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Children accrue experiences with buoyancy on a daily basis, yet research paints a
mixed picture of children’s buoyancy knowledge. Whereas children’s predictions and
explanations of the floating and the sinking of common objects are often based on a
single feature (e.g., mass or facts), children’s predictions of novel cubes reveal solution
strategies based on mass and volume integrations. Correspondingly, category learning
theory suggests that categories (e.g., floaters vs. sinkers) are easier to identify when
items mainly vary from one another in the relevant defining features. For example, a
set of cubes only varies in mass and volume and hence density, thereby being able
to highlight the deterministic role of density when placed in water. Here we asked how
item variation during hands-on exploration affects children’s subsequent predictions and
explanations of buoyancy. Kindergarteners and first-, second-, and third-grade children
individually explored either a set of 10 systematically varied cubes (i.e., systematic
condition; n = 95) or a set of 10 common objects (i.e., non-systematic condition; n = 96)
in a water basin. Next, the children predicted the buoyancy of five new cubes and
five new common objects one at a time. Subsequently, the children explained their
predictions one subset at a time. The children in the systematic condition were more
accurate in their predictions of the test cubes than the children in the non-systematic
condition. Latent class regression analyses identified three cube prediction solution
strategies. The children in the systematic condition were more likely to use a strategy
in which buoyancy decisions were made based on an accurate integration of mass
and volume, while the children in the non-systematic condition were more likely to use a
strategy in which mass was given more predictive load than volume. A third strategy was
characterized by guessing. Latent class analyses of the children’s explanations revealed
different explanation strategies, each appealing to several features, but as hypothesized,
no clear condition differences were found. The findings indicate that even 5 min of
exploration with systematically varied cubes can already help children use an advanced
buoyancy prediction strategy. This provides evidence in favor of using category learning
theory to inform early science education design.
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INTRODUCTION

In many Dutch kindergarten classrooms, 4- to 6-year-old can
explore what happens when they place objects in water. Buoyancy
lesson plans for such water corners typically suggest offering
children a collection of common objects to experiment with
(Franse, 2007; Kemmers et al., 2007; Mundkur, 2015; Science
NetLinks, 2020). While the use of common objects arguably
helps children to relate their classroom investigations to their
daily experiences, these objects vary over many features (e.g.,
texture, rigidity) that are unrelated to their buoyancy. This
surface feature variation therefore might come at a cost: it could
make the relevant feature (i.e., density1) harder to isolate. Here
we investigated how variation between items during hands-on
exploration influences children’s buoyancy knowledge.

A solid object’s buoyancy is determined by its density, which
is its mass divided by its volume, relative to the density of the
surrounding fluid. Water’s density is approximately 1, and objects
with a density of less than 1 float in water, while objects with
a density greater than 1 sink. Density is a fundamental concept
throughout the physical sciences (e.g., gases and fluids, weather).
Furthermore, density is an example of proportional reasoning,
entailing a multiplicative relation between quantities, which, in
turn, is central to mathematical and scientific topics (Siegler,
1981; Boyer et al., 2008). Consequently, children’s understanding
of buoyancy and density has been the subject of developmental
and educational research from multiple perspectives (Piaget and
Inhelder, 1974; Smith et al., 1985; Kohn, 1993; Penner and Klahr,
1996; Schneider and Hardy, 2013).

From a very young age, children gain experience with
buoyancy in different contexts and for a range of objects.
This suggests that they are starting to construct knowledge
of buoyancy before necessarily being able to verbalize this
knowledge. Following Pine and Messer (1999) we will
refer to these different types of knowledge as implicit and
explicit knowledge, respectively. In this sense, a child’s explicit
knowledge necessitates a conceptual representation (although
not necessarily a scientifically accurate one), while her implicit
knowledge is not (yet) verbally accessible but can be used to
(successfully) perform a task (Karmiloff-Smith, 1992; Pine and
Messer, 1999, 2003; Messer et al., 2008). Buoyancy studies
indeed indicate that both the nature of children’s knowledge
(i.e., implicit vs. explicit) at a given age as well as the types of
items used to elicit children’s buoyancy knowledge (i.e., common
objects vs. novel cubes) paint conflicting pictures of children’s
developing understanding (Rappolt-Schlichtmann et al., 2007;
Kloos, 2008; Franse et al., under review).

Children’s predictions of whether common objects will float
or sink (which could be made based on either implicit or explicit
knowledge) are typically quite accurate. For example, in one
study, kindergartners’ and second-graders’ prediction accuracies
ranged between 60 and 90% (Rappolt-Schlichtmann et al., 2007).
In a study by Franse et al., (under review) 4- to 12-year-old

1Note that Archimedes’ law of buoyancy provides a more general and an adequate
way of thinking about floating and sinking, that is, “the relevant feature is the
volume of the water to replace relative to the weight of the object” instead of
“density.”

predictions of a boat, coin, ball, and pebble likewise averaged
between 88 and 92% accuracy, with predictions significantly
improving with age. Children’s predictions were likely accurate
because they were making use of known facts or experiences.
Correspondingly, the majority of these children’s explanations
of why these objects float or sink (which requires explicit
knowledge) relied on relevant facts, with mass explanations in
second place (Franse et al., under review; see also Smith et al.,
1985; Tenenbaum et al., 2004). Thus, young children’s implicit
and explicit knowledge in the context of common objects both
seem often to be based on one feature (i.e., facts or mass).

Whereas the floating and the sinking of common objects
can be learned through daily experiences, this is not the
case for novel items. Surprisingly, when young children are
presented unfamiliar cubes one at a time, which vary only in
mass and volume and, hence, in density, they are relatively
accurate in predicting which will float and which will sink
(Kohn, 1993; Kloos, 2008). This effect was analyzed further
in the aforementioned study by Franse et al. (under review).
In this study, children compared items (cubes and common
objects) one at a time to two reference cubes (a sinker and a
floater) and predicted the item’s buoyancy before subsequently
explaining these predictions per set of items. The authors
analyzed the way the cubes’ features (e.g., mass and volume)
were used by children to decide their buoyancy. The majority
of the children’s predictions were shown to utilize a solution
strategy that was based on an integration of mass and volume.
Children’s use of these solution strategies, and the accuracy of
the solution strategies, increased with age; while most 4- to 5-
year-old guessed, the majority of children 6 years and older used
integrative solution strategies, and the higher the age, the more
advanced the solution strategy. Conversely, the same children’s
explanations for the buoyancy of the cubes were largely one-
dimensional, with the majority of children relying only on mass
(Franse et al., under review).

Taken together, across common objects and cubes, prediction
accuracy increases with age. However, the predictions of objects
are typically based on facts, while (the implicit) predictions of
cubes reveal the children’s emerging ability to use the relevant
features of mass and volume by the end of kindergarten.
Explanations regarding common objects and cubes are both
largely one-dimensional and hence inaccurate. Improving
(young) children’s concepts of buoyancy would thus require both
drawing attention toward the less apparent features of items
(e.g., density) and a shift toward multidimensional thinking
(Kuhn et al., 2008; Schneider and Hardy, 2013). Considering the
integrative solution strategies found when children were simply
presented with cubes without experimentation (Franse et al.,
under review) it would seem that allowing children to experiment
with a set of cubes could further trigger children’s attention to the
integration of mass and volume (Franse et al., under review).

This proposition finds backing in category learning studies
and theory. This research shows not only that humans are
quick to identify relations across items by detecting the invariant
features but also that such learning is dependent on the category
structure (Erickson and Kruschke, 1998; Ashby and Ell, 2001;
Sloutsky, 2003, 2010; Kloos, 2008; Kloos and Sloutsky, 2008;
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Goldwater et al., 2018). Categories that are dense, that is,
that have multiple category-relevant features (e.g., shape and
behavior of dogs) and few category-irrelevant features (e.g.,
floppy or upright ears), are easy to learn because of the
abundance of defining, invariant features. Sparse categories,
however, have multiple irrelevant features and only few relevant,
invariant features, making them hard to learn without guidance
(Kloos and Sloutsky, 2008). Scientific concepts, such as density,
are often based on sparse categories due to their multi-
contextuality. Hence, conceptual science learning requires being
able to distill the harder-to-detect features across multiple
instances. To do so, attention needs to be shifted from irrelevant
features (e.g., texture) to relevant features (e.g., density). This
selection is challenging and likely requires executive functioning
systems (Sloutsky, 2010) which are notoriously prolonged in
their development (Diamond, 2013). To facilitate this process,
simplifying the learning input (i.e., making the instantiation of
the category denser) should make it easier for children to focus
on the relevant features simply because there are fewer irrelevant
features to focus on. This stands in contrast to what is often done
(or advocated) in educational practice. Buoyancy lesson plans
often suggest using (a variety of) common objects (Franse, 2007;
Kemmers et al., 2007; Mundkur, 2015; Science NetLinks, 2020).
The motivation to select a range of objects could derive from
a constructivist idea that experiences which build upon prior
experiences facilitate knowledge construction (Campbell, 2015).

In summary, findings on children’s knowledge of buoyancy
are scattered and depend on how the knowledge was elicited.
While children’s predictions about the buoyancy of common
objects are typically quite accurate, these are likely based on single
features such as mass or facts instead of scientifically correct
concepts. Intriguingly, children’s predictions of novel cubes
reveal solution strategies based on mass and volume integrations.
Correspondingly, category learning theory suggests that when
relevant features (e.g., density) are more apparent across items
(e.g., cubes), these features are easier to learn. Following from
this, we asked how item variation during hands-on experience
with buoyancy affects children’s implicit and explicit knowledge.

To this end, kindergarten and first-, second-, and third-
grade children explored either a set of 10 systematically varied
cubes (i.e., systematic condition) or a set of 10 common objects
(i.e., non-systematic condition) in a water basin. Following the
exploration, all children were presented with five new cubes and
five new common objects one at a time in a randomized order.
They were asked to predict the buoyancy of these new items
and were subsequently asked for buoyancy explanations for the
subsets of these items.

We hypothesized that children in the systematic condition
would predict the buoyancy of the new cubes more accurately
than children in the non-systematic condition. Particularly, based
on the past cube prediction findings (Franse et al., under review),
we expected to find that the systematic condition children
would be more likely to acquire a solution strategy in which
they integrate the mass and the volume of the cubes to make
buoyancy decisions and that they do so to a higher degree
of accuracy than the children in the non-systematic condition.
We did not expect to see notable differences between the two
conditions in their predictions of the new common objects

because children are generally quite accurate at predicting these
(Rappolt-Schlichtmann et al., 2007) and all children could still
rely on their past experiences and known facts (Franse et al.,
under review).

With respect to children’s explanations, this study was
more exploratory in nature. Studies investigating children’s
understanding of buoyancy and other topics show a discrepancy
between children’s predictions, which are typically more
advanced, and their explanations, which lag behind (Smith et al.,
1985; Butts et al., 1993; Rappolt-Schlichtmann et al., 2007). Given
this study’s 5-min hands-on exploration session, it is unlikely
that the systematic condition children would be able to directly
explicate their experimental findings (Pine and Messer, 1999) let
alone transfer this knowledge to common objects. Nevertheless,
to assist this process, children in both conditions were offered
the same regularly timed prompts to stimulate them to explicitly
think about their experiments as well as status overviews to guide
their experimentation progress (Lazonder and Harmsen, 2016).
As such, children with higher prior knowledge to begin with
(i.e., children in higher grades) might show some evidence of
explaining the new items’ buoyancies based on their exploration.

MATERIALS AND METHODS

Participants
Kindergartners (grades 1 and 2 in the Netherlands) were
recruited at seven primary schools. Of the 151 who participated,
the data of 40 (26%) were excluded due to the following reasons:
confusing the terms floating and sinking (n = 2), corrupt
video files (n = 4), experimenter errors (n = 19), stopping
the experiment early (n = 3), teacher-reported non-normal
development (n = 1), not sorting items during the exploration
session (n = 2), and incorrectly sorting more than two of the items
during the exploration session (n = 9)2. Hence, the data of 111
kindergartners (53 girls; Table 1) were included.

Ninety-three first-, second-, and third-graders (grades 3, 4,
and 5 in the Netherlands) were recruited at a science museum. Of
these, the data of 13 (14%) were excluded due to corrupt video
files (n = 12) and parent-reported non-normal development
(n = 1). This resulted in the inclusion of 80 children tested at the
science museum; 28 first graders (14 girls), 23 second graders (14
girls), and 29 third graders (11 girls; Table 1).

The final sample consisted of 191 participants (92 girls).
A total of 95 participated in the systematic condition and 96
participated in the non-systematic condition. Informed consent
was acquired from the parents before participation. This study
was approved by the local social science faculty’s ethics committee
(ECPW-2018/193 and ECPW-2018/204).

Design
Materials
Figure 1 depicts the items used in this study (see also
Supplementary Table S1). The items were selected based on

2This was used as an exclusion criterion as a proxy of children’s engagement during
the exploration session and to ensure that the included children understood the
difference between floating and sinking.
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TABLE 1 | Number and age of the participants per grade and per condition.

Grade Condition Mean age Minimum age Maximum age n (n girls)

Kindergarten Systematic 60.15 49 76 53 (24)

Non-systematic 66.79 50 82 58 (29)

1st grade Systematic 81.14 75 93 14 (9)

Non-systematic 82.50 74 96 14 (5)

2nd grade Systematic 94.91 83 100 11 (8)

Non-systematic 95.58 87 103 12 (6)

3rd grade Systematic 107.94 100 121 17 (9)

Non-systematic 105.92 101 116 12 (2)

FIGURE 1 | The item sets used in the study. Top left: exploration set of 10 cubes used in the systematic condition. Bottom left: exploration set of 10 common
objects used in the non-systematic condition [boat (F), sink sieve (S), lava rock (S), ping pong ball (F), metal spoon (S), 2-Euro coin (S), marble (S), bouncy ball (F),
wall plug (F), and coaster (F)]. Right: the 10 test set items used in both conditions (top: branch, candy tin, bobby pin, ceramic utensil rest, and floor ball). Note that
each cube had a unique symbol (visible in the top-left picture) that the experimenter used to identify it, but there was no discernable pattern so that children could
not use these to decipher a cube’s buoyancy.
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past findings and pilot study results. The cubes were made by
3D-printing hollow boxes and lids. These were subsequently filled
with Styrofoam, lead pellets, and glue to achieve the desired
masses, and the lids were super-glued shut.

Pilot Study
For the pilot study, a broad range of items were selected, drawing
inspiration from previous studies and buoyancy lesson plans
(Franse, 2007; Kemmers et al., 2007; Mundkur, 2015; Science
NetLinks, 2020). Forty-three children between the ages of 4 and
10 years were tested individually at a science museum after
receiving a signed informed consent from their accompanying
guardian. Following an introduction with a water basin to
ensure familiarity with the terms “floating” and “sinking,” the
experimenter handed items one at a time to the child and asked
her to predict whether it would float or sink. Based on these data,
a final selection was made, and for the objects, the materials,
the shapes, and the presence of holes and hollow spaces were
taken into account to create a diverse range. Several items that
did not achieve the desired accuracy rates were replaced based
on the accuracies of the other items and past studies’ findings;
hence, not all items in the final design were piloted. Where
available, pilot or previous study prediction accuracy is included
in Supplementary Table S1.

Introduction Set
To introduce the water basin and the terms “floating” and
“sinking,” the experimenter used a cork and a stone, respectively.
As a visual reminder and to structure children’s explorations, two
laminated sheets were used, one depicting a cork floating in a
water basin and the word “float,” and the other depicting a stone
at the bottom of a water basin and the word “sink” (adapted from
Franse, 2007).

Exploration Sets
There were two exploration sets (Figure 1): one consisted of
10 common objects (used in non-systematic condition) and
the other of 10 cubes (used in systematic condition). Both
sets consisted of five floaters and five sinkers. Both sets had
four items that were selected to be surprising for children
based on the pilot study: two surprising floaters and two
surprising sinkers. All of the systematic condition’s exploration
set cubes were turquoise.

Test Set
The test set was the same for both conditions and was used to
measure children’s predictions and explanations (Figure 1). It
consisted of five common objects and five cubes. Of each set of
five items (i.e., cubes or objects), two were selected to be easier
and three were selected to be more difficult based on the pilot
study. This resulted in four subsets: easy cubes (n = 2), easy
common objects (the candy tin and the ceramic utensils rest;
n = 2), difficult cubes (n = 3), and difficult common objects
(the branch, bobby pin, and floor ball; n = 3). Of the easy
items, one was a floater and one was a sinker. Of the difficult
items, two were floaters and one was a sinker. All of the test set
cubes were white.

Procedure
Introduction
Children were tested individually. The experimenter first
introduced the water basin and asked what would happen to the
cork (or stone, order counterbalanced) and placed the item in
the water basin once the child had responded. The experimenter
asked the child what had happened and then provided the
corresponding definition [i.e., “If something stays on the water,
we (indeed) call that floating” and “If something goes to the
bottom of the water basin, we (indeed) call that sinking”]. The
experimenter pointed to the corresponding laminated sheet and
placed the object on it. After this was performed for both example
items, these were removed and the experimenter brought out the
exploration set of that child’s condition.

Exploration
During the exploration session, the child was free to test the
exploration set items in the water basin. The laminated float and
sink sheets remained on the table for the child to use. Before
starting, the child was encouraged to try to think about why
some float and others sink. To further stimulate children to test
all items and think about buoyancy, children were prompted
by the experimenter at regular intervals. If after 30 s the child
had not yet tried anything, the experimenter asked which item
she wanted to put in the water first. After 3 min or if the
child had indicated that she was finished before having tried
all of the items, the experimenter asked if she had tried all
of the items already. After 4 min or if the child indicated
that she was finished, the experimenter asked if the child
already knew why some float and some sink. After 5 min, the
experimenter indicated that the time was up and removed the
water basin and items.

Prediction
The experimenter placed the laminated float and sink sheets
upright into two bins, creating a floating and a sinking bin.
The experimenter then placed the test set items one by one
in front of the child and asked whether the item would
float or sink. If the child did not pick up the item, the
experimenter instructed her to do so. Once the child made
a prediction, she was instructed to place the item in the
corresponding bin. This was repeated for all 10 items in a
randomized order.

Explanation
The experimenter pulled the items belonging to one subset (i.e.,
the easy cubes, the easy common objects, the difficult cubes,
or the difficult common objects) out of the bins, regardless
of whether the child had sorted them correctly or not, and
placed them on the table. The experimenter pointed to the
items from the floating bin (if there were any) and the items
from the sinking bin (if there were any) while saying, “You
thought this/these would float and this/these would sink. Why
do these float and do these sink?” After the child was done
explaining, the experimenter asked, “Can you explain it some
more?” This was repeated for each of the four subsets in a
randomized order.
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Measures
Predictions
Children’s categorization of the test set items into the floating
and the sinking bins was tallied in two ways: an accuracy score
of incorrect (0) or correct (1) and a float–sink score of float
(0) or sink (1).

Explanations
Children’s explanations were transcribed per item subset (i.e.,
easy cubes, easy objects, difficult cubes, and difficult objects),
resulting in four sets of transcriptions per participant. The
transcriptions were coded using an amended version of the
coding scheme used by Franse et al. (under review). The final
codes belonged to six nominal categories (1: other, 2: fact, 3:
mass, 4: volume, 5: material, 6: mass and volume or scientific; see
Supplementary Table S2). All applicable codes were allocated per
subset. For example, a child’s explanation of the difficult objects
could receive a 2, 4, and 5, for referring to a fact or experience,
describing the item’s volume, and naming a material, respectively.
Twenty percent (n = 40) of the transcriptions were re-coded
by a second coder. The two coders had an overlap of 90.54%.
Disparities were resolved on the basis of the coding scheme.

The data were subsequently reformatted for the analyses.
A child received a binary absence (0) or presence (1) score
for each explanation category, depending on whether their
explanation had not or had included that category of explanation,
respectively. This was done separately for each subset. In other
words, per explanation category and per item subset, each child
had a score of 0 if their explanation did not include this category
and a score of 1 if their explanation did.

Data Analysis
Predictions
To test whether the conditions affected the children’s predictions
of the test set items’ buoyancy, a generalized linear mixed
model (GLMM) for binomial data was performed with children’s
prediction accuracies of the 10 items as the dependent variables
and item type (cubes and objects) and condition (systematic
vs. non-systematic) and their interaction as the independent
variables. The random intercept effects of items and participants
were included in the model. The GLMM was performed in
the R package lme4 (R Core Team, 2017). However, to test
how the conditions influenced the degree to which children’s
predictions incorporated item features, we needed to capture
the heterogeneity across children. For this, we used latent class
analysis (LCA) techniques (Hickendorff et al., 2018) to identify
patterns in children’s buoyancy predictions across the different
items (i.e., across the five cubes and five common objects). The
LCAs were performed separately for the cubes and the objects
because of their different features and are explained below.

Cubes
To test how children’s predictions incorporated the relevant
features (e.g., mass and volume) of the cubes, we used latent class
regression analysis (LCRA) (Huang and Bandeen-Roche, 2004)
following Franse et al. (under review). LCRAs have previously
also been applied to cognitive development of other science
concepts (Bouwmeester et al., 2004; Hofman et al., 2015). In

the LCRAs, children’s buoyancy predictions of the five cubes
are modeled as a function of the mass and the volume of
each cube (plus an intercept). Different combinations of the
cubes’ mass and volume in the buoyancy predictions can be
captured by different classes, with each class being characterized
by a regression equation. For example, one class might be
characterized by a regression model that accurately integrates
the mass and the volume of the cubes to predict buoyancy,
and another class’ buoyancy predictions might best be modeled
by a higher predictive load of mass than volume. Thus, each
class identifies a solution strategy, namely, the way mass and
volume were combined to decide items’ buoyancies, and hence
the terms class and solution strategy can be used synonymously
when interpreting the results. The logarithms of the cubes’
mass and volume were used as the predictors in the regression
models because people’s perception of mass and volume operates
on a logarithmic scale (Jones, 1986). Since children’s buoyancy
predictions (i.e., the dependent variables) were scored as float
(0) or sink (1), the models indicate the probability of a child
predicting that a cube will sink.

One, two, and three class models were fit to the children’s
float–sink predictions, including regression terms bmass, bvolume,
and the intercept, a. Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) were used to select the
optimal number of classes. Subsequent constrained models (with
fewer regression terms) were compared using likelihood ratio
tests based on Pearson’s χ2. Once the most parsimonious
model was selected, the posterior probabilities were computed,
indicating, for each child, the probability that the child belongs
to each class based on their buoyancy predictions. The highest
posterior probability was used to assign the child to a class.

Objects
Since the objects did not differ systematically in mass and volume,
latent class analyses (McCutcheon, 1987) were used to detect
underlying patterns in the dependent variables, namely, the
accuracy of children’s buoyancy predictions across the five cubes.
LCAs were fit with different numbers of classes, and models were
compared using AIC, BIC, and bootstrapped model fit likelihood
ratios (Hickendorff et al., 2018). The selected n-class model
was subsequently made more parsimonious by constraining
responses within classes and then between classes to be equal,
freeing up degrees of freedom. LC(R)As were conducted using
DepMixS4 in R (Visser and Speekenbrink, 2010) and MPlus
(Muthén and Muthén, 2017).

Condition and Grade Effects
Following the “three-step approach” (Hickendorff et al., 2018)
separate logistic regressions were carried out to test the effect
of condition and grade on children’s cube class and object
class memberships.

Explanations
Children’s explanations were also modeled using LCAs. In this
manner, we could detect underlying patterns in the types of
explanations children gave [i.e., the dependent variables were
the absence (0) or presence (1) of each explanation category].
This is arguably more informative than examining the highest
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achieved explanation or the amount of explanation types given
because it has the potential to reveal (combinations in) the
types of features children’s explicit concepts of buoyancy rely
on without defining these a priori. LCAs were again performed
separately for the cubes and the objects, following the same
procedure as for the predictions. The classes resulting from
the LCAs differ in the degree to which class members were
likely to use an explanation type per subset of items After the
LCAs, separate logistic regressions were again performed on the
cube and the object class memberships to test the effects of
condition and grade.

Predictions vs. Explanations
To investigate whether there was a relation between children’s
implicit and explicit responses, logistic regressions were carried
out separately for the two item types. Children’s implicit class
membership as well as grade were used to predict children’s
explicit class membership.

RESULTS

Buoyancy Predictions
Children’s buoyancy prediction accuracy was compared across
items between the two conditions using a GLMM (see
Figure 2 for summed prediction accuracies per item type and
Supplementary Figures S1, S2 for histograms). Table 2 shows
the fixed and random effects of the GLMM (see Supplementary
Table S3 for the correlations between the independent variables).
The main effect of condition indicates that children in the
non-systematic condition had a 0.35 lower odds of accurately
predicting the buoyancy of an item than children in the
systematic condition. The interaction between condition and
item type, as displayed in Figure 2, indicates that children
in the systematic condition were more accurate than children
in the non-systematic condition, particularly on the cubes.
This suggests that the systematic condition benefitted children’s
prediction of the test set cubes while not greatly affecting
children’s predictions of objects, whereas the non-systematic
condition did not seem to benefit children’s object predictions
relative to the systematic condition.

Cubes
To give an optimal description of individual differences in
children’s buoyancy decisions about cubes, LCRA models with
one to four classes were fit to children’s predictions of sinking
(Table 3). The best-fitting, most parsimonious model was a
three-class model, with two classes that included mass and
volume predictors (“mass and volume” class: bmass = −44.5,
bvolume = 49.71, a = −22.19, 29% of the children; “MASS and
volume class”: bmass =−1.84, bvolume = 3.68, a =−5.83, 35% of the
children) and one class that only included an intercept (“residual”
class: a =−0.31, 36% of the children).

The selected LCRA model is depicted in Figure 3, in which for
each of the three classes (i.e., solution strategies), the probability
of predicting that a cube will sink is plotted as a function of
mass and volume. This is done separately in five graphs for the

five constant volumes of the tested cubes (i.e., 125, 166, 216,
27, and 275 cm3), although note that the five graphs depict
the same model. The black vertical line denotes the density of
water (1 g/cm3), such that hypothetical cubes of constant volume
with a mass to the left of this line would float and those of
constant volume with a mass to the right of this line would sink.
Take, for example, the volume of 125 cm3; the logistic curve of
the “mass and volume” solution strategy closely aligns with the
black density line, indicating that these children are modeled
as correctly switching from predicting that a cube will float to
predicting that it will sink when cubes have a density of around
1 g/cm3. This suggests that they quite accurately make a buoyancy
decision based on mass and volume. For the tested cube of 125
cm3 and 37.5 g, this model therefore predicts that children will
say that the cube will float (asterisk), which closely aligns with
the observed buoyancy predictions (dot with error lines) of the
children who were assigned to this class based on the posterior
probabilities (see below). The “MASS and volume” logistic curve
is less steep, indicating more uncertainty, and falls largely to
the left of the density line. This implies that, at a lower mass,
these children are already switching to predicting sinking, such
that they seem to be over-compensating for mass. Indeed the
model’s prediction of the probability that children will say that the
tested cube (which floats) will sink is 0.2 (asterisk), overlapping
with the observed buoyancy predictions for this cube (dot with
error lines). Lastly, the “residual” class only has an intercept
and therefore no regression slope. Overall, their observed (dot
with error lines) and modeled (asterisk) buoyancy predictions are
around chance, suggesting a guessing strategy.

Children were assigned to one of the three classes based
on the LCRA’s posterior probabilities, which indicate for each
child the probability of that child belonging to each class based
on the child’s actual buoyancy predictions. Next, a multinomial
logistic regression revealed that this class membership could be
predicted by condition and grade [Cox and Snell R2 = 0.37,
χ2(6) = 89.17, p< 0.001; Figure 4]. Relative to the “MASS
and volume” class, children in the systematic compared to the
non-systematic condition had an odds of 7.60 (95%CI: 3.16–
18.27) to belong to the “mass and volume” class, b = 2.03, p
< 0.001. In other words, children in the systematic condition
were more likely to belong to the “mass and volume” class
than the “MASS and volume class,” while the opposite holds
for children in the non-systematic condition. Children in the
systematic condition compared to the non-systematic condition
also had an odds of 9.97 (95%CI: 1.73–57.47) of belonging
to the “residual” class relative to the “MASS and volume”
class (b = 2.30, p = 0.01). As grade increases, the odds
(0.06, 95% CI: 0.01–0.44) of belonging to the “residual” class
relative to the “MASS and volume” class decreases (b = −2.81,
p = 0.005). There was no significant interaction between
condition and grade.

Objects
To give an optimal description of individual differences
in children’s buoyancy decisions about objects, LCAs were
performed on the prediction accuracy of the five test objects.
One, two, and three class models were compared, leading to
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FIGURE 2 | Mean number of accurate predictions of the cubes and objects at test per condition. Error bars denote 95% confidence intervals.

TABLE 2 | Generalized linear mixed model statistics on the prediction accuracies.

Fixed effects Random effects (SD)

Beta SE z-value Significance Item Participant

Intercept 0.50 0.26 1.96 0.051 0.28 (0.53) 0.03 (0.17)

Condition −0.35 0.14 −2.54 0.011

Item type 0.03 0.36 0.08 0.93

Condition * Item type 0.35 0.19 1.82 0.069

SE, standard error; SD, standard deviation.

TABLE 3 | Fit statistics for latent class regression models of cube predictions.

Model Classes LR Parameters AIC BIC p (LR)

βmass + βvol 1 −611.49 3 1,228.98 1,243.56

βmass 1 −628.81 2 1,261.63 1,271.35 <0.001

βvol 1 −653.52 2 1,311.03 1,320.74 <0.001

1c: βmass + βvol, 1c: α 2 −587.96 5 1,185.92 1,210.23

1c: βvol,1c: α 2 −648.47 4 1,304.95 1,324.40 <0.001

1c: βmass, 1c: α 2 −612.68 4 1,233.37 1,252.82 <0.001

*2c: βmass + βvol, 1c: α 3 −576.72 9 1,171.44 1,215.20

1c: βmass + βvol, 1c: βmass, 1c: α 3 −582.72 8 1,181.45 1,220.34 0.001

1c: βmass + βvol, 1c: βvol, 1c: α 3 −582.52 8 1,181.03 1,219.93 0.001

3c: βmass + βvol, 1c: α 4 −569.88 13 1,165.76 1,228.96

Model, regression terms per class; 1c, one class’ regression model included these terms; 2c, two classes’ regression models included these terms; 3c, three classes’
regression models included these terms; ∗, selected model; Classes, number of classes; LR, log likelihood ratio; AIC, Akaike Information Criterion; BIC, Bayesian
Information Criterion; p (LR), p-value of likelihood ratio Pearson’s χ2.

the selection of the two-class model (Table 4). This model was
subsequently constrained. In the final model (LR = −583.80;
df = 7; AIC = 1,181.60; BIC = 1,204.37), the log and the

bobby pin were constrained to be equal within both classes,
the floor ball and candy tin were constrained to be equal
within one class, and the ceramic was constrained to be
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FIGURE 3 | The three classes (depicted in different colors) found in the optimal latent class regression analysis of children’s predictions of cubes’ sinking. The
probability of predicting that a cube will sink is depicted in each of the five graphs as a function of mass; each graph depicts the models for a different constant
volume (i.e., the volumes of the five tested cubes: cube 11: v = 125, m = 37.5; cube 12: v = 166, m = 116.5; cube 13: v = 216, m = 194.5; cube 14: v = 27, m = 30;
and cube 15: v = 275, m = 384.5). The black vertical line denotes the density of water (1 g/cm3); hence, cubes of constant volume with a mass to the left of this line
would float and cubes of constant volume with a mass to the right of this line would sink. Each graph displays the modeled classes (curves as a function of mass
and asterisks as a function of the predicted value for the mass of the tested cube) and the observed values (circles with standard errors). Classes “Mass and
Volume” and “MASS and Volume” include all regression terms (hence, curves, and asterisks), while class “Residual” only included an intercept (hence, only asterisks).
Note that the x-axis scale is logarithmic because logarithms of the cubes’ mass and volume were used.
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FIGURE 4 | Proportion of children in each class per condition (left) and per grade (right).

TABLE 4 | Fit statistics for latent class models of common object predictions.

Model LR Df AIC BIC aBIC pa (LR) pa (PLR) Entropy

1 class −609.91 5 1,229.81 1,246.07 1,230.24 0.00 na

*2 class −583.03 11 1,188.07 1,223.84 1,189.00 0.08 <0.001 0.56

3 class −577.92 17 1,189.85 1,245.14 1,191.29 0.35 0.235 0.68

*, selected model; LR, log likelihood ratio; df, degrees of freedom; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; aBIC, adjusted Bayesian
Information Criterion; p (LR), p-value of model fit likelihood ratio Pearson’s χ2; p (PLR), p-value of parametric likelihood ratio for n-1 vs. n classes. aBootstrapped values.

equal across classes, indicating that it did not distinguish
class membership.

Figure 5 displays the conditional probabilities of accurately
predicting an object’s buoyancy for both classes. One class (54%
of the children) performs poorly on two objects in which the
mass is misleading (i.e., the branch floats but is relatively heavy
and the bobby pin sinks but is relatively light) but performs
better when predicting that relatively light items will float (i.e.,
the floor ball and the candy tin). The second class (46% of
the children) performs well on the misleading objects (i.e.,
branch and bobby pin) but performs around chance on the
light items (i.e., the ball that has holes and the candy tin
with air inside that is made of metal). These two classes are
tentatively interpreted as a class that seems to use primarily object
mass to predict buoyancy and a class that makes object-specific
predictions, respectively.

Limited evidence (Cox and Snell R2 = 0.07) was found for
predictive effects of grade and condition on class membership as
tested with a binary logistic regression (Figure 6). Children in
the systematic condition had a higher odds (2.16, 95%CI: 1.18–
3.94) than children in the non-systematic condition of belonging
to the “object-specific” class relative to the “mass-based” class
(b = 0.77, p = 0.012). As grade increases, the probability of
belonging to the “object-specific” class also decreases (b =−0.57,

p = 0.014). The interaction between condition and grade did not
reach significance.

Explanations
Cubes
The coded explanation categories were fit with LCAs to
detect patterns in which types and combinations of buoyancy
explanations children gave. Models with increasing numbers
of classes were compared. Models with more than four classes
did not result in stable solutions, leading to the selection of
the four-class model (Supplementary Table S4). This model
was subsequently constrained to make it more parsimonious.
Constraints were applied across easy and difficult cubes,
starting with the simpler categories (e.g., other, then fact) and
subsequently to the more complex categories (e.g., mass and
volume or scientific). Constraints were applied within one class
and, subsequently, within increasing numbers of classes. Lastly,
constraints across classes were tested.

In the final model (LR = −693.22; df = 30; AIC = 1,446.44;
BIC = 1,544.01), the other explanation category was constrained
across easy and difficult cube explanations for three classes. Fact
was constrained to be equal between easy and difficult cube
explanations for all classes, as was material which was even
constrained across classes, indicating that it did not distinguish
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FIGURE 5 | Latent class analysis probabilities of prediction accuracy for the two classes across the five objects.

FIGURE 6 | Proportion of children in each object prediction class per condition (left) and per grade (right).

classes. Mass was only constrained to be equal across easy and
difficult explanations for one class, while this could be done for
volume in three classes. Finally, the mass and volume or scientific
category was constrained in two classes.

The four classes (Figure 7) were interpreted based on the
explanation categories class members were most likely to use.
The “M” class (47% of the children) was found to have a high
probability of appealing to the cubes’ mass for both the easy and
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FIGURE 7 | Latent class analysis probabilities of explanation types for the four classes across the two cube subsets. Oth, other; M, mass; V, volume; Mat, material;
M&V, mass and volume, scientific.

FIGURE 8 | Proportion of children in each cube explanation class per condition (left) and per grade (right).

the difficult cube sets, as well as providing explanations in the
other category. The “V” class (25% of the children) primarily
had explanations that fall into the other category but appealed
to volume more than the other classes did. The “M, M&V” class
(14% of the children) used mainly mass in their explanations for
the easy subset and mass-and-volume or scientific explanations
for the difficult subset. The “M&V” class (14% of the children)

had an inversed pattern, although their explanations on the
difficult subset were more mixed, including both mass and mass-
and-volume or scientific explanations. Notably, all classes gave
explanations falling in the other category, although this was most
prominent for the “M” and “V” classes.

A multinomial logistic regression with the “M” class as
the reference class provided limited evidence for effects
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FIGURE 9 | Latent class analysis probabilities of explanation types for the four classes across the two object subsets. Oth, other; M, mass; V, volume; Mat, material;
M&V, mass and volume, scientific.

FIGURE 10 | Proportion of children in each object explanation class per condition (left) and per grade (right).

of condition and grade on class membership [Cox and
Snell R2 = 0.19, χ2(9) = 40.39, p< 0.001; Figure 8].
Relative to the “M” class, the odds of belonging to the
“M, M&V” class was lower for children in the systematic

condition (0.32, 95%CI: 0.12–0.86) than in the non-systematic
condition (b = -1.14, p = 0.023). As grade increased,
the odds (0.37, 95%CI: 0.17–0.81) of belonging to the
“V” class decreased relative to the “M” class (b = −1.00,
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FIGURE 11 | Proportion of children in each explanation class per prediction class for the cubes (left) and the objects (right).

p = 0.012). There was no significant interaction effect between
grade and condition.

Objects
LCAs to detect patterns in children’s explanations of the objects
were run in the same way as those for the cubes (Supplementary
Table S5). Note that although the prediction accuracies (see
Figure 5) did not necessarily reflect the a priori classification
of the objects into easy and difficult subsets, explanations were
asked for an entire subset at a time and could therefore not
be analyzed separately per object. Models with more than five
classes did not identify. The four-class model was selected as
the BIC was lower than for the five-class model and for ease
of interpretation because of the qualitative overlaps with the
selected cube explanation model.

This model was constrained in the same theory-driven
manner as the cube model. In the final model (LR = −903.89;
df = 29; AIC = 1,865.79; BIC = 1,960.10), the other, fact, material,
and volume categories were constrained across easy and difficult
subsets for all classes. This was also the case for the mass and the
mass and volume, scientific categories for three of the classes. No
categories were constrained across classes. The classes of the final
model (Figure 9) resembled those of the cube model: an “M” class
(44% of the children), an “M, M&V” class (13% of the children),
and a “V” class (18% of the children). The most notable difference
was the presence of a class that appealed to facts and materials in
addition to mass across easy and difficult objects, the “facts, M,
material” class (25% of the children).

The multinomial logistic regression with the “M” class as the
reference class revealed only one significant effect of grade on
class membership [Cox and Snell R2 = 0.27, χ2(9) = 59.86, p<
0.001; Figure 10]. As grade increases, the odds (1.92, 95%CI:

1.19–3.08) of belonging to the “fact, M, material” class increases
relative to the “M” class (b = 0.65, p = 0.007).

Comparing Predictions and Explanations
To test whether there was a relation between children’s
predictions of cubes and their subsequent explanations
(Figure 11) beyond grade effects, we performed a stepwise
multinomial logistic regression in which grade and, subsequently,
prediction class membership were added in separate steps.
Adding prediction class membership did significantly improve
the model [χ2(6) = 17.14, p = 0.009]. In this model [Cox
and Snell = 0.23, χ2(9) = 48.51, p< 0.001], the children in
the “MASS and volume” prediction class had a lower odds
of belonging to the “V” explanation class relative to the “M”
explanation class as compared to the “residual” prediction
class. In other words, children who used the guessing solution
strategy to predict the cubes’ buoyancy were more likely than
the “MASS and volume” prediction class to belong to the “V”
explanation class.

The same analysis was done for the object classes. The addition
of the prediction classes improved the model of children’s
explanation classes beyond the effects of grade [χ2(3) = 24.38,
p<0.001]. Here [Cox and Snell = 0.34, χ2(6) = 80.28, p<
0.001] the prediction classes significantly predicted explanation
class membership, with the “M” class as the reference class.
Children in the “mass-based” prediction class had lower odds
(0.23, 95%CI: 0.12–0.70, b = −1.25 p = 0.006) of belonging
to the “fact, M, material” explanation class, higher odds (4.29,
95%CI: 1.17–15.77, b = 1.46, p = 0.028) of belonging to the “M,
M&V” explanation class, and lower odds (0.35, 95%CI: 0.14–0.86,
b = −1.05 p = 0.022) of belonging to the “V” explanation class as
compared to the “object-specific” prediction class.

Frontiers in Psychology | www.frontiersin.org 14 July 2020 | Volume 11 | Article 1665

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01665 July 18, 2020 Time: 19:28 # 15

van Schaik et al. Hands-On Buoyancy Exploration

DISCUSSION

The current study compared the effect of children’s hands-
on exploration of buoyancy using cubes (i.e., systematic
condition) vs. common objects (i.e., non-systematic condition)
on children’s subsequent predictions and explanations of new
cubes’ and common objects’ buoyancies. Children’s responses
were investigated using categorical latent variable models to
account for individual differences.

Predicting and Explaining Cubes
The latent class regression analyses of children’s cube buoyancy
predictions identified three classes corresponding to three
solution strategies. These three strategies replicate those
identified by Franse et al. (under review). While in one class
the children’s predictions were best modeled as guessing,
two two-dimensional solution strategies were identified. The
“mass and volume” solution strategy was characterized by a
fairly accurate decision threshold, as indicated by a switch
between predicting floating vs. sinking near a density of 1. This
threshold was also modeled as being quite certain, as visible
in the steepness of the decision curve (see Figure 3). The
“MASS and volume” solution strategy was characterized as being
less accurate as the threshold for predicting sinking was at a
lower mass than would actually be the case for a given volume.
Additionally, this solution strategy was also characterized by
more uncertainty, seen in the more gradual slope from predicting
floating to predicting sinking. Thus, both solution strategies
made float–sink decisions based on the cubes’ relevant features
(i.e., integrating mass and volume), although they differed
in accuracy (i.e., how to relate the features to a decision; cf,
Kuhn et al., 2008) and uncertainty (i.e., the strictness of the
float–sink threshold).

Importantly, the proportion of children across the three
classes differed between the two conditions. Children in the
systematic condition were more likely to be in the “mass and
volume” class than the “MASS and volume” class, while this was
the other way around for those in the non-systematic condition.
There was no evidence for an interaction between condition and
grade, suggesting that the systematic condition was not more
effective in one grade than another. These findings indicate that
the 5 min of testing cubes in the water basin was effective in
helping children to use a more accurate and certain solution
strategy when faced with novel cubes.

Given that children in higher grades were also more likely
to use the more advanced solution strategy, it is not the case
that the systematic condition’s experience was necessary for using
the “mass and volume” solution strategy. The effectivity of the
systematic condition instead seems to lie in encouraging the
switch to a more advanced integrative solution strategy. Since
the two conditions differed in the proportion of children in
one or the other integrative solution strategy but had similar
proportions of children using the guessing strategy, it could
further be postulated that this switch only occurs once a child
already uses an integrative solution strategy but a less advanced
one (e.g., the “MASS and volume” strategy; see also Siegler
and Chen, 2008). This would need to be tested further by

examining children’s strategy use before and after hands-on
experience and by measuring solution strategy changes over a
longer period of time.

Four classes of explanations were identified with latent class
analyses (LCAs): “M&V,” “M,” “M, M&V,” and “V.” Grade effects
revealed that children in higher grades were less likely to belong
to the “V” class, which was characterized by mainly other and
some mass and some volume category explanations, and more
likely to belong to the “M” class, which only used other and mass
categories. However, as expected given the limited duration and
scope of the exploration phase, the effects of condition did not
strongly carry over to children’s explanations of cubes. Only one
condition effect was found; the “M, M&V” class membership
was lower for systematic condition children than non-systematic
condition children relative to the “M” class, yet the implications
of this difference are unclear since several classes used mass and
mass and volume explanations.

While by third grade all children were using a two-
dimensional prediction solution strategy for the cubes, the
majority of these children were explaining the cubes’ buoyancies
primarily by referring to their masses. This suggests a discrepancy
between predictions and explanations as found across past studies
(Smith et al., 1985; Butts et al., 1993). Indeed the only significant
predictive effect of prediction strategy on explanation strategy,
beyond the effects of grade, indicated a relation between using the
guessing prediction strategy and belonging to the “V” explanation
class, which was characterized by primarily other category
explanations. The absence of more clear relations suggests that it
is difficult for children to verbalize their use of mass and volume
or density (see also Dienes and Perner, 1999).

Predicting and Explaining Common
Objects
The accuracies of children’s predictions of the common objects
were analyzed with LCAs to detect underlying patterns across
predictions. Two classes were identified. In one, dubbed
“mass-based,” the lighter objects had a higher probability of
being accurately predicted to float, while a heavy floater and
a light sinker were less accurately predicted. The second,
“object-specific” class, had higher probabilities of correctly
predicting the heavy floater and light sinker but were around
chance at predicting the lighter objects. The “mass-based” class
membership was slightly higher in the non-systematic than in the
systematic condition.

Although it is not possible to determine which features
children used to make these predictions, the most parsimonious
interpretation would be that children based their explanations
on a simple, one-dimensional strategy. The “mass-based” class
responses could indeed be derived using the one-dimensional
rule that heavy items sink and light items float. The “object-
specific” class is trickier to interpret. These children could have
used facts or object-specific past experiences to be more likely to
correctly predict that a branch floats and a bobby pin sinks. The
guessing behavior on the other items could stem from multiple
sources of information; the ball was lightweight but had holes,
reflecting the common idea that items with holes sink, and the
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tin was made of metal which typically sinks but was filled with air
which typically causes objects to float (Hardy et al., 2006).

The relation between children’s common object predictions
and explanations might help to further understand the prediction
strategies. Four object explanation classes were identified: “M,”
“fact, M, material,” “M, M&V,” and “V.” Whereas the majority
of the children in the “mass-based” prediction class went on
to belong to the “M” explanation class, the children in the
“object-specific” prediction class were more distributed over
the explanation classes. Notably, compared to the “mass-based”
children, more “object-specific” children later belonged to the
“fact, M, material” class or the “V” class which were both
highly likely to also mention things in the other category.
It could thus be that the “object-specific” prediction class is
not so homogenous in how they came to the predictions but
instead used several sources of information. However, due to
the discrepancy between predictions and explanations in the
literature (Rappolt-Schlichtmann et al., 2007; Franse et al., under
review) using the explanations to interpret predictions is limited
in its validity. Nonetheless, the predictive power of prediction
class membership on explanation class membership does suggest
that children’s predictions about common objects were related
to how they went on to explain these objects’ buoyancy. As
this was not the case for the cubes, this could suggest that the
(multiple) features or facts used to discern objects’ buoyancies
are more easily explicable than those used to predict cubes,
perhaps because they are easier to detect or recall. Relatedly, the
higher the grade, the more children belonged to the “fact, M,
material” class, supporting the idea that many children go on
to develop explanations of objects’ buoyancies based on multiple
sources of information.

What is new in this investigation of buoyancy explanations is
the open-ended manner of analysis. Past studies have assigned
children to particular explanation types in a hierarchy from
least to most advanced (Franse et al., under review) coded
the complexity level of children’s explanations (Tenenbaum
et al., 2004; Rappolt-Schlichtmann et al., 2007) or examined
explanation profiles on the basis of answers to multiple choice
buoyancy questions designed to reflect previously identified
concepts (Schneider and Hardy, 2013; Edelsbrunner et al., 2018).
Here coding all of the content of what children said and analyzing
this with LCAs meant that we did not need a priori hierarchies
or expected concepts, allowing us to discover relations in all that
children say (see also van der Maas and Straatemeier, 2008). This
method, for example, revealed that all explanation classes also
mentioned things that fell into the other category, thus indicating
that children do not have purely singular explicit concepts of
buoyancy. Like any other explanation coding approaches, the
findings here are still influenced by how the explanations were
coded to begin with (e.g., what falls under other and what receives
its own category). It is also important to note the explorative
nature of this approach, and future work is needed to corroborate
or extend these findings.

Variation and Inquiry-Based Learning
This study indicates that providing children with the opportunity
to explore the buoyancy of cubes stimulates the subsequent

use of an advanced solution strategy when predicting whether
novel cubes will float or sink. This benefit of using an item
set that varies only in the relevant features is in line with
the suggestions derived from category learning research (e.g.,
Sloutsky, 2010; Goldwater et al., 2018). In the systematic
condition, the exploration cubes in effect presented children
with dense categories; the only apparent features making the
cubes either float or sink were the masses and volumes (hence,
cubes’ densities were the defining feature between floaters and
sinkers), thereby steering children to hone in on these features.
In the non-systematic condition, however, multiple features
might have been able to explain why some of the objects
float and others sink, making it difficult for the children to
identify mass and volume as the relevant features. Although
the present findings require replication in future research, the
successful findings of this very brief exploration session do hold
promise for the use of variation and category denseness to design
learning materials.

To understand how, this research can be placed in the
context of inquiry-based learning. Across content domains,
research indicates that well-guided inquiry-based learning is
superior to explicit instruction and also that the presence
and the quality of guidance is essential (Alfieri et al., 2011;
Lazonder and Harmsen, 2016; Dobber et al., 2017). This is
reiterated across several buoyancy studies, indicating that the
more guidance the better and more prolonged the learning
effects (Hardy et al., 2006; Rappolt-Schlichtmann et al., 2007;
Hsin and Wu, 2011). Such guidance can be provided in
different ways. For example, the present study used prompts
to encourage children to test all of the items and to think
about why they float or sink. Relatedly, the floating and the
sinking sheets served as status overviews encouraging children
to sort items, thus illustrating exploration progress. Perhaps
the least explicit type of guidance is process constraints,
which restrict the breadth of the learning task (Lazonder and
Harmsen, 2016). The simplification of learning materials to
vary only in density (i.e., the cubes) could be viewed as a
process constraint as this restricted children’s exploration to the
relevant features.

Whereas several studies have extensively investigated the
longitudinal learning effects of mixed-method, long-term
buoyancy interventions (Hardy et al., 2006; Schneider and
Hardy, 2013; Leuchter et al., 2014; Edelsbrunner et al., 2018;
Schalk et al., 2019), the aim of the current experimental
study was simply to zoom in on the effect of item variation
during hands-on exploration. Nevertheless, by placing the
current findings in the context of inquiry-based learning,
this study, like those classroom studies, emphasizes the
importance of both considering fundamental learning
processes in science education design and introducing
science early (Leuchter et al., 2014). First, basing the design
of inquiry-based learning guidance on a simple model of
children’s category learning, as was done in this study,
seems to provide an effective means of structuring the
learning context. In future work, these ideas can be further
worked out to provide an informed yet simple blueprint
for designing inquiry-based learning founded on the
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(category) structure of the to-be learned concepts. This is
important as teachers have been shown to not always be fully
equipped with the relevant scientific knowledge or insights
into children’s science learning (Rice, 2005; Leuchter et al.,
2014). Second, the findings indicate that even in the first years
of primary school, children can (implicitly) apply advanced
multidimensional solution strategies when provided with the
right environment, thereby echoing calls for starting science
education early on using structured hands-on materials and
learning environments (Leuchter et al., 2014).

In conclusion, this study investigated the effect of offering
items that vary only in the relevant features (i.e., mass and
volume) on children’s subsequent ability to predict and explain
new items’ floating and sinking. In line with expectations,
children who had had 5 min of hands-on experience with a set
of cubes in the water basin were more accurate in predicting the
buoyancy of new cubes than children who had used common
objects to explore with. Moreover, these children were more
likely to use a more advanced solution strategy that decided
the buoyancy of an item based on the integration of its mass
and volume than the children who had experimented with
common objects. These findings suggest that inquiry-based
learning designs should consider how to optimize the variation
to facilitate learning.
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