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Abstract

Background: Evidence suggests that smartphone apps can be effective in the self-management of weight. Given the low cost,
broad reach, and apparent effectiveness of weight loss apps, governments may seek to encourage their uptake as a tool to reduce
excess weight in the population. Mass media campaigns are 1 mechanism for promoting app use. However, the cost and potential
cost-effectiveness are important considerations.

Objective: The aim of our study was to use modeling to assess the health impacts, health system costs, cost-effectiveness, and
health equity of a mass media campaign to promote high-quality smartphone apps for weight loss in New Zealand.

Methods: We used an established proportional multistate life table model that simulates the 2011 New Zealand adult population
over the lifetime, subgrouped by age, sex, and ethnicity (Māori [Indigenous] or non-Māori). The risk factor was BMI. The model
compared business as usual to a one-off mass media campaign intervention, which included the pooled effect size from a recent
meta-analysis of smartphone weight loss apps. The resulting impact on BMI and BMI-related diseases was captured through
changes in health gain (quality-adjusted life years) and in health system costs. The difference in total health system costs was the
net sum of intervention costs and downstream cost offsets because of altered disease rates. An annual discount rate of 3% was
applied to health gains and health system costs. Multiple scenarios and sensitivity analyses were conducted, including an equity
adjustment.

Results: Across the remaining lifetime of the modeled 2011 New Zealand population, the mass media campaign to promote
weight loss app use had an estimated overall health gain of 181 (95% uncertainty interval 113-270) quality-adjusted life years
and health care costs of –NZ $606,000 (–US $408,000; 95% uncertainty interval –NZ $2,540,000 [–US $1,709,000] to NZ
$907,000 [US $610,000]). The mean health care costs were negative, representing overall savings to the health system. Across
the outcomes examined in this study, the modeled mass media campaign to promote weight loss apps among the general population
would be expected to provide higher per capita health gain for Māori and hence reduce health inequities arising from high BMI,
assuming that the intervention would be as effective for Māori as it is for non-Māori.

Conclusions: A modeled mass media campaign to encourage the adoption of smartphone apps to promote weight loss among
the New Zealand adult population is expected to yield an overall gain in health and to be cost-saving to the health system. Although
other interventions in the nutrition and physical activity space are even more beneficial to health and produce larger cost savings
(eg, fiscal policies and food reformulation), governments may choose to include strategies to promote health app use as
complementary measures.

(JMIR Form Res 2022;6(4):e29291) doi: 10.2196/29291
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Introduction

Background
The obesogenic food environment and unhealthy dietary patterns
have led to overweight and obesity becoming a critical public
health problem [1,2]. These risk factors result in numerous
health conditions, including diabetes, cardiovascular disease,
and certain forms of cancer [1,2]. Overweight and obesity are
the fifth highest risk factor for global mortality, corresponding
to at least 2.8 million deaths each year [1]. Elevated BMI levels
also pose a substantial economic burden, with obesity alone
directly accounting for an estimated 0.7% to 2.8% of national
health care expenditures among a wide range of countries [3].

Although modifying the food and physical activity environment
is critical, addressing unhealthy dietary patterns and insufficient
physical activity (and therefore overweight and obesity [4]) in
individuals is also important. Even modest weight loss can yield
substantial health benefits [5,6], especially when distributed
across the population level. There has been an increase in the
use of mobile health (mHealth) tools for addressing weight loss
goals [7,8]. The widespread use of mobile phones makes
mHealth interventions easily scalable to a broader population
[9,10], and as a result, mHealth interventions are increasingly
considered tools for weight loss in individuals. Although there
are numerous types of mHealth tools (eg, PDAs, iPods, and
MP3 players) and services (eg, health call centers, appointment
reminders, health surveys and data collection, and mobile patient
records [11]), smartphone apps have been identified as
particularly popular among the general population and
potentially effective at supporting weight management [7,9,12].

The use of health apps is increasing, with a reported 50% of
smartphone users having ever downloaded a health app [13,14].
The most popular health apps are typically for diet and physical
activity tracking, weight management, and adherence to
medication [13,15]. Weight loss apps may be especially useful
for circumstances where face-to-face weight loss treatments are
not possible or not preferred [16]. Smartphone apps are generally
considered easy to use and to be helpful in pursuing weight loss
goals by many patients [7], even for older participants [12].

Reviews have found that mHealth interventions can be more
effective than non-mHealth interventions at inducing weight
loss and improving diet and physical activity [17]; mHealth
interventions also promote adherence to weight loss behaviors
[9]. Even when mHealth apps produce outcomes equivalent to
those of traditional interventions, their broad accessibility makes
them a valuable tool [7]. However, there are limitations to the
effectiveness of app use. For instance, engagement with apps
declines over time [7,18], especially for dietary tracking [19,20].
Researchers estimate that a quarter of mHealth apps are only
used once after download, and most individuals stop using
mHealth tools before the fifth interaction [21,22]. However,
other evidence suggests that apps are most effective for weight
loss management when certain characteristics are incorporated
[7], such as self-monitoring of physical activity and diet,

reminders for app use, and social interaction with peers
[7,23,24]. Generally, higher adherence to self-monitoring is
associated with improved weight loss outcomes [10,25].

Given the low cost, broad reach, and apparent effectiveness of
apps at promoting weight loss, governments may seek to
encourage the uptake of such apps as an opportunity for reducing
excess weight among the population. For example, in the United
Kingdom, the National Health Service has developed a free
12-week diet and exercise plan that is available as an app [26]
that incorporates a mass media campaign to promote use [27].
Such campaigns may be an important intervention component
to increase the use of effective weight loss apps among the
population and stimulate reductions in BMI. Evidence indicates
that health mass media interventions can effectively encourage
the use of health support resources [28,29] and influence public
dietary behaviors [30-35].

The cost and potential cost-effectiveness are important
considerations when governments are selecting among obesity
reduction interventions, including the use of mass media
campaigns. Research by Cleghorn et al [36] used health
economic simulation modeling to assess the cost-effectiveness
of a hypothetical mass media campaign in New Zealand that
promotes the uptake of weight loss mHealth technologies. Along
with numerous other parameters, the authors used the results
of a 2014 meta-analysis of mobile device interventions to
quantify how much weight loss could occur [17]. The authors
found that such a campaign was not cost-effective in the base
case analysis [36]. Another study using similar methods assessed
the potential of a mass media campaign to promote smartphone
apps for physical activity and found that it was unlikely to be
cost-effective at the population level, although the health impact
and cost-effectiveness estimates were highly sensitive to
assumptions around long-term adherence [37]. The evidence
on the cost-effectiveness of mass media campaigns is primarily
from tobacco control [29], and previous research indicates that
a mass media campaign for promoting smoking cessation apps
is likely to be cost saving [38].

Updated Estimates
Since the modeling conducted by Cleghorn et al [36] on the
weight loss mHealth mass media campaign, there has been rapid
growth in the literature on the effectiveness of weight loss apps,
as well as changes in app technology and a higher uptake of
smartphones. In this study, we use updated parameters that
reflect these developments and recent data on app use over time,
thereby providing updated estimates that reflect the current
context. The setting for this study is New Zealand, a typical
high-income country with high rates of overweight and obesity
[39]. Our study uses a multistate life table modeling approach
to assess the health impacts, health system costs,
cost-effectiveness, and health equity of a mass media campaign
to promote high-quality smartphone apps for weight loss in
New Zealand.
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Methods

Overview
We used an established proportional multistate life table model
[40] that was parameterized with health data for the 2011 New
Zealand adult population and simulates this population until
death. The risk factor of interest was BMI; the simulation model
designates the proportion of New Zealand adults with

overweight or obesity (overweight: BMI 25 kg/m2 to <30 kg/m2;

obesity: BMI ≥30 kg/m2). We compared a business-as-usual
baseline analysis to an intervention base case analysis. The
resulting impact on BMI and BMI-related diseases was captured
through changes in health gain (as measured by quality-adjusted
life years [QALYs]) and in health system costs (net sum of
intervention costs and downstream cost offsets because of
altered disease rates). The study used a health system perspective
that focused on costs and benefits within the health system [41].
An annual discount rate of 3% was applied to health gains and
health system costs, consistent with established New Zealand
modeling protocols [41] and health economic expert
recommendations [42]. Discounting is a standard practice in
economic evaluation to account for preferences toward present
benefits over future benefits [41]. Full details on the model are
documented elsewhere [40].

Intervention Pathway
The modeled intervention was a one-off mass media campaign
among the New Zealand population stimulating the uptake and
use of a smartphone app for weight loss that effectively
promotes weight loss. The pathway from the intervention’s
implementation to impact is detailed in Figure 1. The proportion
of the New Zealand population that would experience weight
loss was calculated as follows: out of the New Zealand adult
population, the intervention was applicable to only New Zealand
adults aged >18 years with overweight or obesity (73% of the
total adult population). Using recent metrics on New Zealand
smartphone ownership, 81% of New Zealand adults own a

smartphone [43] (eligible population reduced to 59.1%). To
model the reach of the mass media campaign, we used the results
reported by Kite et al [44] of an obesity-prevention mass media
campaign called Make Healthy Normal that was run over 1 year
by the New South Wales (NSW) government in Australia.
Recognition of the campaign was 45% among sampled adults
aged ≥18 years after completion of the campaign, which
consisted of television commercials, community events, press,
out-of-home (eg, billboards) and web-based advertising, public
relations, a website, and social media [44]. We identified other
studies that evaluated recognition of mass media campaigns
[30,32]. However, the NSW study by Kite et al [44] was
preferred because it evaluated a health campaign that we could
verify was resourced similarly to the high level of costs
associated with our modeled mass media campaign: Make
Healthy Normal campaign NZ $0.37 (US $0.25) per capita of
the NSW population [44] and modeled campaign NZ $0.66 (US
$0.44) per capita of the New Zealand population. As the New
Zealand modeled campaign involved a higher cost per capita
than the NSW campaign, in sensitivity analysis we modeled a
scenario where this greater resourcing produced an enhanced
mass media campaign that achieved wider recognition than the
NSW campaign. On the basis of the rate of campaign
recognition, the eligible population reduced to 26.6% of the
total adult population. We found limited published research on
the degree to which government-led mass media campaigns can
stimulate health app use. After a search of academic and gray
literature, we identified only 1 study that quantified a
relationship between a mass media campaign to promote health
app use and subsequent health app use [45]. In the study, the
authors found that 14% of the surveyed respondents reported
taking an action after a UK-based mass media campaign to
promote an uptake of a health app [45]. Assuming that this
action was to download and use the app at least once, we
modeled app downloads and use as 14% of the New Zealand
adult population. The final eligible population that would use
the app and experience weight loss was 3.7% of the New
Zealand adult population.

Figure 1. Flowchart of intervention conceptualization. NZ: New Zealand.
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Weight Loss App Effectiveness
We quantified the effectiveness of weight loss apps using the
results of a recent meta-analysis by Islam et al [46]. The
review’s authors examined randomized controlled trials and
case-control studies published from 2000 to mid-2019 on mobile
phone app interventions for reducing body weight (including
BMI) and increasing physical activity among children and
adults. We preferentially selected this meta-analysis for
modeling over other reviews [9,47-53] because of the focus on
mobile apps (over other mHealth or mobile phone–based
interventions), selection of studies with control groups that
received minimal or no interventions, preferred outcome (ie,
BMI), meta-analyzed results, and recent publication date with
latest available studies. In the 10 included studies that examined
BMI, the proportion of male participants ranged from 0% to
15%. The mean age of the participants ranged from 12.7 years
to 44.9 years. For the outcome of weight, Islam et al [46]
reported finding that longer trials (>3 months) were associated
with significantly greater weight loss than shorter trials (≤3
months), suggesting that greater app adherence (ie, longer use)
is associated with greater weight loss than shorter app adherence.
For the outcome of BMI, Islam et al [46] conducted an analysis
of all included trials (pooled effect size –0.454, 95% CI –0.787
to –0.121) and did not conduct meta-analyses by trial duration
subgroup (ie, ≤3 months vs >3 months). We calculated these
pooled effect sizes using the study’s reported data (≤3 months
–0.219, 95% CI –0.672 to 0.223; >3 months –0.609, 95% CI
–1.072 to –0.146) [46]. In the >3-month subgroup, the maximum
trial length was 9 months. We consulted evidence on weight
loss app adherence from the UK study by Carter et al [54], which
measured the proportion of users who adhered to app use for
≤3 months (53% of the users) and >3 months (47% of the users).

We multiplied each pooled effect size by the proportion of users
and summed to produce a weighted effect size of app
effectiveness that accounted for variations in duration of app
use:

Eweighted= (E≤3 months × >P≤3 months) + (E>3 months × P>3

months)

where E is the effect size and P is the proportion of users. The
resulting weighted estimate of weight loss app effectiveness

was –0.400 kg/m2 (95% CI –0.858 to 0.051 kg/m2). Additional
details on these decisions and steps are reported in Multimedia
Appendix 1 [19,46,54].

Intervention Modeling Approach
In our modeling, the business-as-usual baseline encapsulated
the existing levels of dietary health promotion in New Zealand,
including current promotion of weight loss apps, and the
continuation of the current low or no app promotion
environment. The costs of implementing the intervention are
reported in Table 1, with further details regarding the methods
used to scope these costs reported by Cleghorn et al [36].

Table 1 provides further detail on the inputs used to
conceptualize the intervention pathway, along with the type of
distribution modeled for each of these inputs. For the
effectiveness of the weight loss app, CIs quantified the range
of plausible values. As no measures of variance were available
for the remaining inputs, we applied our established protocol
and estimated an SD of either 5%, 10%, or 20% of the central
value [56]. A value of 20% was used when there was deemed
to be a high degree of uncertainty that could influence
effectiveness and cost-effectiveness outcomes from the modeled
intervention.

Table 1. Intervention parameters and uncertainty distributions.

SourceDistributionValueParameter

As reported by DataReportal based on Google Consumer
Barometer data [43]

Beta81 (5)Adult New Zealand population who own a
smartphone, % (SD)

On the basis of an evaluation of an Australian obesity-prevention
mass media campaign that measured the proportion of survey
respondents who recognized the campaign [44]

Beta45 (20)Adult New Zealand population who are as-
sumed to be aware of a relevant mass media
campaign, % (SD)

On the basis of the proportion of survey respondents who reported
taking an action after a UK-based mass media campaign to pro-
mote use of a health app [45]

Beta14 (20)Adult New Zealand population who were as-
sumed to download and use a promoted weight
loss app, % (SD)

The weighted results of studies included in the Islam et al [46]
meta-analysis of smartphone app weight loss trials whereby the
pooled effect sizes for interventions ≤3 months and interventions
>3 months were weighted based on adherence rates at 3 months,
obtained from Carter et al [54]

Normal–0.400 (–0.858 to
0.051)

Intervention BMI reduction for those who used

the app (kg/m2; 95% CI)

Meta-analysis of weight loss decay evidence from Dansinger et
al [55], as used in the previous published work by Cleghorn et
al [36]

Log-normal0.03 (20)Assumed weight regain after delivery of the

intervention (kg/m2 per month; SD %)

As used in the previous published work by Cleghorn et al [36].
New Zealand data on the costs consist of identifying high-quality
apps and a national mass media campaign across multiple media

Gamma2,883,000
(1,940,000; 20)

Estimated cost of one-off 1-year national-level
mass media campaign, NZ $ (US $; SD %)
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Multistate Life Table Model Overview
The multistate life table model consists of a main life table
organized by age, sex (male or female), and ethnicity (Māori
or non-Māori) and populated with all-cause mortality and
morbidity rates for the 2011 New Zealand adult population.
Parallel to this are life tables for each BMI-related disease where
proportions of the simulated population are also modeled.
Although the model includes a wide array of diet-related
diseases [40], our intervention focused on weight loss and used
only the disease tables for 14 BMI-related diseases: coronary
heart disease, stroke, type 2 diabetes, osteoarthritis, and cancers
(endometrial, kidney, liver, esophageal, pancreatic, thyroid,
colorectal, breast, ovarian, and gallbladder).

Mortality and Morbidity Modeling
Within the model, the proportions of the population in each
disease table are a function of past and current rates of disease
incidence, case fatality, and, for cancers only, remission, which
are calculated at each annual time step. The model is populated
with mean BMI values according to age, sex, and self-identified
ethnicity measured in person during New Zealand’s most recent
available national nutrition survey (New Zealand Adult Nutrition
Survey 2008-2009) [57]. The mass media campaign intervention
induces changes in BMI for a proportion of the New Zealand
population. The effect of these BMI changes is combined with
relative risks that capture the association between BMI and
BMI-related disease outcomes to produce modified population
impact fractions [40]. As the risk of BMI-related diseases
decreases after implementation of the intervention, the
population impact fractions modify disease incidence rates,
resulting in changes to all-cause mortality and morbidity rates.
Time lags to simulate the delay between when BMI change
occurs and when changes in disease incidence across the
population-risk distribution occur were built in for all conditions.
Specifically, the change on disease rates was distributed over
0 to 5 years for cardiovascular diseases, diabetes, and
osteoarthritis and over 10 to 30 years for cancers, with
probabilistic uncertainty added in around these lag periods.
Although there is evidence that mHealth interventions can result
in changes in dietary intake beyond reduced weight loss, such
as increased fruit and vegetable intake and decreased takeout
meals [7], our intervention modeling focused on the effects of
the app on BMI and assumed no other impacts on diet or
physical activity.

Our model included the health system costs associated with
changing disease prevalence and population longevity, which
were calculated using an established protocol [40]. These costs
were specific to the condition, age, and sex and were based on
the timing of health events (first year of illness, subsequent
years of illness, and the last 6 months of life). The change in
the proportions of the population in each disease state resulted
in proportional changes in health system costs and unrelated
health system costs from people living longer. The intervention’s
overall results reflect projected health gains and health system
cost impacts over the remainder of the modeled population’s
life course.

Equity, Scenario, and Sensitivity Analyses
In addition to the main base case intervention, we conducted
an equity analysis where an equity adjustment was applied in
the model to eliminate differences in life expectancy between
Māori (Indigenous) and non-Māori. Other scenario and
sensitivity analyses were conducted to examine the potential
impact of alternative modeling parameters and decisions. These
consisted of the following: (1) the mass media campaign’s
design is enhanced, leading to wider recognition of the
campaign’s key message (68% recognition rather than 45%,
using evidence from an evaluation of New Zealand’s Health
Promotion Agency Small Steps campaign [58]); (2) improved
weight loss apps that have been developed since the
meta-analysis we used, leading to a hypothetical 50%
improvement in app effectiveness (modeled by increasing the
mean BMI reduction by 50%); (3) all app users use the app for
more time to test impact if there is good long-term engagement
(modeled using the pooled effect size for trial lengths of >3-9
months); (4a) weight regain is delayed by 1 year; (4b) weight
regain is delayed by 5 years; (4c) no weight regain occurs
throughout the remaining life of the modeled population (ie, a
highly hypothetical scenario that quantifies the envelope of
potential benefit that could be obtained if weight regain was
avoided); (5) the effect size for weight loss app effectiveness
that was used in the previous modeling by Cleghorn et al [36]
is applied in this study’s updated model and intervention
pathway; and (6) alternative discount rates of 0% and 6% are
applied to health gains and healthy system costs to illustrate the
impact of discount rates. This variation of discount rates is
consistent with established health economic evaluation practices
[41].

Simulation Analysis
The model was built in Microsoft Excel and run using Ersatz
(version 1.34; EpiGear International). Uncertainty around health
gains and cost-effectiveness was quantified using a Monte Carlo
analysis. The parameters were sampled independently 2000
times from each of their respective probability distributions.
The presented results are the mean values, with 95% uncertainty
intervals (UIs). The exception to this is the expected values in
the scenario and sensitivity analyses, which did not include
uncertainty analysis.

Results

Health Gain and Cost Savings
Across the remaining lifetime of the modeled 2011 New Zealand
population, the mass media campaign to promote weight loss
app use in the base case analysis had an estimated overall health
gain of 181 (95% UI 113-270) QALYs and health care costs of
–NZ $606,000 (–US $408,000; 95% UI –NZ $2,540,000 [–US
$1,709,000] to NZ $907,000 [US $610,000]). The mean of the
health care costs is negative, representing an overall savings to
the health system and a cost-saving intervention. However, the
95% UI spans positive values, indicating that there remains a
possibility that the intervention is not cost saving, albeit still
cost-effective (ie, below the threshold of NZ $45,000 [US
$30,000] per QALY gained, approximately the gross domestic
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product per capita for New Zealand that we use in our modeling
[36]).

In the first 10 years after the intervention was implemented
(2011-20), the mean health gain was 56 QALYs and net health
system expenditures averaged NZ $850,000 (US $572,000)
because of the cost of implementing that mass media campaign
and few savings to the health system (although still below the
cost-effective threshold of NZ $45,000 (US $30,000) per QALY
gained). After 20 years (2011-30), the total health gain was 112
QALYs and the mass media campaign became cost-saving (–NZ
$176,000 [–US $118,000]) for the health care system. Most of
the health gain (62%) occurred between the years 2011 and
2030 (first 20 years after implementation), whereas most of the
health system savings (71%) occurred after 2030 (ie, 20 years
after implementation). The delayed health system savings was
due to the initial up-front cost of implementing the intervention,
which was also relatively high compared with the eventual
reductions in downstream cost offsets because of altered disease
rates.

Table 2 presents the results overall and by subpopulations over
the remaining lifetime of the modeled population. The total
health gains for non-Māori and Māori were 148 QALYs and

33 QALYs, respectively. Per 1000 population, this equated to
0.040 QALYS for non-Māori and 0.049 QALYS for Māori.
When ethnicity was examined by sex and age group, the mean
values consistently suggested greater per capita health gains for
Māori. These mean values also suggest that the greatest health
gain occurs among the age group 45-64 years and that, on
average, the health gain was greater for men than for women.
The exception to this was Māori women aged ≥65 years; this
subgroup had a similar health gain to Māori men (0.079 QALYS
per 1000 and 0.078 QALYS per 1000, respectively). Similar
patterns were reflected in the health system cost estimates, which
are, on average, savings to the health system. When the equity
adjustment for Māori was applied (Table 3), the health gains
for Māori increased to 40 QALYs and 0.060 QALYs per 1000.
On the basis of the outcomes examined in this study, the
modeled mass media campaign to promote weight loss apps
among the general population would be expected to reduce
health inequities arising from high BMI for Māori. However,
the absolute reduction in health inequities would be small. In
addition, this analysis assumed that the intervention would be
as effective for Māori as it is for non-Māori (ie, the mass media
campaign was culturally appropriate in design).
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Table 2. Health gains and cost-effectiveness of a mass media campaign to promote smartphone apps for weight loss in New Zealand by age, sex, and
ethnicity (lifetime impacts and 3% discount rate).

Health system costsc, NZ $ (US $;
95% UI)

Health gain in QALYs per 1000
population (95% UI)Health gain in QALYsa (95% UIb)Sex, ethnicity, and age group (years)

–606,000 (2,540,000 to –907,000);
408,000 (–1,709,000 to 610,000)

0.041 (0.026 to 0.061)181 (113 to 270)All

–491,000 (2,310,000 to 921,000);
–330,000 (–1,555,000 to 620,000)

0.040 (0.023 to 0.062)148 (85 to 231)Non-Māori, all ages

–115,000 (–494,000 to 158,000);
–77,400 (–332,000 to 106,000)

0.049 (0.027 to 0.079)33 (18 to 53)Māori, all ages

–436,000 (–1,872,000 to 554,000);
–293,000 (–1,260,000 to 373,000)

0.045 (0.022 to 0.079)97 (48 to 170)Men, all ages

Non-Māorid

–85,000 (–57,200)0.0381925-44

–556,000 (–374,000)0.0944645-64

–127,000 (–85,500)0.06316≥65

Māorid

–51,000 (–34,300)0.080625-44

–118,000 (–79,400)0.171945-64

–13,000 (–8750)0.0781≥65

–170,000 (–1,370,000 to 698,000);
–114,000 (–922,000 to 470,000)

0.037 (0.020 to 0.063)84 (44 to 141)Women, all ages

Non-Māorid

–45,000 (–30,000)0.0311625-44

–369,000 (–248,000)0.0693545-64

–77,000 (–52,000)0.05517≥65

Māorid

–49,000 (–33,000)0.066625-44

–106,000 (–71,000)0.143945-64

–11,000 (–7000)0.0791≥65

aQALY: quality-adjusted life year.
bUI: uncertainty interval.
cA negative cost indicates that the intervention is cost-saving to the health system.
dThe 95% uncertainty intervals for QALY and health system costs were not calculated for these subgroups.

Table 3. Results for Māori with equity adjustment applied (lifetime gains and 3% discount rate).

Health system costsc, NZ $ (US $;
95% UI)Health gain in QALYs per 1000 population (95% UI)Health gain in QALYsa (95% UIb)Population

–132,000 (–513,000 to 152,000);
–89,000 (–345,000 to 102,000)

0.060 (0.034 to 0.097)40 (23 to 65)All

–67,000 (–341,000 to 115,000);
–45,000 (–229,000 to 77,000)

0.062 (0.026 to 0.118)20 (9 to 39)Men

–65,000 (–331,000 to 111,000);
–44,000 (–223,000 to 75,000)

0.058 (0.025 to 0.109)20 (9 to 37)Women

aQALY: quality-adjusted life year.
bUI: uncertainty interval.
cA negative cost indicates that the intervention is cost saving to the health system.
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The modeled lifetime health gains among adults experiencing
overweight or obesity were 0.065 (95% UI 0.041-0.097) QALYs
per 1000 target population. By ethnicity, the gains for non-Māori
were 0.064 (95% UI 0.037-0.100) QALYs and for Māori 0.070
(95% UI 0.038-0.113) QALYs.

Scenario and Sensitivity Analyses
A range of results for scenario and sensitivity analyses are
presented in Table 4. The modifications to the intervention
pathway scenarios of either a more effective mass media
campaign (eg, with better reach and targeting; scenario 1), more
effective apps (scenario 2), or greater adherence to app use
(scenario 3) all resulted in higher health gains and greater
savings to the health system. When the model was altered to

delay weight regain by 1 year (scenario 4a), 5 years (scenario
4b), or a highly hypothetical scenario of eliminating weight
regain altogether (scenario 4c), the improved health gains and
cost savings went from modest (eg, absolute increase in 20
QALYs for weight regain by 1 year) to markedly greater (eg,
absolute increase in 14,544 QALYs for no weight regain). This
highlights the substantial further health and economic benefits
if weight regain was prevented across the remaining life course.
The meta-analysis value [17] used in the previous modeling of
mass media campaigns to promote weight loss [36] (scenario
5) yielded lower health gains and cost the health system,
suggesting that apps have become increasingly more effective
in weight management. The varied discount rates yielded results
in the expected directions (scenarios 6a and 6b).

Table 4. Sensitivity and scenario analyses for a mass media campaign to promote weight loss smartphone apps by age, sex, and ethnicity (expected
value analysis, lifetime perspective, and 3% discount rate, unless otherwise stated).

Difference in health system
costs from base case, %

Health system costsc, NZ $
(US $)

Difference in QALYs
from base case, %

Health gain in

QALYsbSensitivity and scenario analysesa

—–625,000 (–421,000)—d183Base case analysis

286–2,414,000 (–1,620,000)512761. Mass media campaign: higher recognition
at 68%

280–2,375,000 (–1,600,000)502742. Increase effect size of app use by 50%

293–2,454,000 (–1,650,000)522783. 100% of population use the app for more
time

284–2,400,000 (–1,620,000)112034a. Delaying weight regain by 1 year

3305–21,271,000 (–14,300,000)5891,2614b. Delaying weight regain by 5 years

45,762–286,465,000
(–193,000,000)

794814,7274c. No weight regain

–3481,549,000 (–1,040,000)–62695. Value from the previous Cleghorn et al
[36] mobile health modeling study

203–1,892,000 (–1,270,000)833346a. 0% discount rate

–130186,000 (–125,000)–381146b. 6% discount rate

aExpected values given for all scenarios.
bQALY: quality-adjusted life year.
cA negative cost indicates that the intervention is cost saving to the health system.
dBase case is the reference with which scenarios are compared.

Discussion

Principal Findings and Interpretation
The results from this updated health economic simulation
modeling suggest that a hypothetical government-initiated mass
media campaign to promote use of smartphone weight loss apps
would result in modest health gains over the remaining lifetime
of the New Zealand adult population. There was an estimated
net saving to the health care system because of reductions in
BMI-related diseases, although the UIs included estimates that
were cost-effective (rather than cost saving). The intervention
would be expected to generate greater per capita health gain for
Māori and therefore potentially reduce health inequities
attributable to BMI differences between Māori and non-Māori,
assuming that the intervention would be as effective for Māori
as it is for non-Māori.

Several key characteristics contributed to this modeled mass
media intervention being cost-effective. First, and perhaps most
importantly for this study, recent evidence from a meta-analysis
of randomized controlled trials and case-control studies shows
that the use of smartphone weight loss apps largely results in
some degree of weight loss, even when accounting for variations
in the duration of app use [46]. Several different behavioral
theories suggest that self-monitoring progress toward a goal is
a critical step between setting a goal and achieving a goal [59].
Apps can be a useful tool for self-monitoring dietary behaviors
[9]. Monitoring progress helps to ensure that goals are translated
into action, and the effect of an intervention on goal attainment
is mediated by the frequency of monitoring [59]. Second, there
was a sizable target population for this intervention: adults with
excess weight who own a smartphone make up approximately
60% of the population. Accordingly, even small reductions in
weight can achieve wide-reaching benefits in health [1]. Third,
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government-initiated mass media campaigns are relatively low
cost, especially in comparison with measures such as health
service provision [60]. When designed well, mass media
campaigns are effective at reaching a substantial proportion of
the population with key health messages that can lead to
modifications in behavior [29]. The World Health Organization
has identified mass media as playing an important role in
coherent national strategies for obesity prevention and
management [61].

We found that there was very limited research examining
whether mass media campaigns stimulate the specific action of
adopting use of a smartphone app. Therefore, we relied on a
UK evaluation of a mass media campaign that encouraged the
use of a physical activity app [45]. A mass media campaign to
promote a weight loss app would have been more appropriate.
The tobacco control literature reports that media campaigns are
associated with increased downloads of health apps (eg, smoking
cessation apps) [62] and behavior changes further downstream
(ie, attempts to quit smoking) [63]. There may be ways of
making the mass media campaign more effective by targeting
specific population groups in the messaging. For instance, there
is evidence that mass media campaigns can better reach ethnic
minorities using highly feasible social media or mass media
that have reach to particular audiences [64] (eg, iwi radio and
Māori Television in the New Zealand context).

Comparison With Prior Work
This paper provides new evidence using updated parameters on
the potential health gain and cost-effectiveness of this health
intervention. The previous Cleghorn et al [36] modeling
conducted by some of our team found that there was very
minimal health gain from the mass media campaign to promote
mHealth interventions and that the intervention was not
cost-effective [36]. However, there are 3 notable differences
between the methods used in this study and the previous
modeling by Cleghorn et al [36]. Most importantly, in this study,
we used the results of a very recent meta-analysis of studies of
smartphone weight loss apps showing a meaningful decrease

in BMI (–0.454 kg/m2, 95% CI –0.787 to –0.121 kg/m2) [46].
The previous modeling used the best available evidence at the
time, which was a meta-analysis of mobile device interventions
that included apps as well as tools such as SMS text messaging
[36]. The pooled effect size, which is measured in kilograms
rather than BMI units, showed a comparatively smaller reduction
in weight (–0.430, 95% CI –0.609 to –0.252 kg); this smaller
effect size was the main contributor to the difference between
the 2 studies. For some intervention pathway steps that were
the same between the 2 modeling studies, we used different,
more recent data. Specifically, smartphone ownership was higher
than previously modeled and the reach of the mass media
campaign was lower. We also conceptualized some of the
pathway between the initial intervention (ie, the mass media
campaign) to the effect size (ie, the effect of weight loss app
use on BMI) based on new evidence that was incorporated into
other modeling on mass media campaigns [37]. In our sensitivity
analyses, we used the previously modeled effect size to isolate
how much of a difference was due to the revised pathway versus
the effect size. We found that most of the improved outcomes

in our modeling were due to greater effectiveness of the apps,
with only a small proportion of the gain due to the different
conceptualization of the pathway. Our study adds to the very
limited simulation modeling evidence on the cost-effectiveness
of health apps [36-38].

Strengths and Limitations
A strength of this research is that it builds upon an established
model [40], uses an effect size from a recent meta-analysis [46],
and uses high-quality disease data that includes ethnicity-specific
data [40]. There are a number of other ways that the mass media
campaign could have been modeled, including alternative
pathways that reflect numerous theories used to inform the
development of mass media campaigns [29]. To account for a
degree of uncertainty in input parameters and stochastic
uncertainty, we modeled distributions of these inputs and
quantified this variation using UIs. Parallel pathways for
achieving impacts could be part of this intervention. For
instance, we did not model that app uptake may also be by
people who did not see the campaign but whose family members
or friends saw it, started to use the app, and encouraged them
to use it. In addition, the modeling might have underestimated
the health benefits, given that there is evidence that mHealth
interventions can result in changes in dietary intake beyond
reduced weight loss, such as increased fruit and vegetable intake
and decreased takeout meals [7] (which are typically high in
sodium, sugar, and saturated fats). Some of these apps can also
promote physical activity, which provides benefits to health
beyond just a BMI pathway (eg, to mental health and
cardiovascular health). It is unclear what proportion of the New
Zealand population is already using a weight loss app and thus
would not take up this intervention. However, despite the
relatively high availability of mHealth apps, the level of
awareness of such apps by individuals may be relatively low
[65] and the apps being used may not be on the high-quality
end of the spectrum. Our modeling did not account for
differential impacts of either different apps or individual
characteristics that could influence the adoption and engagement
of apps, including the duration of this engagement and the
quality of this engagement. Such differential impacts are too
complex for inclusion in models of this design and also require
highly detailed data for accurate measures. There is also no
consistent definition for measuring constructs such as adherence
to app use, which can encompass characteristics such as
frequency, consistency, and detail of dietary monitoring [66].

Potential Policy Implications
As part of a wide range of interventions to address the
obesogenic environment and unhealthy dietary patterns,
governments should consider investing in promoting such weight
loss apps, along with funding research that improves their
effectiveness and uptake in the community. But all such
interventions should also be well evaluated, particularly given
the large potential for scalability. Laws and taxes can create a
less obesogenic environment (and have been shown to be more
cost-effective than nutrition mass media campaigns [60]).
However, such actions can take time, and there is political and
food industry resistance [67]. Hence, there is a role for tools
(such as smartphone apps) that support using dietary changes
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that improve weight management as complementary measures.
Smartphone apps can also be combined with traditional
interventions (eg, face-to-face counseling) [68], can form a
component of a broader national social marketing health strategy
[69], or they can be used as stand-alone treatments [54]. There
may be further benefit from smartphone apps when face-to-face
contact with patients must be limited [9], as in the case of the
COVID-19 pandemic.

Conclusions
Using recent evidence on the effectiveness of smartphone weight
loss apps, a modeled mass media campaign to encourage the

adoption of smartphone apps to promote weight loss among the
New Zealand adult population is expected to yield an overall
gain in health and to be cost saving to the health system. This
is an update of previous modeling that showed a smaller health
gain and that the intervention was not cost-effective. Although
other interventions in the nutrition and physical activity space
are even more beneficial to health and cost savings (eg, pricing
policies and food reformulation [60]), governments may choose
to include strategies to promote health app use as a feasible
complementary measure.
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