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Phenylenes are a class of conjugated hydrocarbons composed of a special arrangement of six- and four-membered 
rings. In this paper, the expected values of the atom-bond connectivity (ABC), geometric-arithmetic (GA), and 
Zagreb indices of this class of conjugated hydrocarbons have been determined. At the end, the comparisons 
with respect to the random phenylene chains among the expected values of these indices, have been determined 
explicitly. The graphical profiles of these indices have been shown in order to support our results.
1. Introduction

There are lot of topological indices in the literature of chemical 
graph theory. The first of it kind is the Wiener index [1]. After that 
most important topological index is a class of the Zagreb indices [2], 
molecular connectivity [3, 4, 5]. The first and second Zagreb indices 
are defined as:

𝑀1(𝐺) =
∑

𝑢𝑣∈𝐸(𝐺)
𝑑𝑢 + 𝑑𝑣 (1)

𝑀2(𝐺) =
∑

𝑢𝑣∈𝐸(𝐺)
𝑑𝑢𝑑𝑣 (2)

A new index named atom-bond connectivity (ABC) index was intro-

duced by Estrada et al. in 1998 and defined as

𝐴𝐵𝐶(𝐺) =
∑

𝑢𝑣∈𝐸(𝐺)

√
𝑑𝑢 + 𝑑𝑣 − 2

𝑑𝑢𝑑𝑣
(3)

In the same paper [6], the authors used this index to model thermo-

dynamic properties of organic chemical compounds. In 2008, Estrada 
[7], proved that ABC-index can be used as a tool to explain the stability 
of branched alkanes. This new idea has attracted many Mathematicians 
which gave lot of mathematical properties of ABC-index.

In 2009, Vukicevic and Furtula [8] introduced a new topological 
index of a graph 𝐺, named the geometric-arithmetic(GA) index and is 
defined as follows:
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𝐺𝐴(𝐺) =
∑

𝑢𝑣∈𝐸(𝐺)

2
√
𝑑𝑢𝑑𝑣

𝑑𝑢 + 𝑑𝑣
(4)

It is proved in [8] that some physico-chemical properties of a com-

pound can be well correlated with GA index and predict more accurate 
that than Randic index. There are lot of research papers related to the 
GA index of a graph 𝐺 which can be found in literature, see for exam-

ple [9, 10, 11]. There are plenty of papers outlined the mathematical 
properties of these four indices, for example one can consults the papers 
[10, 12, 13, 14, 15, 16, 17, 18] and the references therein.

The phenylenes exhibit unique physicochemical properties due to 
their aromatic and antiaromatic rings. The phenylenes composed of a 
special arrangement of six- and four-membered rings. More precisely, 
any two six-membered rings are not adjacent, and every four-membered 
ring is adjacent to a pair of nonadjacent six-membered rings (hexagons).

In general, phenylenes, especially phenylene chains have attracted 
much attention due to excellent properties. For example it was a great 
discovery in the theory of phenylenes that many 𝜋-electron properties 
of a phenylene are closely related to the analogous properties of a ben-

zenoid molecule, called its hexagonal squeeze (HS).

There are unique phenylene chains for 𝑛 = 1 and 𝑛 = 2 as shown 
in Fig. 1. More generally, for 𝑛 ≥ 3, the terminal hexagon can be at-

tached in three different ways, which results in a random phenylene 
chain (𝑛, 𝜌) with probability 𝜌, as shown in Fig. 1. Thus (𝑛, 𝜌)
can be obtained by stepwise addition of terminal hexagons. At each step 
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Fig. 1. The three types of local arrangements in phenylene.

Fig. 2. The linear and kicks chains.
𝑘(= 3, 4, … , 𝑛) a random selection is made from one of the three possible 
constructions:

(a) 𝑘−1 →
1
𝑘

with probability 𝜌,

(b) 𝑘−1 →
2
𝑘

with probability 𝜌, or

(c) 𝑘−1 →
3
𝑘

with probability 𝑞 = 1 − 2𝜌, with probability.

If, we consider the probability is invariant to the step parameter 
and constant, then this process is a zeroth-order Markov process. If we 
obtained a random phenylene chains which involved only the first or 
second types of arrangements, then such a chain will be called all-kinks 
chains, denoted by 𝐻𝑛 and if we obtained a chain from only third type 
of arrangements, then such a chain will be called linear and denoted 
by 𝐿𝑛 for example see Fig. 2. There are few papers which focused on 
the random structure of a chemical graphs, see for example [19, 20] 
and references therein. It was discovered that the algebraic structure 
count of a phenylene is equal to the number of Kekule structures of the 
associated hexagonal squeeze [21, 22]. The energy and Estrada index 
of phenylenes has been determined in [23]. A lot of papers have been 
published related to the topological indices of this class of hydrocar-

bons, for example, the total 𝜋-electron energy [22], Narumi-Katayama 
index [24], and PI index [25], Merrifild-Simmons index [26], anti-Kekul 
and antiforceing number [27], Omega index and related polynomials 
[28, 29]. The Wiener index of phenylenes has been calculated in [30].

Peng and Li [31] obtained the Kirchhoff index and the number of 
spanning trees of linear phenylene chains.

Chen and Zhang [32] obtained expected value of Wiener index of a 
random phenylene chain. Very recently, Li, and Shuchao [33] obtained 
the extremal phenylene chains with respect to the coefficients sum of 
the permanently polynomial, the spectral radius, the Hosoya index and 
2

the Merrifield–Simmons index. In [34] the extremal phenylene chains 
with respect to Kirchhoff index and degree based topological indices 
have been characterized. For more details one may see [35, 36, 37, 
38, 39, 40, 41, 42]. In this paper, we extend the study of this class of 
hydrocarbon for four different types of indices namely, ABC, GA and the 
Zagreb indices and give their expected values for the same probability 
and outlines a details comparison between these indices with respect 
to the random phenylene chains. More precisely, we have proved that

ABC index is always less than the GA index and first Zagreb index is less 
than the second Zagreb index for any value of 𝑛 and 𝜌.

2. The ABC and GA indices in random phenylene chains

In this section, the ABC and GA indices in a random polyphenyl 
chain 𝑛 with 𝑛 hexagons will be considered. For that, let 𝑛 be 
the chain obtained from 𝑛−1 as shown in Fig. 1. From the structure 
of the 𝑛 chain, it is easy to see that there exist only three types 
of edge in 𝑛 namely (2, 2), (2, 3), and (3, 3), thus, one can obtain 
following forms of these two indices:

𝐴𝐵𝐶(𝑛) =
1√
2
𝑥22(𝑛)

+ 1√
2
𝑥23(𝑛) +

2
3
𝑥33(𝑛).

(5)

𝐺𝐴(𝑛) =𝑥22(𝑛)

+
2
√
6

5
𝑥23(𝑛) + 𝑥33(𝑛).

(6)

Hence in order to compute ABC and GA indices of 𝑛, one has 
to determine 𝑥22(𝑛), 𝑥23(𝑛) and 𝑥33(𝑛) type of edges and 
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for simplicity, we denote 𝑥𝑖𝑗 (𝑛) just by 𝑥𝑖𝑗 . As due to the local 
arrangements, it is clear (𝑛; 𝜌, 𝜌) is a random phenylene chains. 
So, 𝐴𝐵𝐶((𝑛; 𝜌)) and 𝐺𝐴((𝑛; 𝜌)) are random variables. Let us 
denote by 𝐸𝑛 = 𝐸[𝐴𝐵𝐶((𝑛; 𝜌))] and 𝐸𝑎

𝑛
= 𝐸[𝐺𝐴((𝑛; 𝜌))], the 

expected values of these indices, respectively.

Theorem 1. If 𝑛 ≥ 2 and (𝑛; 𝜌) is a random phenylene chain of length 
𝑛, then

𝐸𝑎
𝑛
=
[
(4 −

8
√
6

5
)𝜌+ 4 +

8
√
6

5
]
𝑛+ (

16
√
6

5
− 8)𝜌+

√
2 −

8
√
6

5
.

Proof. Since 𝐸𝑎
2 = 10 + 8

√
6

5 which is true, thus for 𝑛 ≥ 3, there are three 
possibilities to be considered as shown in Fig. 1.

1. If 𝑛−1 →
1
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥23(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (6), we have

𝐺𝐴(
1
𝑛
) =𝐺𝐴(𝑛−1) +

4
√
6

5 + 6.

2. If 𝑛−1 →
2
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥23(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (6), we have

𝐺𝐴(
1
𝑛
) =𝐺𝐴(𝑛−1) +

4
√
6

5 + 6.

3. If 𝑛−1 →
3
𝑛

with probability 1 − 2𝜌, then

𝑥22(
3
𝑛
) = 𝑥22(𝑛−1), 𝑥23(

3
𝑛
) = 𝑥23(𝑛−1) + 4 and

𝑥33(
3
𝑛
) = 𝑥33(𝑛−1) + 4 and from (6), we have

𝐺𝐴(
3
𝑛
) =𝐺𝐴(𝑛−1) + 4 + 8

√
6

5 .

Thus, we obtain

𝐸𝑎
𝑛
= 𝜌𝐺𝐴(

1
𝑛
)

+ 𝜌𝐺𝐴(
2
𝑛
) + (1 − 2𝜌)𝐺𝐴(

3
𝑛
)

= 2𝜌[𝐺𝐴(𝑛−1) +
4
√
6

5
+ 6]

+ (1 − 2𝜌)[𝐴𝐵𝐶(𝑛−1) + 4 +
8
√
6

5
]

𝐸𝑎
𝑛
=𝐺𝐴(𝑛−1) + 𝜌[4 −

8
√
6

5
] + [4 +

8
√
6

5
]. (7)

But 𝐸[𝐸𝑛]𝑎 =𝐸𝑎
𝑛
, so apply the operator 𝐸 on (7), we get

𝐸𝑎
𝑛
=𝐸𝑎

𝑛−1 + 𝜌[4 −
8
√
6

5
] + [4 +

8
√
6

5
]. 𝑛 > 2 (8)

and after solving the recurrence relation (8) with initial condition, we 
get

𝐸𝑎
𝑛
=
[
(4 −

8
√
6

5
)𝜌+ 4 +

8
√
6

5
]
𝑛+ (

16
√
6

5
− 8)𝜌+

√
2 −

8
√
6

5
. □

Theorem 2. If 𝑛 ≥ 2 and (𝑛; 𝜌) is a random phenylene chain of length 
𝑛, then

𝐸𝑛 =
[
( 4
3
−
√
2)𝜌+ 2

√
2 + 8

3
]
𝑛+ (2

√
2 − 8

3
)𝜌+

√
2 − 8

3
.

Proof. Since 𝐸2 =
8
3 + 5

√
2 which is true, thus for 𝑛 ≥ 3, there are three 

possibilities to be considered as shown in Fig. 1.

a. If 𝑛−1 →
1
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥23(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (5), we have

𝐴𝐵𝐶(
1) =𝐴𝐵𝐶(𝑛−1) +

3
√
2 + 10 .
𝑛 2 3

3

b. If 𝑛−1 →
2
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥23(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (5), we have

𝐴𝐵𝐶(
1
𝑛
) =𝐴𝐵𝐶(𝑛−1) +

3
√
2

2 + 10
3 .

c. If 𝑛−1 →
3
𝑛

with probability 1 − 2𝜌, then

𝑥22(
3
𝑛
) = 𝑥22(𝑛−1), 𝑥23(

3
𝑛
) = 𝑥23(𝑛−1) + 4 and

𝑥33(
3
𝑛
) = 𝑥33(𝑛−1) + 4 and from (5), we have

𝐴𝐵𝐶(
3
𝑛
) =𝐴𝐵𝐶(𝑛−1) + 2

√
2 + 8

3 .

Thus, we obtain

𝐸𝑛 = 𝜌𝐴𝐵𝐶(
1
𝑛
)

+ 𝜌𝐴𝐵𝐶(
2
𝑛
) + (1 − 2𝜌)𝐴𝐵𝐶(

3
𝑛
)

= 2𝜌[𝐴𝐵𝐶(𝑛−1) +
3
√
2

2
+ 10

3
]

+ (1 − 2𝜌)[𝐴𝐵𝐶(𝑛−1) + 2
√
2 + 8

3
]

𝐸𝑛 =𝐴𝐵𝐶(𝑛−1) + 𝜌[ 4
3
−
√
2] + [2

√
2 + 8

3
]. (9)

But 𝐸[𝐸𝑛] =𝐸𝑛, so apply the operator 𝐸 on (9), we get

𝐸𝑛 =𝐸𝑛−1 + 𝜌[ 4
3
−
√
2] + [2

√
2 + 8

3
]. 𝑛 > 2 (10)

and after solving the recurrence relation (10) with initial condition, we 
get

𝐸𝑛 =
[
( 4
3
−
√
2)𝜌+ 2

√
2 + 8

3
]
𝑛+ (2

√
2 − 8

3
)𝜌+

√
2 − 8

3
. □

We know that the phenylene linear and all-kinks-chains can be ob-

tained for special value of the probability as 𝐿𝑛 =(𝑛; 12 ) phenylene 
all-kinks-chains 𝐻𝑛 =(𝑛; 0), respectively (see Fig. 2). We can ob-

tain the ABC and GA indices of these special chains from Theorems 2

and 1 as corollary, which were computed in [34] as extremal graphs 
with respect to these two indices.

Corollary 3. For 𝑛 ≥ 2, we have

1. • 𝐴𝐵𝐶(𝐿𝑛) = ( 103 + 3
√
2)𝑛 + 2

√
2 − 4.

• 𝐴𝐵𝐶(𝐻𝑛) = ( 83 + 2
√
2)𝑛 +

√
2 − 8

3 .

2. • 𝐺𝐴(𝐿𝑛) = (6 + 4
√
6

5 )𝑛 − 2.

• 𝐺𝐴(𝐻𝑛) = (4 + 8
√
6

5 )𝑛 + 2 − 8
√
6

5 .

2.1. A comparison between the expected values of ABC and GA indices for 
random phenylene chains

In this subsection, we will give analytic comparison between the 
expected values for the ABC and GA indices for a random phenylene 
chains with same 𝜌 probability. The graphical profile of the comparison 
is given in Fig. 3 which suggests that GA index is always greater than 
the ABC index for any 𝑛.

Theorem 4. If 𝑛 ≥ 2, then

𝐸[𝐺𝐴((𝑛;𝜌))] >𝐸[𝐴𝐵𝐶((𝑛;𝜌))].

Proof. It is easy to see that the statement is true for 𝑛 = 2. Thus, for 
𝑛 > 2, by applying the Theorems 2 and 1, we get

𝐸[𝐺𝐴((𝑛;𝜌))] −𝐸[𝐴𝐵𝐶((𝑛;𝜌))]
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Fig. 3. Comparison between 𝐸[𝐴𝐵𝐶] and 𝐸[𝐺𝐴].

=
{[

(4 −
8
√
6

5
)𝜌+ 4 +

8
√
6

5
]
𝑛

+ (
16
√
6

5
− 8)𝜌+

√
2 −

8
√
6

5

}
−

{[
( 4
3
−
√
2)𝜌+ 2

√
2 + 8

3
]
𝑛

+ (2
√
2 − 8

3
)𝜌+

√
2 − 8

3

}
.

=
[
(4 −

8
√
6

5
− 4

3
+
√
2)𝜌+ 4 +

8
√
6

5
− 2

√
2 − 8

3
]
𝑛

+ (
16
√
6

5
− 8 − 2

√
2 + 8

3
)𝜌+ 2 −

√
2 + 8

3
−

8
√
6

5

where 𝛼 = 4 −
8
√
6

5
− 4

3
+
√
2 > 0

= 𝜌𝛼(𝑛− 2) + (2 −
√
2)(2𝑛+ 1) + 8(𝑛− 1)[

√
6
5

− 1
3
]

> 0 ∵𝑛 > 2 𝑎𝑛𝑑 0 ≤ 𝜌 ≤ 1∕2. □

3. The Zagreb indices in random phenylene chains

This section is devoted to compute the expected values of the first 
and second Zagreb indices for a phenylene chain 𝑛. From equa-

tions (1) and (2) and the structure of the chain 𝑛, we have the 
followings:

𝑀1(𝑛) = 4𝑥22(𝑛) + 5𝑥23(𝑛) + 6𝑥33(𝑛). (11)

𝑀2(𝑛) = 4𝑥22(𝑛) + 6𝑥23(𝑛) + 9𝑥33(𝑛). (12)

Thus, to compute the Zagreb indices of 𝑛, one has to determine 
𝑥22(𝑛), 𝑥23(𝑛) and 𝑥33(𝑛) type of edges and for simplicity 
we denote 𝑥𝑖𝑗 (𝑛) by 𝑥𝑖𝑗 . Due to the local arrangement, it is clear

that (𝑛; 𝜌) is a random phenylene chain. So are 𝑀1((𝑛; 𝜌))
and 𝑀2((𝑛; 𝜌)). Let us denote by 𝐸1

𝑛
=𝐸[𝑀1((𝑛; 𝜌))] and 𝐸2

𝑛
=

𝐸[𝑀2((𝑛; 𝜌))], the expected values of these indices, respectively.

Theorem 5. If 𝑛 ≥ 2 and (𝑛; 𝜌) is a random phenylene chain of length 
𝑛, then

𝐸1
𝑛
= 44𝑛− 20.

Proof. Since 𝐸1
2 = 68 which is true, thus for 𝑛 ≥ 3, there are three pos-

sibilities to be considered as shown in Fig. 1.

1. If 𝑛−1 →
1
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥23(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (11), we have

𝑀1(
1) =𝑀1(𝑛−1) + 44.

𝑛

4

2. If 𝑛−1 →
2
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥23(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (11), we have

𝑀1(
1
𝑛
) =𝑀1(𝑛−1) + 44.

3. If 𝑛−1 →
3
𝑛

with probability 1 − 2𝜌, then

𝑥22(
3
𝑛
) = 𝑥22(𝑛−1), 𝑥23(

3
𝑛
) = 𝑥23(𝑛−1) + 4 and

𝑥33(
3
𝑛
) = 𝑥33(𝑛−1) + 4 and from (11), we have

𝑀1(
1
𝑛
) =𝑀1(𝑛−1) + 44.

Thus, we obtain

𝐸1
𝑛
= 𝜌𝑀1(

1
𝑛
) + 𝜌𝑀1(

2
𝑛
)

+ (1 − 2𝜌)𝑀1(
3
𝑛
)

= 2𝜌[𝑀1(𝑛−1) + 44]

+ (1 − 2𝜌)[𝑀1(𝑛−1) + 44].

𝐸1
𝑛
=𝑀1(𝑛−1) + 44. (13)

But 𝐸[𝐸1
𝑛
] =𝐸1

𝑛
, so apply the operator 𝐸 to (13), we get

𝐸1
𝑛
=𝐸1

𝑛−1 + 44. 𝑛 > 2 (14)

and after solving the recurrence relation (14) with initial condition, we 
get

𝐸1
𝑛
= 44𝑛− 20. □

It is interesting to note that the expected value of first Zagreb index 
does not depend upon the probability 𝜌.

Theorem 6. If 𝑛 ≥ 2 and (𝑛; 𝜌) is a random phenylene chain of length 
𝑛, then

𝐸2
𝑛
= (60 + 2𝜌)𝑛− 4(𝜌+ 9).

Proof. Since 𝐸2
2 = 84 which is true, thus for 𝑛 ≥ 3, there are three pos-

sibilities to be considered as shown in Fig. 1.

1. If 𝑛−1 →
1
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥32(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (12), we have

𝑀2(
1
𝑛
) =𝑀2(𝑛−1) + 61.

2. If 𝑛−1 →
2
𝑛

with probability 𝜌, then

𝑥22(
1
𝑛
) = 𝑥22(𝑛−1) + 1, 𝑥23(

1
𝑛
) = 𝑥23(𝑛−1) + 2 and 

𝑥33(
1
𝑛
) = 𝑥33(𝑛−1) + 5 and from (12), we have

𝑀2(
1
𝑛
) =𝑀2(𝑛−1) + 61.

3. If 𝑛−1 →
3
𝑛

with probability 1 − 2𝜌, then

𝑥22(
3
𝑛
) = 𝑥22(𝑛−1), 𝑥23(

3
𝑛
) = 𝑥23(𝑛−1) + 4 and

𝑥33(
3
𝑛
) = 𝑥33(𝑛−1) + 4 and from (12), we have

𝑀2(
3
𝑛
) =𝑀2(𝑛−1) + 60.

Thus, we get

𝐸2
𝑛
= 𝜌𝑀2(

1
𝑛
)

+ 𝜌𝑀2(
2
𝑛
) + (1 − 2𝜌)𝑀2(

3
𝑛
)

= 2𝜌[𝑀2(𝑛−1) + 61]

+ (1 − 2𝜌)[𝑀2(𝑛−1) + 60]

𝐸2
𝑛
=𝑀2(𝑛−1) + 2𝜌+ 60. (15)

But 𝐸[𝐸𝑛]2 =𝐸2
𝑛
, so apply the operator 𝐸 on (15), we get

𝐸2
𝑛
=𝐸2

𝑛−1 + 2𝜌+ 60. 𝑛 > 2 (16)

and after solving the recurrence relation of (16) with initial condition, 
we get

𝐸2 = (60 + 2𝜌)𝑛− 4(𝜌+ 9). □

𝑛
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Fig. 4. Comparison between 𝐸[𝑀2] and 𝐸[𝑀1].

The phenylene linear chain 𝐿𝑛 = (𝑛; 12 ), phenylene alkicks-

chain 𝐻𝑛 = (𝑛; 0) were characterized as the extremal phenylene 
chains with respect to the Zagreb indices in [34]. It is easy to obtain the 
Zagreb indices of these special chains as corollary of Theorems 5 and 6.

Corollary 7. For 𝑛 ≥ 2, we have

1. • 𝑀1(𝐿𝑛) =𝑀1(𝐻𝑛) = 44𝑛 − 20.

2. • 𝑀2(𝐿𝑛) = 61𝑛 − 38.

• 𝑀2(𝐻𝑛) = 60𝑛 − 36.

3.1. A comparison between the expected values of Zagreb indices for 
random phenylene chains

In this subsection, we will give analytic comparison between the 
expected values of the Zagreb indices for a random phenylene chains. 
The graphical profile of the comparison is given in Fig. 4 which suggests 
that second Zagreb index is always greater than the first Zagreb index 
for any 𝑛.

Theorem 8. If 𝑛 ≥ 2, then

𝐸[𝑀2((𝑛;𝜌))] >𝐸𝑀1((𝑛;𝜌))].

Proof. It is easy to see that the statement is true for 𝑛 = 2. Thus, if 𝑛 > 2, 
then by Theorems 5 and 6, one can have the followings

𝐸[𝑀2((𝑛;𝜌))] −𝐸[𝑀1((𝑛;𝜌))]

= (60 + 2𝜌)𝑛− 4(𝜌+ 9) − 44𝑛+ 20

= 16𝑛+ 2𝑛𝜌− 4𝜌− 16

= 16(𝑛− 1) + 2𝜌(𝑛− 2)

> 0 ∵𝑛 > 2 𝑎𝑛𝑑 0 ≤ 𝜌 ≤ 1∕2. □
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