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ABSTRACT

Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin
remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes.
Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate
the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to
involve nucleosomal intermediates with a structural organization that is distinct from intact
nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using
methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is
likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex.
Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has

implications for the regulation of transcriptional initiation.

The basic repeating unit of chromatin was described
as DNA wrapped by an octameric core of histones
around 4 decades ago,' followed by the determination
of the structures of the histone octamer® and the
nucleosome core particle (NCP).> The NCP consists
of a central H3-H4 tetramer flanked by 2 dimers of
H2A-H2B wrapped by ~1.7 turns of DNA. Each mir-
ror-symmetric half of the nucleosome contains one
H3-H4 dimer and one H2A-H2B dimer wrapping
73 bp of DNA. In parallel to the studies establishing
the NCP as the steady-state configuration of chroma-
tin, the structure of chromatin undergoing disruptive
processes including transcription and replication had
been proposed to depart from the NCP.* To facilitate
histone inheritance during replication, the nucleo-
some was envisioned to split in half, forming a hemi-
some, the symmetric half of the nucleosome, and each
hemisome could be passed on to a daughter genome
during replication, similar to formation of hemime-
thylated DNA during replication.” Alternative nucleo-
some structures were also proposed in the context of
active chromatin. Gene activation was shown to pro-
duce half-nucleosome footprints as mapped by
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DNase-I, hinting at routine formation of nucleosome
intermediates during transcription.® Although octa-
meric nucleosomes are reconstituted in vitro with
>150-bp DNA duplexes, stable hemisomes have been
reconstituted by using ~65-bp DNA duplexes.”*

If nucleosomes are inherited as hemisomes dur-
ing replication, we would expect an equal propor-
tion of old and new histones making up
nucleosomes after replication. However, many stud-
ies failed to observe nucleosome splitting at replica-
tion.” This conclusion was confirmed in a recent
study that tracked old and new histones through
replication using differential isotope labeling and
mass-spectroscopy, which clearly demonstrated that
for the vast majority of the genome, the old H3-H4
tetramers did not split during replication.'” How-
ever, this study found that a significant fraction of
tetramers with the H3.3 replacement histone vari-
ant did split. H3.3 is mostly enriched at active
genes and enhancers, and subsequent mapping of
H3.3 splitting events found them to be mainly
occurring at enhancers.'’ In budding yeast, which
have only a single form of H3, active genes show
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splitting of H3-H4 tetramers.'” These observations
of splitting of H3-H4 tetramers indicate that nucle-
osomes must go through intermediate structures at
active genes and enhancers. These intermediate
structures might feature loss of histones from the
nucleosome or loss of specific histone-DNA con-
tacts, or both.

Studies to identify and characterize alternative
nucleosome species have been rare compared to stud-
ies of canonical nucleosomes due to a dearth of tech-
niques  to  identify
intermediates. One of the most well-characterized
alternative nucleosome structures is found at budding
yeast centromeres."> Yeast has a single nucleosome
acting as a “point” centromere for each chromo-
some.'"* The centromeric nucleosome has H3

dynamic  nucleosomal

replaced by the centromeric variant cenH3 (Cse4 in
yeast, CENP-A in mammals). Unlike the canonical
nucleosome that has a left-handed DNA wrap, the
cenH3 nucleosome formed on the yeast centromeric
sequence wraps DNA with right-handed chirality."
Histone octamers support only left-handed wrapping,
whereas histone tetramers can support either left-
handed or right-handed wrapping, suggesting that a
tetrameric complex forms the centromeric nucleo-
some. Furthermore, the cenH3 nucleosome is con-
fined to an ~80 bp region and contains H2A."
Given the presence of cenH3 and H2A, their obligate
partners H4 and H2B would also be expected to be
part of the centromeric nucleosome. Furthermore,
compared to the 147 bp of DNA that is protected by
octameric nucleosomes, ~80 bp would be expected
to be protected only by a tetrameric complex of his-
tones. These observations point to a hemisome that
contains one each of cenH3, H4, H2A and H2B at
yeast centromeres. In support of the in vivo observa-
tions, short centromeric sequences can be used to
reconstitute stable cenH3 hemisomes.”

Hemisomes at budding yeast centromeres have
been confirmed using H4S47C-anchored cleavage
mapping, a technique originally developed to identify
nucleosome positions genome-wide at base-pair reso-
lution.'® In this method, yeast histone H4 is mutated
at position 47 to carry cysteine instead of serine.'” Ex
vivo labeling of cells with a phenanthroline ligand con-
verts H4 into a site-specific DNA cleavage agent.
H4S47C-phenanthroline chelates copper and in the
presence of hydrogen peroxide cleaves nucleosomal
DNA at highly specific positions (Fig. 1A). By
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preparing a sequencing library from the cleaved DNA
and performing short read sequencing we found that
the sequenced cleavage reactions correspond to nucle-
otide positions —6, —1, 0, +1 and +6 bp relative to
the position of the dyad axis.'” Our structural model
for the interaction of H4S47C-phenanthroline with
DNA in the context of a nucleosome showed that the
cleavages at —6 and —1 were due to the H4 upstream
of the dyad, those at +1 and +6 were due to the H4
downstream of the dyad and that at the 0 position
could be due to either H4'® (Fig. 1B). Because the phe-
nanthroline ligand must be within 4 A of DNA for
cleavage to occur, we can interrogate the status of
DNA contacts formed by residues around H4-547 for
each H4 in the genome. By distinguishing cleavages
due to each H4 at a given nucleosome position, we
could ask if both H4s were contacting the DNA or just
one. At the centromere, we found cleavage patterns
that corresponded to the presence of only one H4
molecule.

We also characterized H4S47C-anchored cleavages
based on their precise positions relative to the 16 func-
tional centromere sequences. Cleavage positions that
are near the dyad axis of an octameric nucleosome
would be at the center of the DNA protected by an
octameric nucleosome or a (Cse4/H4), tetrasome. In
contrast, cleavage positions would be very near the
end of the DNA protected by the hemisome. In
the case of the yeast centromere, the cleavages were at
the edge of the DNA protected by the nucleosome.
Because of the tight binding of factors immediately on
either side of the ~80-bp region wrapped by the Cse4
nucleosome, these cleavages could not have been pro-
duced by octasomes or by (Cse4-H4), tetrasomes.'®
Thus, H4547C-anchored cleavage mapping confirms
that hemisomes occupy yeast centromeres.

Given the ability of H4S47C-anchored cleavage
mapping to identify the status of H4-DNA contacts
near the dyad genome-wide, we asked if there are
alternative nucleosome structures outside of the
centromeres. We identified a subset of positions (5%
of total positions genome-wide) that were conspicu-
ously asymmetric with respect to H4S47C-anchored
cleavages, although the asymmetry is an order of mag-
nitude less than that of centromeric nucleosomes.

At centromeric nucleosome positions, asymmetric
H4847C cleavages could be explained only by hemi-
somes, which leads to the possibility of hemisomes at
asymmetric H4S47C-anchored cleavages outside of



22 (&) S.RAMACHANDRAN AND S. HENIKOFF

B Positions Sequenced After H4-S47C Cleavage Reaction
8-7-65-4-3-2-1012 34526738
il
3

\ oP / \ oP f

s nk

Proximal H4 Distal H4

Figure 1. DNA cleavage by H4547C-phenanthroline-Cu™ in vivo A) The position of 47-cysteine-orthophenanthroline (OP) in the nucleo-
some structure is shown (left). The magnified region (right) shows a copper ion (blue dot) bound to OP within 4 A (dotted line) of the
C1H atom of the deoxyribonucleotide near the dyad. OP binds in the minor groove of the nucleosomal DNA. B) The highlighted posi-
tions in the Watson (W) and Crick (C) strands around the nucleosome dyad are sequenced after OP cleavage. The positions cleaved by
the proximal H4 are shown in green and the positions cleaved by the distal H4 are shown in blue.

centromeres. A hemisome would protect only ~70-
80 bp of DNA whereas an octasome protects ~150 bp
of DNA. The amount of DNA protected by a protein
complex can be determined by treating chromatin
with Micrococcal Nuclease (MNase) followed by
sequencing the isolated DNA (MNase-seq). MNase is
an endo-exonuclease that preferentially chews on
linker DNA and stops when it encounters a protein-
DNA contact. By performing paired-end sequencing
of fragments protected by MNase, we can estimate not
only the position in the genome that is protected, but
also the length of DNA that is protected. At asymmet-
ric nucleosome positions as well as nucleosome posi-
tions genome-wide, we found the expected protection
of ~150 bp. We also observed a protection of ~73 bp
on either side of the dyad. This protection indicated
nucleosome splitting at the dyad, making the DNA
around the dyad accessible to MNase. If the asymmet-
ric H4547C-anchored cleavages represent hemisomes,
we would expect the distribution of the ~73 bp frag-
ments to also be asymmetric. However, we observed
these fragments to be symmetric around the dyad.
This means that both halves of the nucleosome are
present at asymmetric positions and the asymmetric
S47C-anchored cleavages represent partial loss of his-
tone-DNA contacts without loss of histones.

We identified asymmetric particles throughout the
genome, but they were especially enriched around
transcription start sites (TSSs). Ordered nucleosome

arrays are found flanking TSSs, where genic nucleo-
some positions are numbered +1, +2 and so on start-
ing from the first nucleosome position downstream of
the TSS. TSSs are usually depleted of nucleosomes,
and the nucleosome positions upstream of the pro-
moter are numbered —1, —2 and so on. The +1 posi-
tion was most enriched in asymmetric nucleosomes,
with significant enrichment also at the —1 position.
Interestingly, asymmetric nucleosomes were also
recently identified at 41 nucleosome positions by
ChIP-exo mapping of histones (Fig. 2A-B) and vali-
dated by MNase-seq (Fig. 2C).*° However, we find
that these particles are not at the same positions as
those at the +1 position that we identified by
H4S47C-anchored cleavage mapping (data not
shown). Furthermore, asymmetric particles identified
by histone ChIP-exo show symmetric H4-547C cleav-
age patterns characteristic of octasomes (Fig. 2D). It is
likely that the asymmetric particles identified by his-
tone ChIP-exo represent a distinct class of nucleoso-
mal intermediates.

H4S47C-anchored cleavage mapping reports on
only one out of 6 histone-DNA contact sites on each
half of the nucleosome. How do we determine the sta-
tus of all histone-DNA contact sites at a given nucleo-
some position? We turned to an aspect of MNase-seq
data that has received little attention. MNase stops
digesting DNA when it encounters a protein-DNA
contact, so that histone-DNA contact positions in the



genome would be more protected compared to DNA
positions that are exposed. The ends of the sequenced
fragments would then reveal the positions where
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MNase stopped upon encountering a protein-DNA
contact. Around the nucleosome dyad, we observed a
10 bp periodicity in MNase cut frequency, coinciding
with the 10 bp periodicity of histone-DNA contacts.
This indicates that the MNase cut frequency is report-
ing on histone-DNA contacts at nucleosome positions
genome-wide. At asymmetric nucleosome positions,
we found loss of enrichment of fragment ends on the
same side of the dyad that lost H4S47C-anchored clea-
vages. The contacts that were lost are the ones right
next to the dyad. Thus, asymmetric nucleosome posi-
tions show a loss of a subset of histone-DNA contacts
on one side of the dyad. Loss of specific histone-DNA
contacts could be due to the action of chromatin
remodelers, which disrupt histone-DNA contacts to
reposition nucleosomes. This can be confirmed by
asking whether cleavage asymmetry is found at posi-
tions found to have highly dynamic nucleosomes.
Most dynamic nucleosomes can be found in regions
around TSSs due to disruption and reassembly of
nucleosomes caused by pervasive binding of chroma-
tin remodelers, transcription factors and the transcrip-
tion machinery. When we looked at the enrichment of
asymmetric nucleosomes genome-wide, they were
highly enriched at &1 positions but not at promoters
or genic positions, indicating that asymmetric nucleo-
somes could be formed due to nucleosome dynamics.

Figure 2. Asymmetric nucleosome positions identified by ChIP-
exo show symmetric H4547C-anchored cleavages. A) Schematic
of ChIP-exo asymmetry relative to the transcription start site
(TSS). Ratio of H4-ChIP-exo counts between proximal and distal
sides of the dyad axis relative to the TSS from Rhee et al.*® was
used to identify asymmetric nucleosome positions. The H4-ChIP-
exo ratios were obtained from Table S4 of Rhee et al. and a cutoff
of greater than 2 or less than 0.5 was used. B) Averages of H4
ChlIP-exo data for the distally (n = 264) and proximally (n = 293)
asymmetric nucleosome positions. The running average over a
15 bp window is plotted. C) Averages of centers of fragments
from MNase-seq™ are plotted for distally and proximally asym-
metric nucleosome positions identified by H4-ChIP-exo. The run-
ning average over a 15 bp window is plotted for fragments of
65-85 bp in length, which would include half-nucleosome pro-
tections. Enrichment is observed on the distal side of the dyad
for the distally asymmetric positions and on the proximal side of
the dyad for the proximally asymmetric positions. D) Average
read counts of the ends of fragments generated by H4S47C-
anchored cleavage'®'® are plotted for distally and proximally
asymmetric nucleosome positions identified by H4-ChIP-exo. We
observe no asymmetry in the H4S47C-anchored cleavage data for
both distally and proximally asymmetric positions identified by
H4-ChlP-exo.
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ATP-dependent chromatin remodelers bind nucle-
osomes and disrupt histone-DNA interactions to slide,
evict or change nucleosome composition. The enrich-
ment of asymmetric nucleosome positions around
sites of constant nucleosome turnover and remodeler
binding strongly suggested that asymmetric nucleo-
somes might be forming due to remodeler action. To
ask which of the remodelers in yeast could be respon-
sible for this phenomenon, we determined the enrich-
ment of remodelers at asymmetric =1 nucleosome
positions using ChIP-seq data. Out of 7 yeast remodel-
ers, we found only RSC to be enriched at asymmetric
£1 nucleosome positions. That RSC action is associ-
ated with asymmetric nucleosomes was further sup-
ported by the fact that RSC depletion causes higher
nucleosome loss at asymmetric 1 nucleosome posi-
tions compared to all £1 nucleosome positions. We
also found that RSC depletion resulted in much lower
expression of genes with asymmetric 41 nucleosomes
compared to all genes. Finally, the presence of asym-
metric +1 nucleosomes correlated with lower RNA
polymerase II stalling at +1 nucleosomes. These func-
tional correlations indicate that RSC function at asym-
metric 1 nucleosome positions is essential for the
proper expression of genes containing asymmetric
nucleosomes.

RSC has been studied in detail using structural and
biochemical tools. Hence, we can ask if known mecha-
nisms of RSC interaction with nucleosomes could
explain the formation of asymmetric nucleosomes.
RSC is a large remodeling complex (1.3 MDa), whose
structural characterization has been limited to electron
microscopy (EM).*""** Negative stain EM images of
RSC alone revealed a huge cavity, which is comple-
mentary to the nucleosome surface.”’ Cryoelectron
microscopy of the RSC-nucleosome complex revealed
RSC tightly enveloping the nucleosome.*” The densi-
ties in the binding cavity could account for the entire
histone octamer and a part of the ~150 bp nucleoso-
mal DNA, leading to the speculation that RSC binding
partially unwraps the nucleosome. Three binding sites
of RSC to the nucleosome could be discerned, the
major one being close to the dyad. The RSC densities
were directly contacting the octamer at the site near
the dyad and no DNA densities were observable. The
local unwrapping of DNA near the dyad as observed
by cryoEM suggests that RSC binding could lead to
asymmetric nucleosome formation in vivo.

The structural alterations to the nucleosome
induced by RSC as seen by cryoEM are strongly sup-
ported by in vitro experiments that have characterized
RSC action on nucleosomes. DNAse footprinting of
nucleosomes bound by RSC in the absence of ATP
shows overall protection of the nucleosomal DNA
compared to free nucleosomes. However, there is a
site 2 turns from the dyad that is specifically foot-
printed only in the presence of RSC.** In the absence
of ATP, RSC unwraps nucleosomes right up to the
dyad while remaining bound to both the histone
octamer and the nucleosomal DNA.** Upon addition
of ATP, nucleosomal DNA is highly susceptible to
nuclease attack, indicating mobilization of the DNA
by RSC. Comparing the in vitro observations with
properties of asymmetric nucleosomes observed in
vivo, we infer that asymmetric nucleosomes detected
by H4S47C-anchored cleavage mapping result from a
RSC-nucleosome complex in the absence of ATP. The
presence of ATP would activate RSC to mobilize the
nucleosomal DNA and possibly evict the histone
octamer, enabling transcriptional activation. This
model can explain how RSC function is required for
robust expression of genes with asymmetric nucleo-
somes at their +1 position.

The disruption of histone-DNA interactions at the
dyad by RSC implies that these contacts represent bar-
riers against nucleosome disruption. If this were the
case, mutations in histones that weaken these histone-
DNA interactions would alleviate the requirement of
remodelers for nucleosome disruption and in turn for
gene activation. RSC is required for various functions
including chromosome segregation® and is essential
for survival, precluding identification of mutants that
alleviate the loss of RSC. However, the homolog of
RSC, the SWI/SNF complex is not essential for sur-
vival and it is required for expression of a significant
fraction of genes in yeast. Based on the evolutionary
conservation between RSC and SWI/SNF, we expect
that the 2 complexes have similar mechanisms of
action on nucleosomes. SWI/SNF independence (SIN)
mutations, which overcome the loss of SWI/SNF func-
tion,”® can provide clues to the mechanism of SWI/
SNF action. Several SIN mutants harbor point muta-
tions in H3 and H4 at residues near the dyad axis.””**
Crystal structures of these SIN mutants reveal the
destabilization of histone-DNA interactions near the
dyad axis, which implies that SWI/SNF functions in



part by destabilizing histone-DNA contacts near the
dyad axis. These findings support our model whereby
asymmetric nucleosomes result from disruption of
histone-DNA interactions by RSC.

RSC binding that results in partial unwrapping of
the nucleosome represents the first in vivo demonstra-
tion of a nucleosome remodeling intermediate. RSC
and SWI/SNF are evolutionarily conserved from yeast
to humans, and the human and fly homologs (BRM
and BRGI respectively) have essential roles in devel-
opment. Several mutations in human remodeling
complex subunits with BRM and BRGI have been
identified as cancer driver mutations.”’ However, the
mechanisms of BRM/BRGI action are difficult to
study because combinations of subunits give rise to
numerous distinct complexes. Our paradigm of
understanding remodeler action through identifica-
tion of alternate nucleosome structures presents a new
way to understand remodeler function that can over-
ride the combinatorial complexity of remodelers in
metazoans.
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