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Abstract: Plants encounter several abiotic stresses, among which heat stress is gaining paramount
attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop
productivity through changes in metabolic processes and in growth and development. Ethylene
and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through
modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications.
Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these
defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway,
it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation
to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to
highlight their joint involvement in heat stress tolerance.

Keywords: antioxidants; heat stress; mineral nutrients; post-translational changes; tolerance

1. Introduction
1.1. Heat Stress: Impact and Consequences

In a field, plants are confronted with a variety of abiotic stresses; factors such as
heat, drought, chilling, and salinity are all key constraints that impact crop yields in
modern agriculture [1,2]. Of especial interest is the extreme seasonal heat induced by
global warming, which exerts severe influence on crop growth and production around the
world, aggravating food insecurity and malnutrition. In tropical and subtropical regions,
an increase of 1 ◦C in seasonal temperature is expected to directly cause yield losses of 2.5%
to 16% in staple crops [3]. According to the Intergovernmental Panel on Climate Change
(IPCC), the greatest warming is regarded to occur in the period from the 19th to the 21st
century. In the 21st century specifically, the average temperature of the Earth is anticipated
to rise from 2 to 4.5 ◦C [4]. As the temperature has increased, the production of major
crops has clearly been reduced around the world [5]; further temperature rise is expected
to decrease yield more still. For example, forecasts based on the most conservative climate
change projections suggest a minimum reduction of 4% to 10% in cereal production across
South Asia [6]. Meanwhile, it is predicted that by 2050, rice production might drop by 8%
and wheat production by 32% [7]. If temperatures rise by 3 to 4 ◦C, crop yields in Africa
and Asia may be reduced by 15% to 35%, while those in the Middle East are likely to be
reduced by 25% to 35% [8].

In conjunction with global warming, plant heat stress has become of considerable
interest around the world, and the mechanisms of high-temperature injury and heat toler-
ance have attracted much attention [9–12]. Heat stress or shock is defined as a temporary
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increase in temperature of 10–15 ◦C over ambient conditions [13,14]. Whether temporary or
persistent, high temperatures generate a variety of morpho-anatomical, physiological, and
biochemical changes in plants, affecting their growth and development and consequently
drastically lowering associated economic yield. Heat stress can affect a plant either directly
or indirectly; protein aggregation, protein denaturation, and enhanced membrane fluidity
are all examples of direct injury, whereas indirect injury can include inactivation of en-
zymes in chloroplasts and mitochondria, inhibition of protein synthesis, increased protein
breakdown, and loss of membrane integrity. All of these changes cause cell injury or death
within minutes, resulting in the catastrophic collapse of cellular organization [15–17]. At
the process level, heat stress causes alterations in photosynthesis and respiration, resulting
in a shorter life cycle and lower plant productivity [18]. For photosynthetic machinery in
the chloroplast, the major sites of heat-induced damage have been identified as carbon
metabolism in the stroma and chemical signaling in the thylakoid lamellae [19]. Both
photosynthesis and the Calvin–Benson cycle enzymes, such as ribulose 1,5 bisphosphate
carboxylase/oxygenase (rubisco) and rubisco activase, are extremely sensitive to increased
temperature and become severely inhibited even at low levels of heat stress [20,21]. Mean-
while, the activity of carbon metabolism enzymes and the accumulation of starch and
sucrose are adversely affected by elevated temperature through altered regulation of carbo-
hydrate metabolism genes [22]. Heat-induced disruption to the photosynthetic apparatus
and chlorophyll has also been connected to the production of reactive oxygen species
(ROS) [23]. As an environmental factor, heat in its own right is further known to stimulate
the generation of ROS, including superoxide anion radical (O2

−) and hydrogen peroxide
(H2O2); the resulting imbalance between ROS production and the available antioxidant
defense leads to oxidative stress [24,25]. Heat stress thus causes irreversible damage to
plants by influencing a wide range of cellular components and metabolic functions [26].

1.2. Physiological and Molecular Responses to Heat Stress

Heat stress adversely impacts physiological and biochemical responses and photosyn-
thetic efficiency and reduces productivity [27] through disruption of thylakoid membranes
and reduction in pigment system (PS)II activity [28]. Chloroplasts are sensitive to heat stress,
and heat-stress-induced damage to chloroplasts leads to downregulation of important chloro-
plast components, inhibition of rubisco activity and decrease in photosynthetic efficiency
with redox imbalance and possible cell death [29–31]. In addition, disruption of thylakoid
membranes is a consequence of heat stress that reduces the rate of photosynthesis through
a reduction in PSII activity. Plants exposed to heat stress show alteration in carbohydrate
metabolism and disruption of membrane functions, with increased membrane permeability
leading to loss of cellular electrolytes and decreased thermotolerance [32]. Water potential
and relative water content are substantially decreased upon exposure to heat, reducing photo-
synthetic productivity [33]. The levels of soluble sugars and proteins are also altered during
heat stress to regulate osmotic pressure within the cell [34]. Plants exposed to heat stress show
excess ROS production that causes lipid peroxidation and membrane damage [35]. ROS may
cause programmed cell death, but plants have developed a mechanism to detoxify ROS and
endure tolerance through activation of the antioxidant system.

Heat stress is transcriptionally regulated by heat shock factors (HSFs) and heat shock
proteins (HSPs) that interact to bring thermotolerance. In addition, heat-responsive genes
are also regulated by transcription factors such as multiprotein bridging factor 1 C (MBF1 C),
N acetylcysteine (NAC), WRKY, basic leucine zipper (bZIP), and MYB to induce toler-
ance [36]. Exposure to heat upregulates the NAC transcription factor which further regu-
lates the expression of dehydration-responsive element-binding protein 2A (DREB2A) for
heat tolerance [37].

Noncoding RNAs also play a significant role in response to heat stress. miR156 iso-
forms are induced by heat stress [36]. Similarly, miR398 is induced under heat stress, leading
to the accumulation of ROS through downregulation of SODs and thus inducing HSFs
and HSPs [36]. Various miRNAs, mRNAs, lncRNAs, and circRNAs are associated with
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the plant hormonal signal transduction pathway under heat stress in Cucumis sativus [37].
Ahmed et al. [38] reported that numerous ncRNAs were involved in the regulation of gene
expression in response to stress in Brassica. A study by Yu et al. [39] found the involvement
of long noncoding RNA in activating ethylene synthesis in apple [39] and tomato [40]. H2S
pretreatment was found to regulate alkaline stress tolerance by regulating the expression
of microRNAs through downregulation of mhp-miR408a expression and upregulation of
mhp-miR477a and mhp-miR827 [31]. The crosslink of H2S with transcription factors, signal
transduction, miRNAs, and epigenetic modifications has been studied to better understand
the regulation of genes by H2S in plants [41].

Thus, we can predict that the noncoding RNAs that are important regulators in heat
stress tolerance can be modified by H2S for stress tolerance and can probably modify
ethylene synthesis. Therefore, a possibility exists that ethylene and H2S might interact for
heat tolerance.

1.3. Regulation of Heat Stress by Phytohormones

In addition to the above effects, heat stress alters gene expression and transcript ac-
cumulation at the molecular level, causing stress-related proteins to be synthesized as a
coping mechanism [42]. Phytohormones including ethylene, salicylic acid (SA), abscisic
acid (ABA), brassinosteroids (BR), and jasmonate are responsible for integrating environ-
mental and endogenous signals to control plant defense responses to several abiotic stresses,
including heat stress [43]. In particular, ABA and SA help plants cope with the harmful con-
sequences of heat stress by minimizing oxidative damage and maintaining photosynthesis.
For example, in heat-exposed Arabidopsis thaliana, exogenous treatment with a low dose
of methyl jasmonate has been found to maintain cell viability via controlling electrolyte
leakage [44]. Meanwhile, BR has been shown to improve plant thermotolerance, namely
by increasing the photosynthetic rate and elevating the expression of heat shock proteins
(HSPs), which are implicated in the complex signal transduction network that allows
plants to withstand heat stress. The BR signaling pathway also stimulates the expression
of phytochrome-interacting factors and coordinates plant architectural modifications. In
maize subjected to heat stress, application of ABA (100 µM) stimulates the expression of
sHSP17.2, sHSP17.4, and sHSP26, as well as the activity of antioxidant enzymes, resulting in
decreased cellular ROS levels [45]. Overall, most hormones ultimately improve plant heat
tolerance through modulating ROS homeostasis, namely increasing antioxidant synthesis
and thus the scavenging of ROS [43].

Heat stress also activates pathways for phytohormone biosynthesis, thereby resulting
in greater hormone accumulation. In particular, Poór et al. [46] found that heat stress
activates a number of ethylene biosynthesis and signaling genes; ethylene-mediated sig-
naling in turn regulates the expression of HSPs. In addition to its direct role in heat stress
tolerance, ethylene regulates the metabolism of ROS and reactive nitrogen species (RNS) via
modulating osmoprotectants and the antioxidant defense system. In addition, ethylene has
been shown to play a significant role in tomato pollen thermotolerance [47]. Finally, a study
by Huang et al. [48] determined the ethylene response factor EIN3-ERF95/ERF97-HSFA2
transcriptional cascade to be key in heat stress response and established a connection
between ethylene and its downstream regulatory factors in basal thermotolerance of plants.
Ultimately, exogenous application of ethylene prior to or concurrent with heat stress has
been found to considerably reduce heat-induced damage and improve plant thermotol-
erance, indicating a central role for ethylene in heat stress response. As such, there is
considerable promise in targeting ethylene biosynthesis and signaling pathways with the
aim of improving plant heat tolerance.

1.4. Sulfur-Containing Compounds in Heat Stress Tolerance

As a nutrient, sulfur (S) is a fundamental necessity for optimal plant growth and de-
velopment and is required throughout the life cycle, from vegetative development through
harvesting. It is a key component of plant proteins and contributes to fundamental pro-
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cesses such as electron transport, structure, and regulation [49,50]. In addition, while
phytohormones regulate S metabolism, some require S or its derivatives for their biosyn-
thesis [49]. Sulfur assimilates have also been reported to function as signaling agents for
intracellular communication; in particular, thiol-containing sulfur metabolites including
cysteine (Cys), methionine (Met), and glutathione (GSH) are well-known modulators of
environmental responses, and sulfur compounds are required for the formation of effective
defense mechanisms in response to a variety of stresses [51–53]. Accordingly, S status
has a significant impact on the ability of plants to combat stressful conditions, and sulfur
management is an important issue in crop plant nutrition. Studies aiming to mitigate
heat stress in plants have primarily focused on introducing technologies to enhance crop
performance; S in particular has attracted attention in this area due to its critical role in
stress acclimation. For example, foliar treatment with sulfur has been shown to help tomato
plants cope with heat stress and improve their physiological responses and growth. Sulfur
addition has been found to alleviate oxidative damage induced by heat through an increase
in ascorbate and glutathione content that lowers H2O2, MDA, and electrolyte leakage [54].

Sulfur is an important constituent of vitamins thiamine/vitamin B1 and biotin. The
role of thiamine in heat stress has been suggested by Wolak et al. [55]. Proteome profiling
of Populus euphratica upon heat stress by Ferreira et al. [56] showed the role of pyruvate
dehydrogenase, of which sulfur is a cofactor, in heat stress.

Methionine, the sulfur-containing amino acid, plays an important role in heat stress
response [57]. Chloroplast heat-shock proteins containing methionine are involved in
protecting PSII electron transport during heat stress [58]. Methionine and polyamine
derivatives are reported to play important role in stress tolerance. Polyamines provide heat
tolerance by increasing the expression of stress response genes [59]. Proline, another amino
acid, also regulates high-temperature-induced dehydration and tolerance and is induced
under heat stress [57]. GSH is a sulfur-containing metabolite that combats stress either
by working as a nonenzymatic antioxidant or through interaction with various signaling
molecules that are activated under stress [60]. These signaling molecules are known to
regulate HSP70 for heat tolerance [61], and in response to salinity, they increased ethylene
production by regulating 1-aminocyclopropane-1-carboxylate [62]. Their interaction with
ABA and ethylene regulates stress-related genes in response to abiotic stress [63,64].

Thioredoxin is a sulfur-containing heat-resistant protein, and in A. thaliana, thiore-
doxin reductase type C helped the plant tolerate stress [65]. Glucosinolate, another sulfur-
containing secondary metabolite, increases under heat stress and has a protective role
under heat stress [66].

1.5. Sulfur and Hydrogen Sulfide in Heat Stress Tolerance and Their Interrelationship with Ethylene

S assimilation leads to the synthesis of methionine, which acts as a precursor for ethy-
lene through S-adenosyl methionine (SAM), and hydrogen sulfide (H2S) is also produced
by plant cells as an intermediate of assimilatory sulfate reduction. In plastids, plants reduce
activated sulfate to sulfite, which is further reduced by sulfite reductase to H2S. The incor-
poration of H2S into O-acetylserine (OAS) to form cysteine catalyzed by O-acetylserine
thiol lyase (OASTL) is a reversible reaction where cysteine could be decomposed to H2S
and OAS [67]. Cysteine is a precursor for methionine which eventually leads to ethylene
through SAM. Thus, the tolerance mechanisms induced by sulfur, H2S, and ethylene under
heat stress could probably be interlinked with each other.

Interestingly, the emerging gasotransmitter H2S has also been revealed to possess im-
portant roles in abiotic stress tolerance; moreover, it seems to generally act via modulating
the action of ethylene [68,69] H2S has been demonstrated to weaken the effect of ethylene
on banana ripening [70], and ethylene in conjunction with H2S has recently been found
to potentially alleviate hexavalent chromium toxicity in two pulse crops [71]. Hydrogen
sulfide has also been shown by Kaya et al. [72] to mitigate mineral deficiency, specifically
iron deficiency, in strawberry plants. Interestingly, treatment with the phytohormone ABA
improves tobacco heat tolerance by increasing endogenous H2S, achieved through boosting
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the activity of L-cysteine desulfhydrase. Thus, H2S also factors into ABA-mediated heat tol-
erance [73]. Hancock [74] highlighted that in its central role in the S cycle, plant-produced
H2S may also have intracellular effects through the modification of thiols and antioxidants.
However, the potential mechanisms by which the S-assimilation pathway might regulate
ethylene and H2S biosynthesis under heat stress are as of yet unknown.

More broadly, abiotic stress tolerance is aided by the coordination of phytohormones
and nutritional signals. That is, plant nutrients interact with phytohormones, signaling
molecules, polyamines, and even other nutrients, and these interactions can produce deriva-
tives that counteract abiotic-stress-induced adversity and enhance stress tolerance [75,76].
The phytohormones ethylene and SA are representative of such interactions, as they both
regulate S metabolism and influence abiotic stress tolerance [77]. For example, ethylene
enhances ATP-sulfurylase (ATP-S) activity and Cys and GSH content in salt-stressed plants,
and the same was reported with the application of nitrogen (N) and S [78]. These observa-
tions demonstrate the common regulatory impacts of ethylene, N, and S upon components
of the salinity stress response. In relation to plant heat tolerance, studies have mainly
investigated phytohormones and plant nutrients separately. While their interaction has
been explored in relation to other abiotic stresses, little research has been done on the
interaction of phytohormones and nutrients in the context of heat stress. Importantly, as the
synthesis of ethylene and H2S needs S as a backbone, it is postulated that there is connec-
tivity between ethylene, H2S, and S in heat stress tolerance. The present review focuses on
the functional interplay between ethylene, H2S, and S in heat stress tolerance. The present
review first focuses on the linkage of ethylene and H2S with S. Then, the individual role of
each of these in heat stress tolerance is discussed to work out their mechanism of action
and to find a common interface among them. Lastly, crosstalk between ethylene and H2S
for heat stress tolerance through the involvement of sulfur is discussed.

2. Ethylene and H2S Synthesis: Involvement of the Sulfur Assimilation Pathway

Sulfur is a crucial element required for all living organisms as an active component of
amino acids (i.e., Cys and Met), vitamins, GSH, several group transfer coenzymes, and the
thioredoxin system that fulfills vital functions in plant growth and development [79,80].
Of particular relevance to the present topic is that assimilation of S is directly or indirectly
involved in the biosynthesis of H2S and ethylene (Figure 1). In plants, there are two
routes for absorption of S: either sulfate (SO4

2−) is taken up from the soil by roots, or
sulfur oxides are absorbed from the atmosphere by leaves through the stomata [81,82].
However, the second mode mainly occurs when the soil is S-deficient; soil absorption is
preferred. Once inside the roots, SO4

2− is first reduced and then incorporated into organic
compounds [83]. Meanwhile, in leaf tissues, both assimilation and reduction occur as
the enzymes involved in these processes are restricted to chloroplasts [84]. After entry
of SO4

2− into chloroplasts, the assimilatory pathway is activated to produce adenosine
5-phosphosulfate (APS) through catalysis by ATP-sulfurylase (EC 2.7.7.4); APS is then
in turn reduced to sulfite (SO3

2−) via APS reductase (APR, EC 1.8.99.2) with GSH as the
electron donor. Afterward, SO3

2− is reduced to sulfide (S2−) under catalysis by sulfite
reductase (SiR, EC 1.8.7.1) [78,85]. The sulfide is then used to produce H2S, for which SiR is
considered a major generating enzyme in the chloroplast [86,87]. Subsequently, H2S and
O-acetylserine are catalyzed by O-acetylserine (thiol)-lyase (EC 2.5.1.47) to produce Cys,
which is the first stable compound of S assimilation and the synthetic precursor for both
GSH and Met [88]. It can also be degraded to generate H2S. Recent studies have revealed
that in addition to SiR, a variety of enzymes in the mitochondria and cytosol contribute
to the biosynthesis of H2S, such as cysteine synthase (CS), β-cyanoalanine synthase (CAS,
EC 4.4.1.9), L-cysteine desulfhydrase (LCD, EC 4.4.1.28), and D-cysteine desulfhydrase
(DCD, EC 4.4.1.15) [48,87]. In mitochondria, H2S can be produced by CAS in the course
of cyanide detoxification during ethylene synthesis, which requires the release of S2−

through catabolism of Cys [89]. Importantly, accumulation of S2− is lethal for plants, and
so detoxification mechanisms regulate its formation during the assimilation of S and/or
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metabolism of cyanide. An imperative detoxification mechanism involves fixation of S2−

into Cys under severely elevated levels of S2− [90]. In addition, H2S generation from Cys
in the cytosol mainly occurs through the activity of LCD and DCD, which is accompanied
by the formation of pyruvate and ammonia [91,92] (Figure 1).
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Figure 1. Schematic representation of the synthesis of H2S and ethylene and its association with the
S-assimilation pathway. In plants, absorption of S occurs through uptake of SO4

2− from the soil by
roots. The assimilatory pathway is activated to produce APS from SO4

2− under catalysis by ATP-S,
which is in turn reduced to SO3

2− via APR. Afterward, SO3
2− is reduced to S2−, which is used to

produce H2S via catalysis by chloroplast-localized sulfite reductase. The subsequent catalyzation
of S2− by OASTL yields Cys, which is the first stable compound in the S-assimilation pathway and
the precursor for GSH and Met. Met is converted to SAM by SAM synthetase, from which ACC is
synthesized by ACS, degradation of which by the ACO enzyme yields ethylene. Ethylene-induced
H2S in turn regulates ethylene biosynthesis via the persulfidation of ACO. H2S can also be generated
through degradation of Cys or through biosynthesis in mitochondria and cytosol by the enzymes
CS, CAS, LCD, and DCD. Activity of LCD and DCD in the cytosol is accompanied by formation of
pyruvate and NH3. ACC, 1-aminocyclopropane-1-carboxylic acid; ACO, ACC oxidase; ACS, ACC
synthase; APR, APS reductase; APS, adenosine 5-phosphosulfate; ATP-S, ATP-sulfurylase; CAS,
β-cyanoalanine synthase; Cys, cysteine; CS, cysteine synthase; DCD, D-cysteine desulfhydrase; GSH,
glutathione reductase; LCD, L-cysteine desulfhydrase; NH3, ammonia; Met, methionine; S, sulfur;
SAM, S-adenosyl methionine; SO4

2−, sulfate; SO3
2−, sulfite; S2−, sulfide; SiR, sulfide reductase;

OASTL, O-acetylserine (thiol)-lyase. Blue arrows indicate upregulation and downregulation.

The rate-limiting enzyme in S assimilation is APR, which controls the flow of inorganic S
into Cys and thus likely controls endogenous H2S production [93], which occurs via catalysis
by enzymes downstream of APR [94,95]. Notably, H2S has the capability to interrelate with
thiol (-SH) groups that are present in peptides such as GSH, and also with proteins that
modify them, namely those that convert Cys thiols (-SH) into persulfide thiols (-SSH), a
reaction known as persulfidation [96,97]. Such oxidative post-translational modification of
Cys residues represents a signaling mechanism and is involved in biosynthetic pathways that
require the transfer of S, for example in producing S-containing bases in RNA, Fe-S clusters,
thiamine, biotin, molybdopterin, and lipoic acid [86]. In addition, these modifications of Cys
residues can act as a defensive mechanism in an oxidative stress environment.
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Apart from its free state, H2S reacts with different biochemical molecules and estab-
lishes different bioavailable pools including stable, acid-labile, and bound sulfide forms [98].
Free sulfide exists as S2−, HS−, or H2S. Acid-labile sulfide is fundamental for iron–sulfur
(Fe-S) complexes and persulfides, which assume a basic part in redox responses in cyto-
plasm and mitochondria. The critical pH below which H2S is released out of acid-labile
sulfur-like Fe-S is 5.4 [99]. On the other hand, bound sulfane sulfur exists as a compound
containing sulfur-bonded sulfur [100]. This incorporates compounds such as polysul-
fides, thiosulfate, polythionates, thiosulfonates bisorganyl-polysulfanes or monoarylthio-
sulfonates, and elemental sulfur. It may be said that H2S interconverts between gaseous and
other complex storage compounds involving pH. Further, it has been reported that oxygen
concentration and pH affect the stability of sulfide and derivatization within biological
samples [101].

The other S-containing amino acid, Met, is synthesized in three steps from Cys and
then is either incorporated into proteins or converted to S-adenosyl methionine (S-AdoMet
(SAM)) by SAM synthetase (SAMS, EC 2.5.1.6) [80]. S-adenosyl methionine is the pre-
cursor of ethylene, biotin, polyamines, nicotinamide, and many other secondary metabo-
lites [83]. Ethylene synthesis depends on SAM and likewise occurs in three steps; first,
S-adenosyl methionine is formed from Met by the action of SAM synthetase, after which
1-aminocyclopropane-1-carboxylic acid (ACC) is synthesized by ACC synthase (ACS, EC
4.4.1.14). Subsequently, ethylene is produced from the degradation of ACC by ACC oxidase
(ACO, EC 1.14.17.4) [80,102]. The latter two enzymes, ACS and ACO, are encoded by multi-
gene families [102]. Notably, derivation of ethylene from Met is not the only link between S
assimilation and ethylene biosynthesis; the transcription factor ethylene insensitive-like
3 (EIL3) regulates many S-deficiency-responsive genes [103,104], primarily through the key
regulator sulfate limitation 1 (SLIM1). Thus, there is a significant link between S status and
ethylene signaling.

3. The Crucial Roles of Ethylene, H2S, and S in Heat Stress Tolerance
3.1. Potential Role of Ethylene in Heat Stress Tolerance

Heat stress affects plants, bringing about changes at the molecular, biochemical, mor-
phological, and physiological levels, including increased ethylene biosynthesis. For exam-
ple, soybean plants exposed to high temperature (38 ◦C for 14 days) showed enhanced
ethylene production in leaves and pods [105]. Similarly, the heat-susceptible wheat cultivar
‘Karl 92′ had higher ethylene production in flag leaves, embryos, and kernels than did
the heat-tolerant cultivar ‘Halberd’ [106]. In rice, application of the ethylene precursor
ACC enhanced seedling tolerance to heat stress and reduced levels of cell membrane oxi-
dation and ion leakage [107]. In conjunction with these effects, transcript expression was
upregulated for the ethylene biosynthesis genes ACC oxidase 1 (ACO1) and ACC oxidase 3
(ACO3), which encode enzymes that catalyze ACC into ethylene; also elevated were the
associated signal transduction genes ethylene-insensitive (EIN) 2, EIN-like1, and EIN-like2
(OsEIN2, OsEIL1, and OsEIL2). Work by Larkindale and Knight [108] further suggests
that ethylene contributes to protecting Arabidopsis from heat-induced oxidative damage.
Similarly, ethylene has been shown to play a favorable role in the activation of antioxidant
enzyme activities and the reduction in ROS levels in plants under severe temperature stress.
For instance, 10 µM ACC in Oryza sativa seedlings exposed to 45 ◦C for four days activated
the antioxidant enzymes catalase, ascorbate peroxidase, and total peroxidase, which were
positively linked with increased tolerance [107]. Likewise, exogenous application of ethep-
hon (an ethylene-releasing compound) to tomato plants prior to heat stress (50 ◦C for 2 h)
upregulated protective mechanisms against oxidative stress, specifically those involved
in cellular redox balance (including increased abundance of protein disulfide isomerase,
glutathione-disulfide reductase, and glutaredoxin) [109]. Pretreating creeping bent-grass
plants with 100 µmol/L ACC similarly imparted thermotolerance by maintaining higher
ascorbate peroxidase, catalase, and peroxidase activity [110]. Thus, ethylene aids in ROS
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detoxification by inducing the antioxidant defense system during heat stress, allowing for
heat stress adaptation.

Participation of ethylene in heat stress response and thermotolerance is further sup-
ported by results showing that treatment with an ethylene inhibitor negatively affects
these changes, whereas using ethylene precursors promotes them. As an example, tomato
plants of the ethylene-insensitive mutant never ripe (Nr), which are defective in an ethy-
lene response sensor (ERS)-like ethylene receptor, exhibited higher heat-stress sensitivity.
Likewise, a heat-susceptible wheat cultivar has been found to feature reduced ethylene
production with increased kernel abortion and reduced kernel weight [106]. Meanwhile,
pretreating wild-type tomato plants with an ethylene releaser in advance of heat stress
improves pollen quality and increases the number of germinating pollen grains; conversely,
pretreatment with an ethylene biosynthesis inhibitor reduces the number of germinating
grains [47]. Similarly, priming lettuce seeds with 10 µM ACC added into KH2PO4 solution
improves seed germination and performance under high temperature [111], and the ap-
plication of exogenous ethylene precursors in artichoke promotes seed thermodormancy
and reduces early root inhibition under heat stress [112]. More generally, pretreatment of a
cool-season grass with ACC prior to heat exposure was found to boost thermotolerance,
as evidenced by grass quality and leaf photosynthetic rates [110]. In addition, proteomics
analysis revealed that pretreatment of lettuce with ethephon prior to heat stress causes
the heat-stress pollen proteome to more closely resemble that associated with nonstressful
conditions, specifically exhibiting a greater abundance of proteins involved in protein
synthesis, degradation, the tricarboxylic acid cycle, and RNA regulation [109]. However,
while a positive role of ethylene in heat tolerance is widely accepted, contradictory findings
have been reported. For example, the heat-stress-induced elevation of ethylene production
triggers premature leaf senescence in soybean, whereas an ethylene production inhibitor
(1-methylcycloprpene (1-MCP)) reduces or postpones premature leaf senescence [105].
Ethylene has also been linked to a yield penalty in heat-stressed wheat crops, in which
context the application of compounds that serve as ethylene biosynthesis antagonists results
in a considerable increase in grain output [106,113,114].

Moreover, under heat stress, protection of photosynthesis was associated with the
physiological and biochemical mechanisms of SA, such as increased synthesis of proline
and N assimilation and suppression of stress ethylene production [24]. It has also been
reported that ethylene production was increased under heat stress and caused a decrease in
grain yield [115]. Indeed, metabolite profiling during heat stress showed an accumulation
of organic acids, sugar alcohols, and sucrose after treatment with AVG, an ethylene biosyn-
thesis inhibitor, while glucose and fructose levels were greatly reduced [116], suggesting
that differential accumulation of metabolites involved in osmoregulation and antioxidant
metabolism induces tolerance to heat stress in the absence of ethylene [116]. Some selected
studies on the role of ethylene in heat stress tolerance are shown in Table 1.

Table 1. Selected studies on the crucial role of ethylene in heat stress tolerance. ACC, 1-
aminocyclopropane carboxylic acid; ETH, ethephon.

S. No. Plant Ethylene
Source/Concentration Temperature Range Response Reference

1. Agrostis stolonifera 100 µmol L−1 ACC 35 ◦C Increased activity of ascorbate peroxidase, superoxide
dismutase, and catalase and regulated thermotolerance [110]

2. Cynara cardunculus 30 µmol L−1 ETH 30 ◦C Improved seed germination, root growth, and seed vigor [112]
3. Lactuca sativa 10 µM ACC 35 ◦C Improved seed germination performance [111]

4. Oryza sativa 10 µM ACC 45 ◦C Decreased oxidative stress, upregulated antioxidant
defense system, and reduced ion leakage [107]

5. Solanum lycopersicum 1 µL L−1 ETH 50 ◦C Promoted expression of ethylene-induced responsive
genes and improved pollen quality [47]

6. Solanum lycopersicum 1 µL L−1 ETH 50 ◦C Alleviated oxidative stress and maintained
redox homeostasis [109]

7. Oryza sativa 1.6 mM ETH 40 ◦C
Stimulated antioxidant defense system, improved
carbohydrate metabolism, and increased photosynthetic
and growth attributes

[20]
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A key element of the ethylene signaling and response pathway is ethylene response
factors (ERFs), which belong to the well-known APETALA2/ethylene-responsive element-
binding protein (AP2/EREBP) family [117]. Plants exposed to heat stress show enhanced
expression of ERFs, and ERF1-overexpressing Arabidopsis plants exhibit greater tolerance
to heat shock treatment than do control plants [118]. Huang et al. [119] discovered that
ERFs regulate several heat-responsive genes in a heat-inducible way. A plant’s ability to
respond to heat stress is mediated by heat shock transcription factors (HSFs), which quickly
become activated under heat stress and connect to the promoter elements of genes encoding
HSPs to boost their transcription [120]. HSPs then act as molecular chaperones, preventing
cellular proteins from aggregating and denaturing while also assisting in the refolding of
heat-damaged proteins [121]. In an ERF1-overexpression Arabidopsis line, heat shock treatment
increased transcript levels of HsfA3 and HSP70; mechanistically, ERF1 bound to the GCC
box elements of HsfA3 and HSP70 promoters and upregulated their expression to improve
thermotolerance [118]. A recent study conducted by Wu and Yang [107] further revealed that
ethylene signaling is involved in the complex regulation of HSF genes during heat stress; in
particular, combined heat and ethylene precursor treatment in rice seedlings resulted in higher
expression of the HsfA1a and A2a, c, d, e, and f genes than did heat stress alone.

3.2. Role of H2S in Heat Stress Tolerance

Long thought to be a phytotoxin, hydrogen sulfide is now recognized as a cell-signaling
molecule involved in higher plant growth, development, and stress tolerance. It is actively
associated with the plant defense system under severe conditions. In vitro, Li et al. [122]
found that pretreatment of suspension-cultured tobacco cells with the H2S donor sodium
hydrosulfide (NaHS) could improve heat tolerance and that such acquisition of tolerance
requires entry of extracellular Ca2+ across the plasma membrane, as well as mediation by
intracellular CaM. Likewise, pretreatment of wheat seedlings with NaHS has a positive
dose-dependent effect on heat tolerance that is specifically related to H2S [123]. Contrarily,
Zhang et al. [124] showed contradictory findings on the role of exogenous H2S in heat
stress tolerance. A high concentration of H2S inhibited primary root growth via the ROS-
MPK6-NO signaling pathway. Exogenous H2S repressed the distribution of auxin and
reduced the meristematic cell division potential in root tips, and NO was involved in this
process. It has been reported that the low concentrations of H2S improved the tolerance
of plants to abiotic and biotic stress, but high concentrations induced toxicity in plants’
growth [125]. However, Li et al. [126] found that pretreatment of maize seedlings with
NaHS increased seed germination and seedling survival under heat stress and reduced
root electrolyte leakage, tissue vitality, and the build-up of malondialdehyde (MDA) in
coleoptiles. Such pretreatment also increased the activity of ∆1-pyrroline-5-carboxylate
synthetase (P5CS) and decreased that of proline dehydrogenase (ProDH), resulting in
a build-up of endogenous proline. Christou et al. [127] likewise found that pretreating
strawberry (Fragaria × ananassa ‘Camarosa’) roots with NaHS effectively alleviated heat-
associated decreases in leaf chlorophyll fluorescence, stomatal conductance, and relative
leaf water content, as well as increases in ion leakage and MDA accumulation. Additionally,
endogenous H2S improved mechanical stability and physiological functions by increasing
the uptake of key nutrient elements, i.e., calcium and potassium, in strawberry plants [128].

Ultimately, the beneficial effect of H2S is attributed to its ability to activate the an-
tioxidant system, thus reducing the oxidative damage associated with stress conditions.
During high temperature stress, the activities of superoxide dismutase (SOD), catalase
(CAT), and ascorbate peroxidase (APX) in NaHS-pretreated seedlings are increased com-
pared to those of stressed non-pretreated plants, maintaining ROS homeostasis [123]. Min
et al. [129] likewise suggested that exogenous NaHS treatment in wheat seedlings allevi-
ates oxidative damage and increases heat tolerance by modulating antioxidant enzyme
activity and gene expression under heat stress. Furthermore, at eight hours after heat
stress exposure, strawberry plants whose roots were pretreated with NaHS were able to
conserve ascorbate–glutathione (AsA-GSH) equilibrium, demonstrated by lower AsA and
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GSH pool redox disturbances and increased transcription of AsA and GSH biosynthesis
enzymes; pretreatment also enhanced gene expression of antioxidant enzymes (cAPX, CAT,
MnSOD, GR), heat shock proteins (HSP70, HSP80, HSP90), and aquaporins (PIP) [130].
These findings imply that H2S pretreatment activates a coordinated network of pathways
related to heat shock defense, including antioxidant defense, at the transcriptional level,
protecting plants from heat-stress-induced damage on a systemic level [131]. Interestingly,
SA-induced heat tolerance in maize was found to be promoted by NaHS and blocked by
H2S biosynthetic inhibitors or scavengers [132]. Therefore, H2S functions downstream of
SA. Taken together, these findings suggest that heat tolerance in plants can be improved by
NaHS pretreatment and that acquisition of NaHS-mediated heat tolerance may necessitate
synergistic effects of the antioxidant system, the calcium messenger system, and heat shock
proteins. Table 2 shows some selected studies on the role of H2S in heat stress tolerance.

Table 2. Selected studies on the crucial role of H2S in heat stress tolerance. NAHS, sodium hydrogen sulfide.

S. No. Plant H2S Source Temperature Range Response References

1. Fragaria 100 µM NAHS 42 ◦C Increased activity of antioxidant enzymes and
increased expression of antioxidant enzymes [131]

2. Nicotiana tabacum 50 µM NAHS 42 ◦C Increased vitality of cells and alleviated
electrolyte leakage [122]

3. Nicotiana tabacum 50 µM NAHS 43 ◦C
Increased S-containing compounds such as
cysteine and glutathione as well as
antioxidant enzymes

[132]

4. Zea mays 1.2 mmol NAHS 47 ◦C Decreased oxidative stress and upregulated
antioxidant defense system [133]

5. Zea mays 1.5 mmol NAHS 38 ◦C Increased proline biosynthesis [134]
6. Zea mays 0.5 mmol NAHS 47 ◦C Increased betaine accumulation [135]
7. Zea mays 500 µM NAHS 48 ◦C Increased endogenous H2S accumulation [132]

3.3. Potential Role of Sulfur/S Compounds in Heat Stress Tolerance

Photosynthesis is more heat-sensitive than dark respiration and ceases before respi-
ration is impaired on account of the damage induced by high temperatures [136]. High
temperatures also induce a lack of transport that causes water shortage in plant tissues,
resulting in mineral deficiency [137]. Mineral nutrition is key to regulating plant growth,
metabolic functioning, and stress mitigation, and so it is of particular interest when it comes
to developing new technologies and approaches for increasing crop performance under
heat stress. Among all mineral nutrients, S is considered particularly key in the context
of heat exposure [49]. Plants use S as a signaling agent to facilitate communication within
the cellular environment [52], and they require thiol-containing biomolecules to establish
defense mechanisms against various abiotic stressors [138]. For example, amino acids
and metabolites containing S act to increase thermotolerance through interaction with a
variety of biological substances, including plant growth regulators, enzymes, polyamines,
and nutrients, and furthermore produce compounds that are essential in mechanisms for
mitigating heat stress [49]. Sulfur and its derivatives are also essential for the activation
of ROS-scavenging enzymes, which improve antioxidant defense in the face of abiotic
stress [139]. In addition, sulfur is linked to secondary metabolism, abiotic and biotic stress
regeneration, and photosynthetic oxygen generation. Mobin et al. [140] confirmed the
involvement of sulfur in heat stress mitigation through significantly increasing photo-
synthetic and growth parameters, increasing antioxidant enzyme activities, and reducing
oxidative stress biomarkers such as MDA and electrolyte leakage. The sulfur-containing
defense compounds crucial for plant survival during biotic and abiotic stress response
include elemental S, H2S, GSH, phytochelatins, S-rich proteins, and secondary metabolites,
and the availability, demand, uptake, and assimilation of S are all critical factors in the
formation of those compounds [50]. All told, many previous studies have emphasized the
importance of S in plant stress defense.
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In addition to the above, Martins et al. [141] found that iron–sulfur glutaredoxin (GRXS17)
is redox-modified and consequently activates holdase to protect plants from heat stress. It also
alleviates the misfolding and aggregation of proteins induced by heat stress. Consequently, we
believe that the Fe-S cluster enzyme GRXS17 is an important guardian that protects proteins
from moderate heat stress, most likely via a redox-dependent chaperone function. Some
selected studies on the role of S in heat stress tolerance are shown in Table 3.

Table 3. Selected studies on the crucial role of sulfur in heat stress tolerance.

S. No. Plant Sulfur Concentration Temperature
Range Response Reference

1. Brassica napus 8.7 µM 33 ◦C Improved grain quality and enhanced
nutritional compounds [142]

2. Brassica napus 500 ppm 28 ◦C Improved growth, yield, and
physiological characteristics [143]

3. Brassica napus 500 ppm 28 ◦C Improved physiological and
yield characteristics [144]

4. Cymopsis tetragonoloba 100 mg S kg−1 soil 45 ◦C Enhanced carbohydrate metabolism and
mitigated oxidative damage [140]

5. Solanum lycopersicum 2–8 ppm 45 ◦C Improved growth, photosynthesis, and
biochemical attributes [145]

6. Triticum aestivum 130 kg ha−1 S-coated urea 33 ◦C Improved growth rate, yield, physiological
parameters, and N content [146]

4. Post-Translational Modification of Ethylene- and H2S-Associated Proteins under
Heat Stress

Post-translational modification (PTM) is a crucial step in determining the final func-
tional fates of proteins. In post-translational modification, amino acid residues undergo co-
valent modifications such as glycosylation, phosphorylation, methylation, ADP-ribosylation,
oxidation, and glycation; it can also involve proteolytic cleavage of the peptide backbone,
nonenzymatic modifications such as deamidation and racemization, and spontaneous
changes in protein conformation [147]. These modifications ensure the proper assembly
and folding of proteins, which are then secreted or targeted to various compartments
of the secretory system [148]. Post-translational modifications have also been found to
perform significant roles in stress-exposed plants, for example helping to reduce crop dam-
age [149]. Abiotic stresses in general exert significant impacts on plant proteomes, causing
alterations in relative protein quantity, localization within the cell, post-transcriptional and
-translational modifications, stability, interactions, and functions [150].

Of the various post-translational modifications in plants, SUMOylation has been
revealed as a key player in responses to environmental stresses [149]. Studies conducted
by Kurepa et al. [151] and Saracco et al. [152] using anti-SUMO antibodies discovered the
crucial role of SUMOylation in defending against abiotic stresses such as heat, alcohol,
ROS, and pathogenic toxicity. A positive role of SUMOylation in abiotic stress is also
supported by various studies conducted on rice [153,154], tomato [155], and tobacco [156].
Enhanced SUMOylation of proteins under stress conditions such as higher temperature,
drought, salinity, and increased ROS level further suggests a direct connection of this
modification with tolerance response [151]. Mechanistically, a study in Arabidopsis indicated
that protein modification mediated by SUMO1 and SUMO2 in the context of heat stress is
directed by SIZ1 [157]. The direct relationship between SIZ1 and HSPs was explored by
Zhang et al. [158] in heat-exposed tomato and revealed overexpression of SIZ1 followed
by increased SUMO conjugation in such plants. In addition, an investigation of chromatin
remodeling determined that protein SUMOylation is increased at promoters and enhancer
sites during heat stress [159].

Furthermore, noncoding RNA is involved in the post-translational modification of
ethylene and H2S. Noncoding RNA is the class of RNA regulating gene expression; how-
ever, these RNAs do not code for any functional proteins. microRNAs (miRNAs), small
interfering RNAs (siRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circR-
NAs) are important noncoding RNAs involved in translational and post-translational gene
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modification [160,161]. Recent reports show a strong regulatory mechanism of such RNAs
in overcoming abiotic stress responses in plants. In Arabidopsis, miR398 was rapidly in-
duced in response to heat stress, followed by the downregulation of its target genes (CSD1,
CSD2, and CCS). These are highly conserved genes involved in ROS scavenging [162].
Presences of the miR398-CSD/CCS pathway were also reported in plants like Brassica rapa
and Populus tomentosa [163,164]. The association of miRNAs with phytohormones was also
studied in several plants under heat stress. miR390, miR393, miR160, and many other miR-
NAs are involved in the auxin signaling pathway under heat stress. AUXIN RESPONSE
FACTOR17 (ARF17) and ARF13 genes are the target sites for miR160. In the case of wheat,
miR160 was downregulated while its other target HSP70 was upregulated when exposed
to heat [165]. On the other hand, miR159 negatively targets the GAMYB genes of GA [166].
Plant mutants overexpressing TamiR159 are heat-sensitive since overexpression of miR159
leads to GAMYB downregulation during heat stress [167].

Small interfering RNAs (21–24 nucleotides long) catalyze dsRNA processing. In the
case of wheat, the levels of siRNAs were downregulated by heat stress and upregulated
by cold stress [168]. In Arabidopsis, restriction of the ONSEN gene is regulated by siRNA
under heat stress [169]. Negative regulation of HEAT-INDUCED TAS1 TARGET1 (HTT1)
and HTT2 was seen when miR173-cleaved ta-siRNA (TAS1) was overexpressed, leading to
poor thermotolerance [161,170]. lncRNAs are 200 nt in length; they are classified as antisense
lncRNAs or intronic lncRNAs based on their location [171]. Fifteen heat-responsive lncRNAs
and 34 lncRNAs were identified in Arabidopsis and B. rapa, respectively [172]. Moreover,
SUCROSE SYNTHASE 4, which is a heat-responsive gene, is the target site for lnc-173 under
heat stress. Noncoding RNAs are the potent regulators of heat stress responses. Although
genome-scale approaches have been used to conduct extensive research, we need more insight
into this regulatory mechanism controlling heat stress responses and tolerance.

4.1. Ethylene and Related Post-Translational Modifications

Ethylene stands out as a potent abiotic stress regulator, operating over a wide range of
concentrations and inducing multiple changes in plants to mitigate the damage caused by
stress [51]. Heat stress has been shown to affect ethylene production mainly in reproductive
tissues, such as floral, pedicel, and fruit tissues, and to optimize the dynamics of resource
allocation [173]. Exogenous application of ethylene triggers activation of various defense
proteins, which are important for maintaining homeostasis in plant cells and promoting
thermotolerance [174], and also stimulates various signaling pathways involved in defense
against heat stress [107].

Heat stress proteins also fill essential roles in combating high temperature stress, acting
to maintain proper cell functioning, growth, and development [9]. They are associated with
other defense responses such as protein refolding [175], prevention of protein denaturation
and aggregation, membrane stabilization, and induction of antioxidant enzymes, which
serve to further preserve cell homeostasis [176]. Studies to date support a direct link be-
tween ethylene and rapid synthesis of HSPs at both transcriptional and protein levels [177].
Early evidence also suggests that ethylene induces the accumulation of HSP70 [178] and
HSP90 [179], two chaperones that regulate folding and whose cochaperones are associated
with signaling, protein targeting, and protein denaturation [180]. Moreover, ACC-like
oxidase, which is an important ethylene biosynthesis gene, is the target site for miR5175.
According to the studies, ACC-like oxidase mRNA is downregulated in 24 h heat-stressed
plants [181,182]. An omics-based approach has shown post-transcriptional regulation of
fruit ripening (via miR164-NAC). NAC transcription factors are crucial for fleshy fruit ripen-
ing [183]. miR164 acts as an upstream regulator of NAC transcription factors, and the high
abundance of miR164 might abolish the effects of NAC transcription factors on fruit ripen-
ing. Gene expression analysis and luciferase reporter assays indicated that Ade-miR164
and one of its precursor miRNAs (Ade-MIR164b) were repressed by ethylene treatment and
negatively correlated with AdNAC6/7 expression [184]. Thus, considerable evidence has
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demonstrated that ethylene mediates transcriptional-level regulation; however, research on
its contribution to post-translational regulation under heat stress is lacking.

4.2. H2S and Related Post-Translational Modifications

H2S is a lipophilic gaseous molecule that has been revealed as a potent gasotransmitter
involved in signal transduction [185]. At low concentration, it can enhance the heat toler-
ance response in wheat seedlings and positively regulate their growth and development;
it was also found to increase total sugar content and CAT, SOD, and APX activity while
reducing MDA and ROS [123]. Similarly, exogenous application of H2S to maize in the con-
text of heat stress decreased oxidative damage, reduced electrolyte leakage, and improved
thermotolerance by modulating the antioxidant system (APX, CAT, SOD, glutathione perox-
idase (GPX), glutathione reductase (GR), monodehydroxy ascorbate reductase (MDHAR),
ascorbic acid, glutathione, and flavonoids); upregulating gene expression; and increasing
soluble sugar, trehalose, and osmolyte (proline, glycine betaine) contents [186].

Post-translational modification of proteins by H2S involves the oxidation of cysteine
residues to form persulfides [187]. For example, in Arabidopsis, persulfidation of Cys160
in the cytosolic GapC1 and GapC2 isoforms of five glyceraldehyde-3-phosphate dehy-
drogenases can affect either enzyme activity or cytosolic/nuclear partitioning [188,189].
Studies of stress physiology support a strong conclusion that various PTMs such as S-
nitrosylation (SNO), S-glutathionylation (SSG), and S-sulfenylation (SOH) may be applied
to Cys thiols to improve plant defense responses. These oxidized forms can be reduced by
intracellular reducing agents such as GSH, thioredoxin (Trx), and glutaredoxin (Grx) [190].
Under prolonged stress, irreversible modification of thiols occurs, such as with sulfinic
(RSO2H) and sulfonic acids (RSO3H). Persulfidated proteins also have a protective function
against the accumulation of ROS/RNS, reacting with the latter to form an adduct (RSSO3H)
that may be restored by thioredoxin to free thiol [191,192]. Antioxidant enzymes are also
subject to PTMs under stress conditions; for example, APX1 is inactivated by oxidation
of Cys32, while glutathionylation protects it from irreversible oxidation [193]. The same
Cys32 position can also be S-nitrosylated by NO and persulfidated by hydrogen sulfide;
these modifications increase the enzyme’s activity [188,194]. PTMs can also have nega-
tive feedback effects; in tomato plants under osmotic stress, ethylene regulates stomatal
closure and triggers H2S production in guard cells, which in turn persulfidates Cys60 of
1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), inhibiting its enzymatic activity
and retarding ethylene biosynthesis [195].

However, the direct interaction between miRNAs and H2S is documented in recent
therapeutic research. miRNAs and H2S influence the biosynthesis and expression of each
other. As per the evidence, H2S released by NaHS and Na2S can upregulate miR-133a levels
in cultured cardiomyocytes in vitro and exhibits cardioprotective effects in cardiomyocyte
hypertrophy [196,197]. Moreover, miR-21 targets SP1 to decrease CSE transcription and
H2S production [198].

5. Crosstalk between Ethylene and H2S for Heat Stress Tolerance through the
Involvement of Sulfur

Sulfate availability enhances phytohormone-mediated action [79] and is ultimately
used to produce Cys, which not only acts as the storage and transport form of reduced S
but is required for GSH synthesis and helps in reducing oxidative stress by detoxifying
ROS, thereby maintaining the redox state and defense processes required for thermo-
tolerance [199,200]. As the immediate substrate for Cys synthesis, sulfide can be used
to synthesize proteins and other organic compounds [201–203] that promote heat toler-
ance [86]; conversely, sulfide can be produced through the degradation of cysteine by
desulfhydrases (DESs) [204–206]. Sulfide is also an important source of reactive sulfur
species (RSS), SAM, GSH, and phytochelatins, and it has been reported to interact with
ethylene [69]. That the interaction between ethylene and S promotes abiotic stress tolerance
has been established by multiple studies [13,207–210]. In addition, H2S and ethylene can
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both be regulated by S and in turn can regulate S assimilation to influence stress tolerance.
When plants are exposed to excess sulfur in the form of SO2, sulfate, or Cys, H2S is emitted
via foliage into the atmosphere [201,211]. Thus, a regulatory interaction exists between the
biosynthetic pathways of ethylene and H2S that induces signaling for tolerance of stress
conditions via multiple mechanisms (Figure 2).
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thesis for stress tolerance through the S-assimilation pathway. Different arrow types shown above
indicate different possible mechanisms. ACC, 1-aminocyclopropane-1-carboxylic acid; ACO, ACC
oxidase; ACS, ACC synthase; APR, APS reductase; APS, adenosine 5-phosphosulfate; ATPS, ATP-
sulfurylase; Cys, cysteine; DCD, D-cysteine desulfhydrase; LCD, L-cysteine desulfhydrase; ET,
ethylene; H2S, hydrogen sulfide; NH3, ammonia; S, sulfur; SAM, S-adenosyl methionine; SO4
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2−, sulfite; S2−, sulfide; SiR, sulfide reductase; OASTL, O-acetylserine (thiol)-lyase.

As described above, cysteine formed during S assimilation is involved in the synthesis
of Met and proteins, and it also acts as the S2− donor for H2S synthesis. In addition,
the ethylene generation and S metabolism pathways are interlinked; treatment with an
exogenous ethylene precursor has been shown to increase the activity of APS reductase,
which is involved in S assimilation [212]. Similarly, ethylene was found to increase ATP-S
activity and S uptake in Brassica [80] and to induce H2S generation through increased
activity of L-/D-cysteine desulfhydrase in Arabidopsis leaves [68]. Thus, both ethylene and
H2S could be linked with S in inducing heat stress tolerance. Mechanistically, it could be
assumed that heat stress causes oxidative stress, which increases S assimilation and leads
to enhanced H2S and ethylene synthesis, which regulate antioxidants to scavenge ROS
and induce tolerance. A regulatory role has been reported for H2S in ethylene-mediated
stress responses, highlighting the crosstalk between these three pathways; for example,



Biomolecules 2022, 12, 678 15 of 24

treatment of peach roots with exogenous H2S has been shown to increase endogenous
H2S content, inhibiting ethylene synthesis and reducing the damage from waterlogging
stress [213]. More indirect crosstalk is evidenced in the S-mediated regulation of NO
via H2S to enhance abiotic stress tolerance; it is also known that a regulatory interaction
occurs between NO and ethylene in the context of abiotic stress tolerance [78], and H2S
and NO crosstalk is associated with inhibition of ethylene biosynthesis [214,215]. Another
example of NO and ethylene crosstalk was demonstrated in wild-type Arabidopsis calluses
under salt stress, in which H2O2 enhanced ethylene production while ethylene in turn
reduced H2O2 generation [216]. In the presence of S, H2O2 has been shown in drought-
exposed wheat to potentiate the defense system and alleviate damage to chloroplasts and
photosynthesis [217]. These findings together highlight the interconnection between the
three pathways.

By inhibiting stress ethylene synthesis, H2S can also improve the activity and proline
content of roots, reduce oxidative damage, and alleviate lipid peroxidation [218]. In tomato,
H2S decreases transcript accumulation of ethylene receptor genes (SlETR5 and SlETR6) and
associated transcription factors (SlCRF2 and SlERF2) [213], while in the context of Pb stress,
it enhances GSH content and nonprotein thiols to scavenge ROS [219]. H2S, ethylene, and
S also all contribute to the regulation of sugar content, sugars being important osmolytes in
regard to heat stress tolerance. All told, the evidence supports the existence of extensive
crosstalk between ethylene, H2S, and S pathways in relation to heat tolerance.

6. Conclusions

Heat stress is a major constraint on crop productivity, and its severity is likely to increase
with the ongoing climate change. Plants leverage various mechanisms for adapting to heat
stress, including enhancement of antioxidant potential, synthesis of reduced S-compounds,
and activation of signaling hormone biosynthetic pathways. Ethylene and H2S are key
signaling molecules that regulate the growth and development of plants and are involved
in acclimation to abiotic stresses; in particular, they contribute substantially to heat stress
tolerance by inducing metabolic changes and post-translational modifications. In addition, the
processes for their biosynthesis depend on S-adenosyl methionine and sulfide, respectively,
and so are directly or indirectly tied to S assimilation. Consequently, crosstalk between
ethylene, H2S, and S is an important factor in regulating heat stress, and it can potentially be
exploited for maximum alleviation of heat and other stresses in crop plants.
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