
fmicb-11-585717 September 30, 2020 Time: 20:25 # 1

MINI REVIEW
published: 02 October 2020

doi: 10.3389/fmicb.2020.585717

Edited by:
Torsten Waldminghaus,

University of Marburg, Germany

Reviewed by:
Dhruba Chattoraj,

National Institutes of Health (NIH),
United States

Kristina Jonas,
Stockholm University, Sweden

Ulf Gerth,
University of Greifswald, Germany

*Correspondence:
Igor Konieczny

igor.konieczny@ug.edu.pl

†Present address:
Marta H. Gross,

Chromosome Replication Laboratory,
The Francis Crick Institute, London,

United Kingdom

Specialty section:
This article was submitted to

Evolutionary and Genomic
Microbiology,

a section of the journal
Frontiers in Microbiology

Received: 21 July 2020
Accepted: 10 September 2020

Published: 02 October 2020

Citation:
Ropelewska M, Gross MH and

Konieczny I (2020) DNA
and Polyphosphate in Directed
Proteolysis for DNA Replication

Control. Front. Microbiol. 11:585717.
doi: 10.3389/fmicb.2020.585717

DNA and Polyphosphate in Directed
Proteolysis for DNA Replication
Control
Malgorzata Ropelewska, Marta H. Gross† and Igor Konieczny*

Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University
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The strict control of bacterial cell proliferation by proteolysis is vital to coordinate cell
cycle processes and to adapt to environmental changes. ATP-dependent proteases
of the AAA + family are molecular machineries that contribute to cellular proteostasis.
Their activity is important to control the level of various proteins, including those that
are essential for the regulation of DNA replication. Since the process of proteolysis
is irreversible, the protease activity must be tightly regulated and directed toward a
specific substrate at the exact time and space in a cell. In our mini review, we discuss
the impact of phosphate-containing molecules like DNA and inorganic polyphosphate
(PolyP), accumulated during stress, on protease activities. We describe how the
directed proteolysis of essential replication proteins contributes to the regulation of DNA
replication under normal and stress conditions in bacteria.
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INTRODUCTION

Several mechanisms responsible for the control of DNA replication in bacteria were described
(Zakrzewska-Czerwińska et al., 2007). Most of those mechanisms aim at decreasing the availability
of active replication protein, e.g., by regulating the transcription (Gora et al., 2013), spatial
sequestration (Iniesta et al., 2006), or protein inactivation (Kurokawa et al., 1999). It was shown
that particular bacterial proteases are involved in the proteolysis of replication proteins and proteins
associated with the process of DNA replication (Wickner et al., 1994; Pierechod et al., 2009; Kubik
et al., 2012; Karlowicz et al., 2017). The major proteases in bacteria belong to the family of ATPases
associated with diverse cellular activities (AAA +). In Escherichia coli, there are four cytosolic
proteases (i.e., ClpXP, ClpAP, HslUV, and Lon) (Gottesman, 2003). Bacterial AAA + proteases
function efficiently under different growth conditions participating in regulation of several cellular
processes. For instance, the intracellular levels of the HslUV protease are increased under heat-
shock conditions when it has the maximum substrate degradation rate (Burton et al., 2005). In
addition to HslUV functions under thermal stress, this protease plays an important role in SOS
response caused by DNA damage (Khattar, 1997) and in response to acidic stress (Kannan et al.,
2008). ClpXP participates in the response to starvation (Schweder et al., 1996), heat shock, and
oxidative stress (Frees et al., 2003). Similarly, ClpAP protease is responsible for the control of
regulatory pathways in bacteria and response to proteotoxic stress caused by pH downshift or high
temperature (Jenal and Hengge-Aronis, 2003). Lon protease contributes to genome maintenance
during stress (e.g., heat shock or nutrient depletion) by regulating DNA replication (Nicoloff et al.,
2007; Jonas et al., 2013; Leslie et al., 2015; Gross and Konieczny, 2020). Furthermore, LonA protease
is involved in the tolerance of Actinobacillus pleuropneumoniae to osmotic or oxidative stress
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(Xie et al., 2016). Since proteolysis is irreversible, it must be
induced at particular conditions and target specific proteins in
a tightly controlled manner. Bacterial AAA + proteases are
regulated temporally (Goff and Goldberg, 1987; Jonas et al.,
2013), spatially (Simmons et al., 2008), and structurally (Jonas
et al., 2013) and by interaction with ligand or adaptors (Goldberg
et al., 1980; Wah et al., 2002; Martin et al., 2008; Puri, 2016).
Proteases interact with various phosphate-containing molecules
including membrane components [e.g., lipopolysaccharide (LPS)
(Sugiyama et al., 2013) and cardiolipin (CL) (Minami et al.,
2011)], stress-induced factors [e.g., guanosine tetraphosphate
((p)ppGpp) (Osbourne et al., 2014) and inorganic polyphosphate
(PolyP) (Kuroda, 2006)], ATP (Charette et al., 1981), and ADP
(Waxman and Goldberg, 1985) as well as with DNA (Zehnbauer
et al., 1981; Zylicz et al., 1998; Kubik et al., 2012). The protease
binding to phosphate-containing molecules may change protease
localization, ATPase activity, or substrate specificity, thereby
modulating its proteolytic activity (Kubik et al., 2012; Karlowicz
et al., 2017; Gross and Konieczny, 2020).

THE IMPACT OF DNA BINDING ON
PROTEASE ACTIVITY

In Escherichia coli, only Lon and ClpAP, but not ClpXP or
HslUV, interact with DNA (Kubik et al., 2012). Interaction of
Lon with nucleic acid is a conserved property among species
(Zehnbauer et al., 1981; Fu and Markovitz, 1998; Lee et al., 2004;
Lu et al., 2003). It was demonstrated that the α subdomain in
the AAA +module of Brevibacillus thermoruber Lon is involved
in DNA binding (Lee et al., 2004, 2014; Lin et al., 2009). In
various organisms, Lon has different preference for the type of
DNA with which it forms a complex. E. coli Lon binds to double-
stranded DNA (dsDNA) in a sequence-non-specific manner
(Charette et al., 1984; Nomura et al., 2004). On the contrary,
eukaryotic proteases bind single-stranded DNA (ssDNA) or RNA
(Fu and Markovitz, 1998; Lu et al., 2003; Liu et al., 2004). Bacillus
subtilis LonA is present in the nucleoid under normal growth
conditions, while ClpXP is present in cytosol (Simmons et al.,
2008). During spore development, LonA changes its localization
to the forespore (Simmons et al., 2008). Under heat shock, LonA
remains bound to the nucleoid (Simmons et al., 2008). Yet in
E. coli when temperature is increased, Lon loses its ability to
bind DNA in vitro, although ATP-dependent proteolytic activity
is retained (Sonezaki et al., 1995). It is proposed that the Lon
presence within the nucleoid allows for the degradation of DNA-
associated proteins involved in DNA metabolism. The protease
dissociation from DNA upon stress-related factors may provide
rapid adaptive mechanism to hamper Lon activity toward specific
proteins (Sonezaki et al., 1995).

The interaction of DNA with Lon stimulates its ATPase
activity (Charette et al., 1984). At the surface of E. coli Lon ATPase
domain, there are located positively charged residues, which are
responsible for direct interaction with DNA (Karlowicz et al.,
2017). The presence of DNA in a reaction mixture containing
Lon and substrate protein enhances protease activity to hydrolyze
ATP (Karlowicz et al., 2017). The ATPase activity of Lon mutant

defective in DNA interaction is not increased in the presence of
substrate and DNA. Hence, it is the direct DNA–Lon interaction
that stimulates protease ATPase activity (Karlowicz et al., 2017).
It was also demonstrated that Lon nucleoprotein complex
formation is essential for the proteolysis of DNA-interacting
substrates, but not other substrates (Karlowicz et al., 2017).

The ClpAP proteolysis of DNA-binding substrates is also
stimulated by DNA. For example, ParD protein, the component
of toxin–antitoxin system of RK2 plasmid (Kubik et al., 2012;
Dubiel et al., 2018) is degraded by ClpAP in a DNA-dependent
manner (Dubiel et al., 2018). In vitro experiments suggest
that it is the protease—DNA interaction, but not substrate–
DNA interaction, that contributes to the enhanced proteolysis.
Although E. coli ClpXP and HslUV do not form nucleoprotein
complexes, the addition of DNA to the in vitro reaction mixture
affects the proteolysis of particular substrates (Kubik et al.,
2012). As opposed to Lon and ClpAP, the process of proteolysis
is inhibited by DNA. This may be explained by the ability
of substrates to interact directly with DNA, thus hampering
their proteolysis.

THE IMPACT OF POLYPHOSPHATE
BINDING ON PROTEASE ACTIVITY

When bacteria encounter stress such as amino acid starvation or
oxidative stress, they accumulate inorganic PolyP, which forms
granular superstructures and contributes to cell survival (Kuroda
et al., 2001). The production of PolyP was initially correlated with
the synthesis of second messenger stress molecule, (p)ppGpp,
which was shown to inhibit the activity of exopolyphosphatase
(PPX), thereby enabling uncontrolled production of PolyP by
PolyP kinase (PPK) (Kuroda et al., 1997; Magnusson et al.,
2005; Traxler et al., 2008; Rao et al., 2009). Ppk mutants fail
to survive in stationary phase and are less resistant to heat or
oxidants (Crooke et al., 1994; Rao and Kornberg, 1996). Recent
data argue that (p)ppGpp is not required for PolyP synthesis
and that transcription factor DksA contributes to the control
of PolyP level instead (Gray, 2019). In Caulobacter crescentus,
PolyP has been shown to be involved in the regulation of DNA
replication during carbon starvation (Boutte et al., 2012). During
nitrogen starvation in Pseudomonas aeruginosa, PolyP granule
biogenesis is temporally and functionally tied to cell cycle exit
indicated by the inhibition of reinitiation of DNA replication,
completion of open rounds of DNA replication, segregation of
daughter chromosomes, and septation (Racki et al., 2017). PolyP
interacts with Escherichia coli Lon via ATPase domain (Nomura
et al., 2004), as in the case of DNA (Karlowicz et al., 2017), which
implies that both phosphate-containing molecules can compete
for Lon binding. Indeed, the equimolar concentration of PolyP
was shown to disrupt the Lon–DNA complex (Nomura et al.,
2004) and Lon colocalization with nucleoid (Zhao et al., 2008).
Lon loses DNA-binding ability when cells are exposed to heat-
shock conditions, which is directly linked to an increase in the
amount of damaged proteins (Sonezaki et al., 1995). During
starvation, Lon is associated with PolyP granules (Kuroda, 2006).
PolyP stimulates Lon to proteolyze ribosomal proteins such
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as L1, L3, and L24 but inhibits proteolysis of SulA protein
(an inhibitor of cell division accumulated in response to DNA
damage) (Nomura et al., 2004). When Lon is pre-incubated
with PolyP, the proteolysis of L24 ribosomal protein is the
most efficient (Nomura et al., 2004). Not all PolyP-interacting
proteins are degraded by Lon, but all proteins degraded by Lon
in a PolyP-dependent manner do form a complex with PolyP
(Kuroda, 2006).

Although a complex of protease with PolyP and its general
role was uncovered almost two decades ago, we still lack the
full mechanistic and physiological insight into this complex
formation. To date, no data are available on how/if PolyP affects
other proteases in bacterial cells.

THE PROTEOLYSIS OF REPLICATION
PROTEINS AND PROTEINS
ASSOCIATED WITH DNA REPLICATION

Not only proteases but also their substrate can interact with DNA
or PolyP. Depending on the substrate, the process of proteolysis
is specifically controlled and fine-tuned (Table 1). Here, we
discuss the proteolysis of selected replication factors and how it
affects cell survival.

Replication Initiators
The replication initiation proteins are the prerequisite factors
responsible for initiating DNA replication in various replicons;
thus, their degradation allows for rapid arrest of DNA replication.
The DnaA, a highly conserved replication initiation protein in
bacteria, is an obvious target for cellular proteases. In Caulobacter
crescentus, DnaA protein is degraded mainly by Lon, under
optimal and stress conditions (Gorbatyuk and Marczynski, 2005;
Jonas et al., 2013; Leslie et al., 2015; Liu et al., 2016). It was
demonstrated that the DnaA intracellular levels depend on a
reduction in DnaA synthesis and fast degradation by the Lon
protease. Constitutively, ATP-bound DnaA mutant was shown to
be degraded more slowly than wild-type (wt) protein, indicating
that degradation of DnaA is linked to DnaA activity or DnaA
nucleotide bound state (Liu et al., 2016). Under proteotoxic
stress, DnaA is degraded as a result of allosteric activation of
Lon by accumulated unfolded substrates and increase in Lon
intracellular concentration (Jonas et al., 2013; Figure 1A). Under
normal growth conditions, C. crescentus DnaA is proteolyzed
at the end of S-phase to ensure that only newly synthesized
DnaA is available at the start of each replication round (Jenal,
2009). The overexpression of ClpA in lon-depleted strain restores
DnaA degradation, indicating that fail-safe systems are present
(Liu et al., 2016).

The regulatory mechanism that controls DNA replication in
Escherichia coli by directed proteolysis of replication initiator
was termed PolyP-induced DnaA proteolysis (PDAP) (Gross
and Konieczny, 2020; Figure 1B). In E. coli cells during
amino acid starvation, PolyP induces Lon activity to specifically
degrade, DnaA when bound to ADP, but not ATP. When PolyP-
synthesizing enzyme (PPK) or Lon protease is depleted in E. coli
during stress, DnaA level remains high. Also, the level of DnaA
protein variant permanently bound to ATP does not change

in stress conditions (Gross and Konieczny, 2020). Both in vivo
and in vitro data indicate that when DnaA is converted to
ADP-bound form, it is degraded by Lon (Gross and Konieczny,
2020). PolyP interacts with DnaA-ADP, but not DnaA-ATP,
which provides an explanation on how Lon targets only DnaA-
ADP for proteolysis. In starvation, as a result of an increase
in Lon level and Lon activation by PolyP, the overall DnaA
concentration decreases, which leads to the inhibition of DNA
replication initiation (Gross and Konieczny, 2020). Since in E. coli
(Gross and Konieczny, 2020) and in C. crescentus (Liu et al.,
2016) DnaA protein degradation depends on its nucleotide state,
it may be crucial for the control of DNA replication. Such
possibility is discussed in a recent review on the regulation of
Caulobacter DnaA (Felletti et al., 2019). It was also shown that
in stress in E. coli, ppGpp affects RNA polymerase activity and
thereby superhelicity of replication origin, which leads to DNA
replication initiation inhibition (Kraemer et al., 2019). Because
ppGpp is not required for PolyP synthesis in E. coli (Crooke
et al., 1994), it is very likely that the regulations by ppGpp
(Kraemer et al., 2019) and PDAP (Gross and Konieczny, 2020)
are independent mechanisms responsible for controlling DNA
replication initiation during stress in E. coli.

DnaA participates in the replication initiation of many
plasmids, which implies that the replication of plasmid and
chromosome in one cell may be coordinately regulated by
the inducible degradation of DnaA during stress conditions.
This possibility requires to be investigated. It was shown that
stability of plasmid DNA is decreased in E. coli protease-
deficient mutants (Bury et al., 2017; Dubiel et al., 2018). Plasmid-
encoded replication initiators (Rep), e.g., RK2 plasmid TrfA
protein, are degraded by Lon and other cytosolic proteases
(Wojtkowiak et al., 1993; Wickner et al., 1994; Levchenko et al.,
1995; Pierechod et al., 2009; Kubik et al., 2012). The selective
proteases activity may affect Rep monomer/dimer ratio and
therefore the ability of replication initiator to initiate plasmid
DNA replication. DNA stimulates TrfA degradation by Lon
(Figure 1C) and ClpAP but inhibits proteolysis by ClpXP and
HslUV (Kubik et al., 2012). Similarly, binding of λO protein,
i.e., replication initiator of bacteriophage Lambda, to oriλ DNA
protects it from degradation by ClpXP (Zylicz et al., 1998).
Despite replication initiation control by the Rep concentration
and monomer/dimer ratio, the RK2 plasmid replication is also
controlled by joining two DNA plasmid particles via TrfA to form
handcuff complex, thereby preventing replication reinitiation.
E. coli Lon disrupts the handcuff complex by proteolyzing TrfA
(Bury et al., 2017).

CtrA
The response regulator CtrA in C. crescentus is another
DNA-binding protein whose level is controlled by proteases.
CtrA not only controls transcription of more than a
hundred genes (Wojtkowiak et al., 1993) but also inhibits
DNA replication initiation (Quon et al., 1996, 1998;
Laub et al., 2002). For replication to occur, CtrA must
be eliminated at the G1–S transition, and this is carried
out by dephosphorylation (Jacobs et al., 2003) and ClpXP-
mediated proteolysis (Jenal and Fuchs, 1998). Under nutritional
stress, CtrA proteolysis is inhibited by ppGpp and PolyP
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TABLE 1 | Comparison of degradation conditions of replication proteins and proteins associated with DNA replication.

Substrate Function of a substrate Organism Protease Factors affecting
the proteolysis

References

DnaA Required for bacterial DNA replication
initiation

Caulobacter
crescentus

Lon, ClpAP Unfolded
substrates (+)

Jonas et al., 2013; Liu et al., 2016

Escherichia coli Lon PolyP (+)a Gross and Konieczny, 2020

TrfA–wt (dimer) Participates in the formation of “handcuff”
of RK2 plasmid particles

E. coli ClpAP, Lon DNA (+)b Kubik et al., 2012

ClpXP, HslUV DNA (−) Kubik et al., 2012

TrfA G254D/S256L
(monomer)

Participates in replication initiation of RK2
plasmid

E. coli Lon, ClpAP DNA (+) Kubik et al., 2012

RepE Participates in replication initiation of F
plasmid

E. coli Lon DNA (+) Karlowicz et al., 2017

λO Participates in replication initiation of phage
lambda

E. coli Lon DNA (+) Karlowicz et al., 2017

HimA As a heterodimer with HimD bends DNA in
the structure of oriC, thus facilitating the
replication initiation

E. coli Lon PolyP (+) Nomura et al., 2004

Dps Protects DNA during starvation and
oxidative stress

E. coli ClpAP, ClpXP ?c Stephani et al., 2003

CspD Inhibits DNA replication; plays a regulatory
role in chromosomal replication in
nutrient-depleted cells

E. coli Lon ? Langklotz and Narberhaus, 2011

CtrA Controls transcription and inhibits DNA
replication initiation.

C. crescentus ClpXP ? Jenal and Fuchs, 1998

CcrM Inhibits DNA replication initiation C. crescentus Lon DNA (+) Gonzalez et al., 2014

DnaX Participates in the loading of sliding clamp C. crescentus ClpXP ? Vass and Chien, 2013

SocB Binds to sliding clamp and inhibits
elongation of DNA replication

C. crescentus ClpXP ? Aakre et al., 2013

a(+) indicates that the proteolysis is stimulated by DNA, PolyP, or unfolded substrates.
b(−) indicates that the proteolysis is inhibited by DNA, PolyP, or unfolded substrates.
c? indicates that there are no data about impact of DNA, PolyP, or unfolded substrates.

FIGURE 1 | Factors stimulating Lon-dependent proteolysis of replication initiators in Caulobacter crescentus and Escherichia coli during stress or normal growth
conditions. (A) In C. crescentus in heat-shock conditions, unfolded substrate accumulation stimulate Lon protease for DnaA degradation, which results in inhibition
of DNA replication initiation. (B) In E. coli cells during amino acid starvation, PolyP-induced DnaA proteolysis (PDAP) is launched. PolyP activates Lon protease to
degrade DnaA, thereby resulting in the decreasing DnaA level and, consequently, DNA replication initiation arrest. (C) Under normal growth conditions, plasmid
replication initiation protein (Rep) degradation by Lon is induced by nucleoprotein complex formation. The protease and substrate interaction with DNA is crucial for
efficient degradation. No data are available about Rep proteins stability in stress conditions.

accumulation (Boutte et al., 2012). The proteolysis of
CtrA is carried out by ClpXP only when both proteins
are localized in the cell pole (Iniesta et al., 2006). This
process occurs in the presence of accessory proteins, i.e.,
CpdR, RcdA, PopA, and cyclic diguanylate (cdG), which
accelerate CtrA degradation in vitro. Those accessory proteins

are also essential for proteolysis of CtrA bound to DNA
(Smith et al., 2014).

CcrM
In order to complete cell division, the chromosome needs to
be fully methylated by the CcrM DNA methyltransferase. This
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methyltransferase CcrM is proteolyzed by Lon to restrict CcrM
to most of the cell cycle that prolongs the hemimethylation state
of chromosomal DNA during DNA synthesis in C. crescentus
(Wright et al., 1996). The ccrM gene transcription is regulated
by a positive global regulator CtrA, and the CcrM protein
is constitutively degraded by Lon (Wright et al., 1996). Not
only DNA was shown to stimulate Lon-mediated proteolysis
of CcrM but also CcrM has 10-fold higher affinity for Lon
in the presence of DNA, when compared with CcrM to Lon
alone (Zhou et al., 2019). The C-terminus of CcrM binds
DNA and is recognized by Lon (Zhou et al., 2019). Lon
interaction with DNA is not crucial for CcrM proteolysis
because CcrM degradation is still observed in cells expressing
Lon mutant defective in DNA binding (Zeinert et al., 2018).
Therefore, the CcrM level and correct completion of cell cycle
depend on the balance between the synthesis and proteolysis
of CcrM. CcrM degradation by Lon can also affect the dNTP
production in a cell. In 1lon strains, an increase in the
ribonucleotide reductase (RNR) expression level is observed,
which is driven by stabilization of the transcription factor CcrM
(Zeinert et al., 2020).

Integration Host Factor
The integration host factor (IHF) (Nomura et al., 2004)
is a histone-like protein responsible for modulation of the
DNA condensation (Pettijohn, 1988). IHF is a HimA/HimD
heterodimer, which interacts with DNA through specific binding
sequence (IBS, IHF binding sequence) and bends DNA in the
structure of oriC, thus facilitating the process of replication
initiation in E. coli (Ozaki and Katayama, 2012). IHF also
participates in regulating the nucleotide state of DnaA. IHF
dimers bound to datA sequence promote DnaA-ATP hydrolysis
in the DDAH system, thus increasing the pool of DnaA-ADP to
prevent overinitiation (Kasho and Katayama, 2013). Moreover,
IHF, together with Fis, binds to DARS2 sequence and participates
in DnaA-ATP regeneration, which is coupled to cell cycle and
growth phase (Kasho et al., 2014). IHF interacts with PolyP
(Kornberg, 1995), and its level is regulated by Lon in a PolyP-
dependent manner (Nomura et al., 2004). The IHF oligomeric
state has an impact on this process. HimA degradation is
dependent on PolyP and Lon, as opposed to HimD. When both
monomers formed heterodimers, neither HimA nor HimD is
degraded (Nomura et al., 2004). This suggests that either Lon
recognition for HimA is buried at the interface of monomers
within heterodimer or a significant structural rearrangement
occurs upon dimerization.

CspD
Upon entry into the stationary phase in E. coli, CspD is expressed
and acts as an inhibitor of replication (Yamanaka and Inouye,
1997). Expression of CspD was shown to be activated by
(p)ppGpp (Yamanaka and Inouye, 1997). This allows for the
adaptation to nutritional changes. CspD was found to be related
to persister cell formation (Kim and Wood, 2010). Cellular level
of CspD is regulated in response to growth phase and growth rate
by proteolysis. Using electron microscopy (EM), it was shown
that CspD condenses ssDNA; however, those nucleoprotein

complexes are distinct from the complex of single-stranded
binding protein (SSB) with DNA (Yamanaka et al., 2001).
When growth is resumed in nutrient-rich environment, CspD
is degraded by Lon (Langklotz and Narberhaus, 2011). The
proteolysis of CspD by Lon was reconstituted in vitro and did not
require any additives, besides ATP, which indicates that during
growth, unknown factors must regulate either Lon activity or
CspD availability for degradation.

Dps
Known as the most abundant protein in a stationary phase
in E. coli, Dps was shown to protect DNA during starvation
and oxidative stress, by self-aggregation and DNA condensation
(Almirón et al., 1992; Azam et al., 1999; Ceci et al., 2004;
Frenkiel-Krispin et al., 2004; Melekhov et al., 2015). During
DNA damage, Dps also interacts with DnaA in order to delay
replication initiation and allow for DNA repair (Chodavarapu
et al., 2008). ClpAP and ClpXP degrade Dps during the
exponential phase, which leads to a significant reduction in
Dps level (Ninnis et al., 2009). Considering the involvement
of Dps in various important functions, its level must be
tightly controlled.

SocB
Sliding clamp (a protein responsible for the replisome
processivity in DNA replication) is inhibited by SocB, a
component of SocB toxin–SocA antitoxin system in C. crescentus
(Aakre et al., 2013). The SocB is unstable and constitutively
proteolyzed by ClpXP in the presence of SocA. SocB interacts
with sliding clamp and inhibits elongation of DNA replication,
presumably by outcompeting other proteins from binding sliding
clamp. The excessive sliding clamp occupation by SocB leads to
premature collapse of replication fork and incomplete cell cycle
(Aakre et al., 2013).

DnaX
For the sliding clamp to be loaded onto DNA, a clamp loader
complex is required. In E. coli, this complex contains tau and
gamma subunits, which are produced from the same gene,
but gamma is shorter due to ribosomal frameshifting (Lee and
Walker, 1987). In C. crescentus, which lacks a frameshifting site,
ClpXP generates the shorter version, i.e., gamma subunit, which
is necessary under normal growth conditions as well as for DNA
damage tolerance (Vass and Chien, 2013).

CONCLUSION AND PERSPECTIVES

In this review, we highlight that directed proteolysis can be
stimulated by protease interaction with phosphate-containing
molecules such as DNA and PolyP. To date, no structural data
are available on such complexes. This specific interaction affects
protease activity and selectivity against substrates especially
those important in regulation of DNA replication. The current
knowledge indicates that among all cytosolic proteases, Lon plays
the most important role in the regulation of DNA replication
in bacterial cells. We propose that during normal growth,
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it is the nucleoid DNA that provides matrix for Lon and its
substrate proteins. During stress, Lon binds to PolyP granules,
thereby stimulating degradation of substrates, which also interact
with PolyP in stress. The exact molecular mechanism for this
activation remains to be elucidated and needs further validation.
Application of the cutting-edge structural research, single-
molecule experiments, and trapping approach (Aubin-Tam et al.,
2011; Arends et al., 2018; Hu et al., 2018; Fei et al., 2020)
should provide insight into the structure–function relationship
of Lon, its substrates, adaptor proteins, and complexes with
phosphate-containing molecules. Growing evidence indicates
that proteolysis is crucial for virulence in many pathogens
(Butler et al., 2006; Ingmer and Brøndsted, 2009; Willett et al.,
2015). Understanding how directed proteolysis is regulated by
phosphate-containing molecules will give insight into microbial
stress responses and the regulation of DNA replication.
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Zakrzewska-Czerwińska, J., Jakimowicz, D., Zawilak-Pawlik, A., and Messer, W.
(2007). Regulation of the initiation of chromosomal replication in bacteria.
FEMS Microbiol. Rev. 31, 378–387. doi: 10.1111/j.1574-6976.2007.00070.x

Zehnbauer, B. A., Foley, E. C., Henderson, G. W., and Markovitz, A. (1981).
Identification and purification of the Lon+ (capR+) gene product, a DNA-
binding protein. Proc. Natl. Acad. Sci. U.S.A. 78, 2043–2047. doi: 10.1073/pnas.
78.4.2043

Zeinert, R. D., Baniasadi, H., Tu, B. P., and Chien, P. (2020). The Lon protease links
nucleotide metabolism with proteotoxic stress. Mol. Cell 79, 758–767.e6.

Zeinert, R. D., Liu, J., Yang, Q., Du, Y., Haynes, C., and Chien, P. (2018). A
legacy role for DNA binding of Lon protects against genotoxic stress. bioRxiv
[Preprint], doi: 10.1101/317677

Zhao, J., Niu, W., Yao, J., Mohr, S., Marcotte, E. M., and Lambowitz, A. M.
(2008). Group II intron protein localization and insertion sites are affected by
polyphosphate. PLoS Biol. 6:e150. doi: 10.1371/journal.pbio.0060150

Zhou, X., Wang, J., Herrmann, J., Moerner, W. E., and Shapiro, L. (2019).
Asymmetric division yields progeny cells with distinct modes of regulating cell
cycle-dependent chromosome methylation. Proc. Natl. Acad. Sci. U.S.A. 116,
15661–15670. doi: 10.1073/pnas.1906119116

Zylicz, M., Liberek, K., Wawrzynow, A., and Georgopoulos, C. (1998). Formation
of the preprimosome protects λ O from RNA transcription-dependent
proteolysis by ClpP/ClpX. Proc. Natl. Acad. Sci. U.S.A. 95, 15259–15263. doi:
10.1073/pnas.95.26.15259

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ropelewska, Gross and Konieczny. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 October 2020 | Volume 11 | Article 585717

https://doi.org/10.1093/nar/gkr832
https://doi.org/10.1016/s0092-8674(00)80995-2
https://doi.org/10.1073/pnas.95.1.120
https://doi.org/10.1146/annurev.biochem.77.083007.093039
https://doi.org/10.1128/jb.178.5.1394-1400.1996
https://doi.org/10.1128/jb.178.2.470-476.1996
https://doi.org/10.1128/jb.00590-08
https://doi.org/10.1073/pnas.1407862111
https://doi.org/10.1007/s002530050586
https://doi.org/10.1007/s002530050586
https://doi.org/10.1046/j.1365-2958.2003.03644.x
https://doi.org/10.4236/abb.2013.44077
https://doi.org/10.4236/abb.2013.44077
https://doi.org/10.1111/j.1365-2958.2008.06229.x
https://doi.org/10.1111/j.1365-2958.2008.06229.x
https://doi.org/10.1073/pnas.1311302110
https://doi.org/10.1073/pnas.1311302110
https://doi.org/10.1016/s1074-5521(02)00268-5
https://doi.org/10.1016/s1074-5521(02)00268-5
https://doi.org/10.1073/pnas.91.25.12218
https://doi.org/10.1101/gad.10.12.1532
https://doi.org/10.1016/j.micpath.2016.01.009
https://doi.org/10.1016/j.micpath.2016.01.009
https://doi.org/10.1128/jb.179.16.5126-5130.1997
https://doi.org/10.1046/j.1365-2958.2001.02345.x
https://doi.org/10.1046/j.1365-2958.2001.02345.x
https://doi.org/10.1111/j.1574-6976.2007.00070.x
https://doi.org/10.1073/pnas.78.4.2043
https://doi.org/10.1073/pnas.78.4.2043
https://doi.org/10.1101/317677
https://doi.org/10.1371/journal.pbio.0060150
https://doi.org/10.1073/pnas.1906119116
https://doi.org/10.1073/pnas.95.26.15259
https://doi.org/10.1073/pnas.95.26.15259
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	DNA and Polyphosphate in Directed Proteolysis for DNA Replication Control
	Introduction
	The Impact of Dna Binding on Protease Activity
	The Impact of Polyphosphate Binding on Protease Activity
	The Proteolysis of Replication Proteins and Proteins Associated With Dna Replication
	Replication Initiators
	CtrA
	CcrM
	Integration Host Factor
	CspD
	Dps
	SocB
	DnaX

	Conclusion and Perspectives
	Author Contributions
	Funding
	References


