significantly correlated 
between the mixing coefficients and MoCA (Fig. 6). Specifically, the 
mixing coefficients of GM_IC07 in MCI were significantly positively 
correlated with MoCA (R = 0.251, *p = 0.012), while the mixing co-
efficients of this IC in SCD were not significantly correlated with MoCA 
(R = -0.117, p = 0.367). The mixing coefficients of GM_IC07 in SCD and 
MCI patients showed a significant positive correlation with MoCA (R =
0.349, *p = 5.669 × 10-6). For GM_IC09, the mixing coefficients in the 
SCD and MCI groups were not significantly positively correlated with 
MoCA (SCD: R = 0.223, p = 0.082, MCI: R = -0.158, p = 0.119), but the 
mixing coefficients of GM_IC09 in SCD and MCI patients were signifi-
cantly negatively correlated with MoCA (R = -0.356, *p = 3.587 × 10-6). 
No significant correlation was found between the mixing coefficients of 
group-discriminative ICs extracted from DTI and MoCA. There was no 
significant correlation between the group-discriminative mixing co-
efficients for SCD, MCI, and MMSE. 

3.3. Correlation between mixing coefficients and cognitive performance in 
SCD 

For GM IC06, we found that the mixing coefficients in SCD patients 
were significantly correlated with AVLT-dr (R = -0.332, p = 8.463 × 10- 

3). For GM IC07, the mixing coefficients in SCD patients were signifi-
cantly correlated with both STT-B (R = -0.337, p = 7.350 × 10-3) and 
AFT (R = 0.330, p = 8.880 × 10-3). As for WM IC06, a significant cor-
relation was found between the mixing coefficients and AVLT-dr (R =
-0.330, p = 8.798 × 10-3). Additionally, a significant correlation was 
found between the mixing coefficients of WM IC07 and AVLT-dr (R =
-0.329, p = 8.973 × 10-3). Scatter plots corresponding to the above- 
mentioned mixing coefficients and measurements of cognitive tests are 
illustrated in Fig. 7. 

Fig. 2. Main group-discriminative ICs between HCs and SCD patients. GMV and FA were shown in coronal brain maps in terms of z-scores (positive: red, negative: 
blue; a threshold at |Z|≥2 was set for visualizing brain regions with large GMV or FA values). Those listed p-values were obtained by post-hoc Tukey-Kramer test 
between HC and SCD. If an IC was framed in the same color for sMRI_GMV and DTI_FA, it means both modalities of this IC were different between these two groups 
(IC07 in this figure). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

In the present study, we performed fusion analysis of sMRI and DTI 
via mCCA + jICA among MCI patients, SCD patients, and HCs. The aim 
of our study was to identify the covariate changes of multimodal MRI 
and their correlations with cognition. We identified large-scale GM and 
changes in SCD and MCI patients. Particularly, we found one joint GM- 
WM component in either MCI or SCD, as compared to HC. In addition, 
the mixing coefficients of the joint GM-WM components were found to 
be significantly correlated with neuropsychological test scores in SCD 
patients. In the following, we mainly focus on discussion of group dif-
ferences in covariation. 

4.1. Methodological consideration 

We first discussed several issues and considerations in the collection 
and analyses of multimodal MRI data. 

4.1.1. Patient recruitment 
One limitation of the present study is that the SCD and MCI groups 

were not tested for underlying AD pathology because of the lack of 

technology and equipment to get the information. In the present study, 
SCD and MCI were diagnosed according to the criteria proposed by the 
Subjective Cognitive Decline Initiative (SCD-I) Working Group (Jessen 
et al., 2014) and the National Institute on Aging Alzheimer’s Association 
(NIA-AA) workgroups (Albert et al., 2011), in which SCD and MCI were 
considered due to AD. Therefore, we regarded SCD/MCI as pre-dementia 
states of AD in the present study in spite of the lack of tests for under-
lying AD pathology. However, these groups could be heterogeneous 
pathologically, which may influence our results. It is certain that the 
biomarker evidence for AD (such as aggregated Aß42/tau or associated 
pathologic state) and presence of the APOE ε4 genotype will increase the 
likelihood of preclinical AD in individuals with SCD or MCI. 

4.1.2. MoCA and MMSE 
Note that we used both MoCA and MMSE in this study. There is no 

consensus as to which tool (MoCA or MMSE) is more accurate in 
detecting cognitive decline (Jiang et al., 2018). We used both MoCA and 
MMSE because the MoCA is more sensitive for early detection while the 
MMSE test is more appropriate in discriminating between moderate and 
severe stages of AD (Trzepacz et al., 2015). Hence, MoCA and MMSE are 
complementary for cognitive tests and both were adopted in this study. 

Fig. 3. Main group-discriminative ICs between HCs and MCI patients. GMV and FA were shown in coronal brain maps in terms of z-scores (positive: red, negative: 
blue; a threshold at |Z|≥2 was set for visualizing brain regions with large GMV or FA values). Those listed p-values were obtained by post-hoc Tukey-Kramer test 
between HC and MCI. If an IC was framed in the same color for sMRI-GMV and DTI_FA, it means both modalities of this IC were different between these two groups 
(IC09 in this figure). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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MoCA was developed by Nasreddine and collaborators (Nasreddine 
et al., 2005) and has been shown as a tracking tool with a high ability to 
discriminate normal cognitive function, MCI and early onset dementia. 
Their results revealed “a cutoff of 26 (scores of 25 or below indicate 
impairment) yielded the best balance between sensitivity and specificity 
for the MCI and AD groups”, “while separating patients with MCI from 
those with AD will still rely on clinical judgment, particularly in 
assessing whether the patient has functional impairment” (Nasreddine 
et al., 2005). So, the cut-off score for MOCA was not provided as a range 
of values for MMSE. 

4.1.3. FA as the DTI features 
When performing mCCA-jICA, we only computed FA, not other 

features, from DTI because of the following two reasons. First, FA is 
much more popularly used than MD/AD/RD in the researches of SCD/ 

MCI/AD. Actually, some studies have found multiple DTI indices (FA/ 
MD/AD/RD) can detect the abnormal WM fibers in AD (Kantarci et al., 
2017; Gyebnár et al., 2018). Among these indices, FA represents the 
degree of anisotropy of water molecules and is much more commonly 
used to characterize the changes at the microstructural level in patho-
logic processes of MCI/AD (Kantarci, 2014; Ezzati et al., 2016; Evin 
et al., 2020). Second, most of previous studies about multimodal fusion 
used FA as DTI features. For example, Ouyang et al. have already used FA 
and GMV for the mCCA-jICA fusion analysis of AD diseases (Ouyang 
et al., 2015). In multimodal fusion studies of other neurogenerative 
diseases or mental disorders (such as depression and schizophrenia), FA 
is also much more frequently used than other indices (Sui et al., 2011; 
Sui et al., 2013a; Sui et al., 2013b; Wang et al., 2019; Tang et al., 2020). 
Therefore, FA was chosen for fusion analysis in this study because it is 
easy to compare our results with previous findings (related to AD or 
related multimodal MRI fusion). Of course, we agree that, it is definitely 
possible to compute MD/AD/RD for fusion analysis, which may lead to 
new findings. 

4.1.4. Effect of smoothing 
Before performing mCCA-jICA methods on the features, smoothing is 

an essential step in preprocessing of MRI data. In this study, GM and WM 
images were smoothed using an 8-mm FWHM Gaussian kernel, which 
was recommended and widely used in literature. In general, a large 
kernel will blur the images and reduce the spatial resolution, while a 
small kernel may not be able to satisfactorily suppress noise. A previous 
study on fMRI activation used extensive simulations and real-data to 
prove that, an 8-mm FWHM Gaussian kernel should be optimal (Mikl 
et al., 2008). However, there is no any in-depth research concerning the 
effects of smoothing on fusion of sMRI and DTI. We carefully checked 
published papers using mCCA-jICA and found almost all these studies 
used an 8-mm FWHM Gaussian kernel. So, we also followed this setting 
to smooth data. It will be an interesting study to investigate the effects of 
smoothing on the results of multimodal MRI fusion, but it is outside the 

Fig. 4. Main group-discriminative ICs between SCD and MCI patients. GMV and FA were shown in coronal brain maps in terms of z-scores (positive: red, negative: 
blue; a threshold at |Z|≥2 was set for visualizing brain regions with large GMV or FA values). Those listed p-values were obtained by post-hoc Tukey-Kramer test 
between SCD and MCI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Correlations between mixing coefficients of GM and FA.  

Index of 
ICs 

01 02 03 04 05 

p value *7.960 ×
10-15 

*1.090 ×
10-7 

*1.696 ×
10-7 

*6.014 ×
10-6 

*2.800 ×
10-5 

Corr. coef 0.481 0.340 0.335 0.292 0.271 
Index of 

ICs 
06 07 08 09 10 

p value *3.993 ×
10-5 

*5.899 ×
10-5 

*1.428 ×
10-4 

*3.365 ×
10-4 

*1.843 ×
10-3 

Corr. coef 0.266 0.261 0.247 0.233 0.203 
Index of 

ICs 
11 12 13 14 15 

p value 0.013 0.045 0.066 0.091 0.170 
Corr. coef 0.162 0.132 0.121 0.111 0.090 

Note:The p values with asterisk (*) passed Bonferroni multiple comparisons (p <
3.333 × 10–3) 
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scope of this work. 

4.1.5. Dimension reduction 
Because dimension reduction was used for GMV and FA separately, it 

is true that the dimensionalities of GMV and FA were different after 
dimension reduction. In this study, after dimension reduction (achieved 
by SVD), the number of GMV features was 1,454,255, while the number 

of FA features was 58,919. From a methodological point of view, 
different numbers of features will not affect the results of mCCA-jICA 
largely. First, mCCA will not be influenced by different numbers of 
features. The original CCA is naturally developed to deal with two 
variables with different dimensionalities, because it uses two weighting 
vectors to multiply two matrices of two variables for the calculation of 
the correlation of these two variables. Second, jICA will not be largely 

Fig. 5. Correlations between MoCA and mixing coefficients of group-discriminative ICs between HCs and MCI patients. The p values with asterisk (*) passed FDR- 
corrected threshold of 0.05. A. GMV_IC05. B. GMV_IC07. C. GMV_IC09. 

Fig. 6. Correlations between MoCA and mixing coefficients of group-discriminative ICs between SCD and MCI patients. The p values with asterisk (*) passed FDR- 
corrected threshold of 0.05. A. GMV_IC07. B. GMV_IC09. 
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affected by the dimensionalities. jICA works on the concatenated matrix 
of two modalities and the decomposed components are independent 
with each other, which means the variable of either modality (GMV or 
FA) in the decomposed component is independent with each other. 
Therefore, we believe the results are not largely affected by dimension 
reduction. 

4.1.6. Explanation on FA results 
In the following, we explain why the fusion analysis did not find 

many useful FA components as previous studies did. From a methodo-
logical point of view, the disagreement between our results (fewer FA 
results) and the results in literature is mainly due to the new mCCA-jICA 
method, which is a multivariate decomposition method used for multi-
modal data. First, unlike traditional unimodal analysis used literature, 
this study used a multimodal fusion method, mCCA-jICA, to discover 
covariant GM-WM components. It means that, the FA components we 
identified in this study were all covaried with GMV components, while 
those FA components found in other studies were not necessarily 

Fig. 7. Correlations between mixing coefficients in SCD patients and measurements of cognitive tests. A. Correlation between AVLT-dr and mixing coefficients of 
GMV IC06. B. Correlation between STT-B and mixing coefficients of GMV_IC07. C. Correlation between AFT and mixing coefficients of GMV_IC07. D. Correlation 
between AVLT-dr and mixing coefficients of FA_IC06. E. Correlation between AVLT-dr and mixing coefficients of FA_IC07. 
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corelated with WM. Second, because the jICA method decomposes DTI 
images into a series of ICs, which may be overlapped with each other, an 
IC with a group difference could overlap another common IC to a large 
extent. In such a case, traditional univariate analysis, which does not 
consider possible mixture of multiple components for one voxel, and 
ICA-like multivariate analysis, which believes the intensity of one voxel 
can be contributed by difference sources/components, could have 
largely different results. Actually, some other studies using mCCA-jICA 
also reported the difference between the results of multimodal/multi-
variate analysis and unimodal/univariate analysis and provided possible 
explanations (Kim et al., 2015). Actually, some previous studies have 
yielded inconsistent FA results in SCD and the abnormalities mainly 
occurred in the medial temporal lobe and the longitudinal fasciculi, 
corpus callosum, uncinated fasciculi, while some other studies revealed 
no significant changes (Selnes et al., 2012; Wang et al., 2020). One of the 
possible reasons for the inconsistency may be the heterogeneity of the 
disease and different inclusion criteria. 

4.2. Covariation of GM and FA in SCD 

For SCD and HC groups, GM_IC7 and FA_IC7 were joint- 
discriminative components, which suggests the brain’s structural ab-
normalities mainly in bilateral middle temporal gyrus, precentral gyrus, 
superior frontal gyrus, postcentral gyrus, middle frontal gyrus, calcarine 
sulcus and superior parietal lobule in GM, and the anterior thalamic 
radiation and superior longitudinal fasciculus in WM. The anterior 
thalamic radiation connects the anterior and medial regions of the 
thalamus to the frontal lobe, and the superior longitudinal fasciculus 
projects from the frontal lobe to the temporal, parietal, and occipital 
lobes. Of note, the identified regions of GM and WM are anatomically 
connected. These identified regions in the present study were consistent 
with previous findings. For example, Risacher et al. (Risacher et al., 
2017) found that total scores in the preadjusted smell identification test 
were significantly correlated with tau deposition in regions including 
the bilateral middle temporal gyri and precentral gyri, as well as the 
bilateral superior, middle, and inferior frontal gyri in SCD patients. The 
middle temporal gyrus is an important part of default mode network 
(DMN) (Xu et al., 2015), which plays an critical role in cognitive pro-
cessing. Matias-Guiu et al. (Matías-Guiu et al., 2017) found that the 
metabolism of the middle temporal gyrus was correlated with the Boston 
naming test scores in SCD. Interestingly, we found the mixing coefficient 
of GM_IC7 was significantly correlated with AFT, which serves as a 
measure of the language capability like Boston naming test scores. The 
precentral gyrus and postcentral gyrus are important parts of the 
sensorimotor network, which plays a key role in the analysis of infor-
mation (Flanagan et al., 2013). Atrophy of the precentral gyrus has been 
reported in SCD patients (Hafkemeijer et al., 2013). Superior frontal 
gyrus and middle frontal gyrus are involved the frontal network, which 
is known to participate in the regulation of memory and language 
functions and executive function (Allen et al., 2011). The calcarine 
sulcus is an important part of visual network. The abnormalities of the 
visual cortex resulted in cognitive deficits in AD, and the underlying 
pathological mechanism may be the formation of amyloid plaques and 
neurofibrillary tangles (Li et al., 2015). As a risk state of AD, SCD has 
been reported to have increased connectivity in visual network (Lista 
et al., 2015). The superior parietal lobe is involved in the attentional 
network. Previous research revealed more limited subsequent memory 
effects on the regions including superior parietal lobe in SCD, suggesting 
brain functional reorganization during memory tasks (Wang et al., 
2020). Taken together, the covariate changes in GM were emerged in a 
wide range of networks, but all the affected regions were involved in 
cognitive processing. 

Further, we found the abnormalities in WM integrity of the superior 
longitudinal fasciculus in SCD patients, which was consistent with 
findings from previous reports (Brueggen et al., 2019; Ohlhauser et al., 
2019; Luo et al., 2020). For example, a previous study (Ohlhauser et al., 

2019) found that the SCD group exhibited a significant correlation be-
tween executivefunction and FA in the anterior thalamic radiation, su-
perior longitudinal fasciculus, corticospinal tract, corpus callosum, 
hippocampi, forceps major, and forceps minor. Also, the mixing coeffi-
cient of GM_IC7 was significantly correlated with AVLT-dr. The AVLT-dr 
test holds the potential to be the best neuropsychological assessment for 
the identification of AD at an early state and for the prediction of the 
conversion to AD (Chen et al., 2000; Tierney et al., 2005). Episodic 
memory is the first cognitive domain affected along the AD continuum, 
for which AVLT is considered to be one of the best tests (Simard and van 
Reekum, 1999). To conclude, these results indicated the covariate ab-
normalities of GM and WM may be contribute to the cognitive function 
changes in SCD. 

4.3. Covariation of GM and FA in MCI 

In terms of group differences between MCI and HC, the covariant 
abnormalities occurred in bilateral meddle temporal gyrus, caudate 
nucleus and fusiform in GM and forceps minor and bilateral anterior 
thalamic radiation in WM. The forceps minor is the anterior part of 
corpus callosum and connects the bilateral prefrontal cortex, and the 
anterior thalamic radiation connects the anterior and medial regions of 
the thalamus to the frontal lobe. The identified regions of GM and WM 
affecting in MCI did not show anatomical connectivity. The middle 
temporal gyrus is an important part of DMN as aforementioned. The 
caudate nucleus is involved in working and learning memory, of which 
the atrophy deteriorates progressively in AD (Sun et al., 2016). Fusiform 
is well known to be involved in facial cognition, and there were wide-
spread alterations in its connectivity during a face-matching task in MCI 
(Bokde, 2006). Moreover, the meta-analyses demonstrated abnormal 
activity of fusiform either at resting state or in a task (Li et al., 2015; Pan 
et al., 2017). The forceps minor is within the structural network that is 
associated with the functional DMN (Luo et al., 2012) and involved in 
cognitive dysfunction (Mamiya et al., 2018). Previous studies found 
abnormalities in the forceps minor were related to cognitive function 
scores in MCI (Grambaite et al., 2010; Luo et al., 2020). Abnormal WM 
integrity occurred in anterior thalamic radiation which is involved in 
cognitive function such as working memory and executive function (Liu 
et al., 2017). The identified regions with WM alterations were over-
lapped with those of a recent study (Luo et al., 2020) which demon-
strated disrupted WM integrity in the anterior thalamic radiation, 
corticospinal tract, cingulate gyrus, the cingulum of the hippocampus, 
forceps minor, forceps major, and inferior fronto-occipital fasciculus. 
Although these affected regions seem to be anatomically discrete, they 
all play important roles in cognition. Thus, we believed that the 
observed covariation of GM and WM might account for changes in 
cognitive function. 

In addition, no significant group differences in GM-WM covariation 
could be found between MCI and SCD, indicating that the progress from 
SCD to MCI does not involve covariant GM-WM changes. 

To sum up, the covariation of GM and WM in the present study 
highlighted the interaction between GM regions and the WM that con-
nects them. The coordination of different brain regions plays a critical 
role in the cognitive performance. Recently developed methods for the 
analyses of structural imaging could identify the network changes which 
is beyond the primary brain disruption (Karnath et al., 2018). Even 
when the contemporary tractography methods were applied in historic 
cases, the result showed disconnection extended to distant areas which 
connected to the lesion (Thiebaut de Schotten et al., 2015). The WM 
disconnection map might help to assess the changes of connectivity 
between the altered WM integrity and distant GM regions including the 
cortices and deep gray nuclei, and predict the cognitive alteration 
(Kuceyeski et al., 2013; Zayed et al., 2020). Our future studies will focus 
on the alteration of the connectivity between WM and GM, and provide 
objective evidences for the early diagnosis and prediction of the cogni-
tive decline of the disease. 
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5. Conclusion 

The present study used a multimodal fusion analysis method, mCCA- 
jICA, to fuse sMRI and DTI data of three groups (HC, SCD, and MCI), 
with the aim to discover covariant alterations of the brain morphology 
in SCD and MCI. We identified a set of covariant GM-WM abnormalities 
of SCD and MCI in cognition-related brain regions, and these covariant 
GM-WM abnormalities were significantly correlated with cognitive 
scores in SCD. Our results suggest that multimodal fusion analysis allows 
for a more comprehensive understanding of the underlying relationships 
among different MRI modalities in predementia stages of AD, and the 
study can improve our knowledge regarding the neuropathological 
mechanism of the disease. 
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López-Sanz, D., Bruña, R., Garcés, P., Martín-Buro, M.C., Walter, S., Delgado, M.L., 
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Rognoni, T., Moreno-Ramos, T., Carreras, J.L., Matías-Guiu, J., 2017. Neural Basis of 
Cognitive Assessment in Alzheimer Disease, Amnestic Mild Cognitive Impairment, 
and Subjective Memory Complaints. Am J Geriatr Psychiatry 25 (7), 730–740. 
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