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World Health Organization (WHO) has prioritized the infectious emerging diseases such
as Coronavirus Disease (COVID-19) in terms of research and development of effective
tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-
Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus
belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the
corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to
use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes.
Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary
DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein
and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein).
Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have
described the generation of pseudotyped VSV with a focus on the optimization and
application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus
has been addressed by its use in neutralizing antibody assays in order to evaluate a new
vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine
efficacy against variants of concern as well as in viral fusion-focused treatment analysis
that can be performed under BSL-2 conditions.

Keywords: vesicular stomatitis virus, SARS-CoV-2, Biosafety Level 3, pseudotyped viruses, pseudovirus,
glycoprotein, ppVSV1G-SARS-CoV-2 S
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INTRODUCTION

Infectious diseases develop and re-emerge regularly, triggering
epidemics and pandemics (Morens et al., 2008). Human
Immunodeficiency Virus/Acquired Immunodeficiency
Syndrome (HIV/AIDS; 1981), Nipah virus (1999), Severe Acute
Respiratory Syndrome (SARS; 2002), Middle East Respiratory
Syndrome (MERS; 2012), and Coronavirus Disease (COVID-19;
2019) are examples of newly emerging infectious diseases while
re-emerging infectious diseases have reappeared in new locations,
such as West Nile in the United States and Russia (Morens and
Fauci, 2020). The World Health Organization’s (WHO) Research
and Development Blueprint Initiative has prioritized infection
diseases such as COVID-19, Crimean-Congo hemorrhagic fever,
Ebola virus and Marburg virus diseases, Lassa fever, MERS and
SARS, Nipah and henipaviral diseases, Rift Valley fever, and
Zika for the development of effective tests, vaccines, antivirals,
and other treatments (Kieny et al., 2016). To be sure, the
pathogens that cause these diseases are classified as risk group
3 (high individual risk and low risk to the community) or risk
group 4 (high individual risk and high risk to the community,
without treatment), which necessitates the use of Biosafety Level
(BSL)-3 and BSL-4 laboratories and facilities for handling and
propagation (Artika and Ma’roef, 2017).

Many nations across the globe lack the infrastructure
and resources needed to research these emerging and re-
emerging pathogens. There are just seven BSL-3 laboratories
in Mexico, and they are typically overworked. From these, the
Biosafety Level 3 Laboratory from Institute for Epidemiological
Diagnosis and Reference1, Biosecurity Unit from Institute of
Biomedical Research from UNAM2, Animal Health Laboratory
from National Service of Agrifood Health, Safety and Quality3,
National Laboratory for Maximum Biological Safety from
National Institute of Medical Sciences and Nutrition “Salvador
Zubirán,”4 and Emerging and Non-Emerging Pathogens Research
Tower from National Institute of Respiratory Diseases5 are
located in Mexico City, whereas the other two BSL-3: the Center
for Research and Assistance in Technology and Design of the
State of Jalisco6 and the University of Monterrey/Autonomous
University of Nuevo León7 are located in Guadalajara, Jalisco and
Nuevo León, Monterrey, respectively. However, because Mexico
has no BSL-4 laboratories, research with WHO-designated
priority diseases such as Ebola is hampered (Figure 1).

To enable the study of BSL-3/-4 pathogens under BSL-2
laboratory conditions, one can use pseudotyped virus (PV) to

1https://www.gob.mx/salud/acciones-y-programas/instituto-de-diagnostico-y-
referencia-epidemiologicos-indre
2https://www.biomedicas.unam.mx/servicios/laboratorio-de-alta-seguridad-
bsl-3/
3https://www.gob.mx/senasica/acciones-y-programas/laboratorio-de-la-
comision-mexico-estados-unidos-para-la-prevencion-de-la-fiebre-aftosa-y-
otras-enfermedades-exoticas-de-los-animales-cpa
4https://www.incmnsz.mx/imagenes/siteLaboratoriodeMicrobiologia/
laboratoriobsl3.html
5https://www.gob.mx/salud/iner
6https://ciatej.mx/
7https://www.udem.edu.mx/es/ciencias-de-la-salud/noticia/cuenta-con-
recertificacion-internacional-laboratorio-de-bioseguridad

study virus entry (Millet et al., 2019). PV, sometimes known
as “pseudoviruses” or “pseudoparticles” (pp), are amplification-
defective viruses capable of just one cycle of replication that
can infect host cells in the same way as wild-type viruses do
(Takada et al., 1997). PVs are primarily derived from retroviruses
[HIV and Murine Leukemia Virus (MLV)] and rhabdoviruses
(VSV) and are used to investigate the function of viral fusion
proteins in enveloped viruses such as lifecycle initiation, host and
cellular tropism, interspecies transmission, viral pathogenesis,
and host cell entry pathways (Moore et al., 2004; Whitt, 2010;
Mendenhall et al., 2012). VSV is a negative polarity enveloped
RNA virus with a genome size of 11 kb that contains five main
viral proteins: nucleoprotein (N), phosphoprotein (P), matrix
protein (M), glycoprotein (G), and large polymerase protein (L).
VSV has been frequently utilized as an enveloped virus for the
creation of efficient PV harboring a foreign virus’s surface protein.

PSEUDOTYPED VESICULAR
STOMATITIS VIRUS: HISTORY

Pseudotyped viruses are useful tools for studying the function of
viral fusion proteins (Moore et al., 2004; Whitt, 2010; Mendenhall
et al., 2012). PVs have been used in phenotypic mixing since
the 1970s, in which two encapsulated viruses “share” coat
proteins while having distinct genetic material (RNA or DNA)
(Choppin and Compans, 1970; Závada, 1972; Huang et al.,
1974). Thus, a temperature-sensitive (ts) mutant of VSV was
reported, which was deficient in the synthesis of its G protein
at nonpermissive temperatures (Schnitzer et al., 1979). Several
PVs were supplemented with foreign viral glycoproteins (GPs)
using VSV strain ts045, including VSV-Avian sarcoma viruses,
VSV-Rous sarcoma virus, VSV-Murine leukemia virus, VSV-
Murine oncoviruses and -murine cytomegalovirus, and Rous-
associated virus 1 is a VSV-Avian retrovirus (Weiss et al.,
1977; Lodish and Weiss, 1979; Schnitzer and Gonczol, 1979;
Weiss and Bennett, 1980). Furthermore, an infectious defective
interfering (DI) particle was characterized as a VSV strain with
faulty replication and amplification of its RNA genome but
proper viral packaging (Pattnaik and Wertz, 1990). These studies
demonstrated RNAs produced from non-viral origins could be
packaged into VSV particles. When co-expressed with the other
VSV proteins, a full negative-stranded genomic RNA from a
cDNA clone of a VSV DI RNA was replicated, transcribed, and
packed into infectious particles (Pattnaik et al., 1992; Stillman
et al., 1995). Full-length positive-sense RNA, complementary
to the VSV genome, can be produced using the bacteriophage
T7 RNA polymerase. Production of the full-length anti-genome
along with proteins required for RNA replication (N, P, and
L) enable the recovery of replication-competent recombinant
(r)VSV from DNA plasmids (Lawson et al., 1995; Whelan
et al., 1995). Recovery of rVSVs lacking the glycoprotein open
reading frame from the genome (ppVSV1G) is accomplished by
supplying the VSV G in trans and they are named ppVSV1G-G
(Schnell et al., 1996). Several reporter genes have been cloned into
ppVSV1G permitting various experimental read-outs, and these
included green and red fluorescent protein (GFP/RFP/DsRed),
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FIGURE 1 | Mexican BSL-3 laboratories. (a) BSL-3 Laboratory from the Institute for Epidemiological Diagnosis and Reference (Mexico City); (b) The Biosecurity Unit
from Institute of Biomedical Research (UNAM, Mexico City); (c) Animal Health Laboratory from National Service of Agrifood Health, Safety, and Quality (Mexico City);
(d) National Laboratory for Maximum Biological Safety from National Institute of Medical Sciences and Nutrition “Salvador Zubirán” (Mexico City); (e) Emerging and
Non-Emerging Pathogens Research Tower from National Institute of Respiratory Diseases (Mexico City); (f) Center for Research and Assistance in Technology and
Design of the State of Jalisco (Guadalajara City), and (g) University of Monterrey/Autonomous University of Nuevo León (Monterrey City).

secreted Embryonic Alkaline Phosphatase (SEAP), and firefly
luciferase (fLuc), generating ppVSV1G-reporter (Takada et al.,
1997; Fukushi et al., 2008; Tani et al., 2010; Muik et al., 2012).

IMPORTANCE OF THE GLYCOPROTEIN
CYTOPLASMIC TAIL IN THE ASSEMBLY
OF PSEUDOTYPED VESICULAR
STOMATITIS VIRUSES

Enveloped viruses have fusion proteins that enable attachment
and fusion into host cells (Barrett and Dutch, 2020). These
viral fusion proteins are classified structurally as class I (e.g.,
HIV Env Glycoprotein), class II (e.g., Rift Valley fever virus
glycoprotein C), and class III (e.g., VSV G glycoprotein),
with all of them exhibiting both pre- and post-fusion static
conformations (Blumenthal et al., 2012; Dessau and Modis, 2013;
Kim et al., 2017). Lassa, Ebola, HIV, MERS, SARS, and SARS-
CoV-2 viruses all feature class I viral fusion glycoproteins that
have two domains, the C- and N-terminal domains located
between the furin-like protease cleavage site (Figure 2). In their
pre- and post-fusion states, they form homotrimers, and their C

terminal domain contains two heptad repeats (HR), a single-pass
transmembrane motif, and a cytoplasmic tail (CT) (Muñoz-
Barroso et al., 1999; Lee et al., 2008; Hastie et al., 2017; Pallesen
et al., 2017; Yuan et al., 2017; Wrapp et al., 2020).

The membrane-associated RING-CH (MARCH)-8, a RING
(really interesting new gene)-finger E3 ubiquitin ligase, has
been reported to downregulate human transmembrane proteins,
including the enveloped viral glycoproteins SARS-CoV-2 spike
(S), HIV-1 Env, and EboV-GP (Tada et al., 2015). The CTs
found in these viral glycoproteins are made up of Lys residues
that can vary in quantity and serve as targets for MARCH-
mediated ubiquitination (Figure 3A). Interestingly, expression of
MARCH8 in the virus-producing cells reduced the levels of viral
glycoprotein and compromised infection of cells was obtained
by replacing Lys residues with Ala (K to A) in the CTs of
these glycoproteins (Lun et al., 2021). Although S glycoprotein
CTs of Coronaviruses (CoVs) features cysteine-rich motifs (six
conserved residues) play an important role in S glycoprotein
function, these cysteines are palmitoylated and their substitution
with Ala (Cys-to-A) affect the S-mediated cell fusion of these
viruses (Figure 3; Chang et al., 2000; Petit et al., 2007).

Coronaviruses S CT comprises a dilysine (KKxx-COOH)
or a dibasic (KxHxx-COOH) endoplasmic reticulum retrieval
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FIGURE 2 | Tridimensional structures of Vesicular Stomatitis Virus G protein and the main class I viral fusion proteins in pre-fusion static conformations. (A) Vesicular
Stomatitis Virus (VSV) class III fusion glycoprotein (PDB: 6TIT) and representative class I viral fusion proteins: (B) SARS-CoV-2 S (PDB: 6VXX), (C) HIV glycoprotein
(GP) 160 (PDB: 6ULC), (D) Lassa virus GP (PDB: 6P91), and (E) Ebola virus GP (PDB: 6QD7). They form homotrimers with two domains, the C- and N-terminal
domains (Magenta, green, and cyan represent each monomer). N terminal contains the receptor binding site and C terminal domain contains two heptad repeats
(HR), a single-pass transmembrane motif, and a cytoplasmic tail (CT).

FIGURE 3 | Amino acid sequences of viral glycoproteins class I CT domains. (A) Vesicular stomatitis virus CT domain Indian strain. (B) Amino acid sequence
alignment of CoVs Spike protein in the CT domains. CRM, cysteine-rich motif; CRD, charge-rich domain; ERRS, endoplasmatic reticulum retrieval signal (KxHxx).
The amino acid alignment was performed with the Jalview v2.11.1.4 using CLUSTAL W. (C) Amino acid of HIV, Lassa, and Ebola virus glycoproteins CT domains.
Underline in Lassa virus indicates the ERRS motif. The HIV CT domain was trimmed to 60 and 40 amino acids in the N and C terminal, respectively. The red squares
indicate Lys that could be implicated in efficient infectivity, while the blue squares indicate the tyrosine-dependent internalization signals (Yxx8 motif, where 8 is F, I,
L, M, or V).

signal, as well as a tyrosine-dependent localization signal (YxxF
or YxxI motif) that interacts with the CoVsM protein for
virions incorporation (Figure 3; Lontok et al., 2004; McBride
et al., 2007; Winter et al., 2008; Shirato et al., 2011). CoVs S
CT with a nonsense mutation-generated 21- or 24-amino acid
deletions (conserved KxHxx motif) showed the highest viral
spread and the appearance of non-syncytium-forming infectious
centers, likely driving rVSV-SARS-CoV-2 S adaptation for the
efficient spread in tissue culture (Case et al., 2020b; Dieterle
et al., 2020). In addition, rVSV-Hantaan virus Gn and Gc
glycoproteins also acquired a substitution in CT (I532K) of

Gn, and a substitution (S1094L) in the stem region of Gc
following three serial passages in Vero cells, that have the
highest viral spread likely for relocalization of Gn/Gc from
the Golgi complex to the cell surface (Slough et al., 2019).
Overall, all findings emphasize the relevance of CT of these
glycoproteins in the production of virus-like particles and virion,
including pseudotyped viruses. Pseudotyped VSV virions have
been used to assess cellular tropism, glycoprotein function,
receptor recognition, and neutralization antibody assay in viruses
from risk groups 3 and 4 (Table 1), including Crimean-Congo
hemorrhagic fever virus, Ebola virus, Marburg virus, Lassa
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TABLE 1 | Application of pseudotyped Vesicular Stomatitis Virus (VSV).

Virus Viral
protein

Research area and application Reporter References

Crimean-Congo
hemorrhagic fever Virus

GP Vaccine, viral entry mechanism, and
neutralizing assay

Luciferase Suda et al., 2016; Rodriguez et al., 2019

Ebola virus GP Vaccine and drug testing GFP Takada et al., 1997; Geisbert and Feldmann, 2011; Lennemann
et al., 2017; Saito et al., 2020

Marburg virus GP Vaccine and drug testing GFP Geisbert and Feldmann, 2011; Zhang et al., 2017; Saito et al., 2020

Lassa virus GP Entry and receptor mechanism, and
neutralization assays

GFP Kunz et al., 2005; Hastie et al., 2017

Nipah virus G/F Fusion mechanism and neutralization
assays

GFP and SEAP Kaku et al., 2009, 2012; Tamin et al., 2009; Contreras et al., 2021

Rift Valley virus GP Serological assays Luciferase Bukbuk et al., 2014

MERS Spike Vaccine, neutralization assays, and
receptor evaluation

Luciferase and
GFP

Fukuma et al., 2015; Liu et al., 2018; Lester et al., 2019

SARS-CoV Spike Vaccine, entry mechanism, and
neutralization assays

GFP Fukushi et al., 2006, 2008; Ge et al., 2006; Kapadia et al., 2008

SARS-CoV-2 Spike Neutralization assays, entry
mechanism, treatment testing, vaccine,
and vaccine efficacy

GFP, luciferase,
and SEAP

Condor Capcha et al., 2020; Gasbarri et al., 2020; Collier et al.,
2021; Malherbe et al., 2021; Tolah et al., 2021; Verma et al., 2021

GP, glycoprotein; GFP, green fluorescent protein; SEAP, secreted alkaline phosphatase; F, fusion; G, attachment.

fever virus, Nipah virus, Rift Valley virus, MERS-CoV, and
SARS-CoV-2 virus (Kunz et al., 2005; Fukushi et al., 2008;
Kaku et al., 2012; Bukbuk et al., 2014; Suda et al., 2016;
Lennemann et al., 2017; Lester et al., 2019; Saito et al., 2020;
Zettl et al., 2020).

PSEUDOTYPED VESICULAR
STOMATITIS VIRUS-SEVERE ACUTE
RESPIRATORY
SYNDROME-CORONAVIRUS-2 SPIKE
PROTEIN

Pneumonia caused by the SARS-CoV-2 virus was recognized as
COVID-19 by the WHO and is now considered a pandemic,
with over 200 million cases and over four million fatalities
globally8. More than three million COVID-19 infections have
been reported in Mexico, with over 250 thousand deaths9.
Because of the SARS-CoV-2 virus’s high infectivity, toxicity,
and lack of therapies, BSL-3 laboratories are necessary for its
handling in drug testing, neutralizing antibodies, and authorized
vaccination effectiveness (Kaufer et al., 2020). As a result, most
research laboratories have been unable to conduct SARS-CoV-2
research; however, the use of ppVSV1G-SARS-CoV-2 S provides
a feasible option for studying this virus at BSL-2 facilities
(Plescia et al., 2021).

The generation of ppVSV1G-SARS-CoV-2 S may be classified
as (a) ppVSV1G packaging and (b) SARS-CoV-2 S protein
production (Figure 4). The ppVSV1G is a viral particle that
can be packaged in vitro by transfection of six plasmids
into the bacteriophage T7 RNA polymerase-harboring cell.

8https://coronavirus.jhu.edu/map.html
9https://datos.covid-19.conacyt.mx/

Although these particles lack a glycoprotein in their genome,
they are coated in VSV-G in trans that result in ppVSV1G-
G (G-complemented particles). In a new passage of cells, it
may incorporate the SARS-CoV-2 S protein onto the virus’s
surface by cotransfection with the S gene-containing plasmid,
producing ppVSV1G-SARS-CoV-2-S particles or pseudotyped
VSV-SARS-CoV-2-S (Lawson et al., 1995; Whelan et al., 1995;
Schnell et al., 1996).

Vesicular Stomatitis Virus-1G
Pseudoparticles Packing
In primary transfection, five plasmids are used to accomplish
ppVSV1G packaging: (1) pVSV-1G-reporter containing all VSV
antigenome directed by the T7 promoter, excepting the GP
gene, which was deleted and replaced by a reporter gene-GFP,
-RFP/DsRed, -SEAP, or -fLuc; (2) pVSV-G containing the VSV
GP gene directed by the T7 promoter; (3) pVSV-L containing
the VSV polymerase (L) gene directed by T7 promoter; (4)
pVSV-N containing VSV nucleocapsid (N) gene directed by
T7 promoter; and (5) pVSV-P containing VSV phosphoprotein
(F) gene directed by T7 promoter. During cellular passages,
ppVSV1G-G is generated with pCAGGS-G containing VSV
GP gene directed by pol II promoter as chicken beta-actin
promoter (Figure 4A).

To be able to transcribe the VSV antigenome and the N, P,
G, and L genes, the HEK293T cell line must first be infected
with the vaccinia virus or transfected with pT7pol (expressing
the bacteriophage T7 RNA polymerase). The VSV polymerase
complex (VSV L and P proteins) and the envelope nucleoprotein
N produce genome from the antigenome RNA produced by T7.
The matrix (M) protein is encoded in the VSV RNA genome
and is produced after the genome is made and transcription
occurs. Because the genome lacks glycoprotein, the cell line must
be transfected with pCAGGS-G to produce G in trans, and
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FIGURE 4 | Scheme of the generation of pseudotyped vesicular stomatitis virus-severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) S. (A) Packaging
of ppVSV. (B) Optimized conditions for cloning Spike gene. (C) ppVSV1G-SARS-CoV-2 S assembly in HEK 293T cells, and infection assay in Vero E6 cells by
ppVSV1G-SARS-CoV-2 S.

make infectious G pseudotyped ppVSV1G-G virions (Figure 4A;
Whitt, 2010).

Production of Severe Acute Respiratory
Syndrome-Coronavirus-2 S Protein:
Optimized S Gene-Containing Plasmid
The SARS-CoV-2 S protein interacts with the host cell receptor,
allowing viral and cellular membranes to fuse. The SARS-CoV-2

S protein comprises a signal peptide, an N-terminal S1 domain,
and a C terminal S2 domain and has 1,274 amino acids. Replacing
rare codons with abundant cognate tRNA in the cytosol can
affect protein translation from mRNA, resulting in guanine
and cytosine enrichment as a process of sequence optimization
with higher steady-state mRNA levels in vitro and protein
expression in vivo (Kudla et al., 2006; Mauro and Chappell, 2014).
Furthermore, the SARS-CoV-2 S protein comprises a short signal
peptide with weak Sec61 recognition, but the inclusion of the nine
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upstream residues improves recognition and increases protein
levels (Havranek et al., 2020).

Severe Acute Respiratory Syndrome-Coronavirus-2 isolates
from the initial human cases in Wuhan had an S protein with
the D614 form; however, the viruses that are currently circulating
in the human population have the G614 form. SARS-CoV-2
viruses with the G614 mutation in the S protein have greater
infectious titers in vitro than those with the D614 mutation
(Korber et al., 2020). Another R682Q mutation in the S protein
has been characterized as a fast adaptation of SARS-CoV-2 after
successive passaging in Vero E6 cells (Ogando et al., 2020).
Both the D614G and R682Q alterations improve VSV-SARS-
CoV-2 pseudotyping, with the S protein containing 19 deleted
residues into the C terminus (19) (Johnson et al., 2020). CT
alterations of various viral envelope GPs, including truncation
and point mutation in this tail, may be necessary to facilitate
appropriate integration into the ppVSV1G-SARS-CoV-2 S. The
greater incorporation into ppVSV1G-SARS-CoV-2 S is most
likely related to a change in cellular localization that produces
additional S at sites of assembly (Zingler and Littman, 1993;
Mammano et al., 1997; Fukushi et al., 2006; Slough et al., 2019).
When compared to WT Spike, first research utilizing shortened
SARS-CoV-2 S protein with a deletion (1) of 8 to 39 amino acids
in CT demonstrated a high titer of ppVSV1G-SARS-CoV-2 S in
119 and 126 (Giroglou et al., 2004). When the deletions 119 and
121 into CT were examined, additional investigations revealed a
high titer of ppVSV1G-SARS-CoV-2 S with increased cell-to-cell
fusion (Case et al., 2020b; Dieterle et al., 2020; Havranek et al.,
2020; Johnson et al., 2020; Schmidt et al., 2020). If necessary,
the SARS-CoV-2 S protein can be fused with a C terminal
3XFLAG tag to detect full-length S without interfering with
fusion, surface expression, translation, and VSV incorporation
of SARS-CoV-2 S protein (Havranek et al., 2020). All findings
have proposed the cloning of Met1-S-121 with usage codons
for efficient production of SARS-CoV-2 S protein and ppVSV
assembly into the optimal cell line (Figure 4B). The obtained
ppVSV viral particles are used to infect a cell line previously
transfected with the plasmid containing the optimized S gene that
will provide S protein for its assembly onto the virus’s surface.

Optimal Cell Line to Evaluate of
Pseudotyped Vesicular Stomatitis
Virus-Severe Acute Respiratory
Syndrome-Coronavirus-2 Spike Entry
By attaching to a cellular receptor, like the angiotensin-converting
enzyme 2 (ACE2), the SARS-CoV-2 S protein promotes viral
entry into target cells (Datta et al., 2020; Wrapp et al., 2020).
The lungs and other tissues, including the nasal and oral mucosa,
vasculature, kidney, heart, gastrointestinal tract, pancreas, and
brain, express ACE2 (Gembardt et al., 2005). Thus, cell lines
from human and animal origin, such as 293T (human kidney
cells), BHK-21 (Syrian hamster kidney cells), Huh-7 (human liver
cells), LLC-PK1 (pig kidney cells), MRC-5 (human lung cells),
MyDauLu/47.1 [Daubenton’s bat (Myotis daubentonii) lung
cells], NIH/3T3 (Mouse embryonic fibroblast cells), RhiLu/1.1
[Halcyon horseshoe bat (Rhinolophus alcyone) lung cells], Vero

(African green monkey kidney cells), Calu-3 (human lung
cells), Caco-2 (human colon cells), MDBK (cattle kidney cells),
MDCKII (Dog kidney cells), A549 (human lung cells), BEAS-
2B (human bronchus cells), and NCI-H1299 (human lung
cells) have been evaluated for ppVSV1G-SARS-CoV-2 S entry
(Hoffmann et al., 2020). Preliminary investigations revealed that
Vero cells were highly susceptible to ppVSV1G-SARS-CoV-
2 S, along with Caco-2 and Calus-3, while other cell lines
tested were not efficient for ppVSV1G-SARS-CoV-2 S entry
(Hoffmann et al., 2020). Vero E6 cells were also initially utilized
in cell-culture-based infection models for SARS-CoV-1 studies
(Keyaerts et al., 2005; Yamate et al., 2005). Several studies
have compared different cell lines for ppVSV1G-SARS-CoV-
2-S entry efficiency. When ppVSV-SARS-CoV-2-S was titrated
in both Vero E6 and MA104 (Monkey African Green kidney)
cell lines, the virus entry was increased (Case et al., 2020b).
In addition, transfecting non-susceptible 293T cells with ACE2,
Furin, and TMPRSS2 greatly enhanced the entry of ppVSV-
SARS-CoV-2-S particles, supporting the fact that ACE2, Furin,
and TMPRSS2 are required for optimal spike infectivity of
kidney cells (Condor Capcha et al., 2020; Johnson et al., 2020;
Xiong et al., 2020).

PSEUDOVIRUS NEUTRALIZATION
ASSAY: SAFETY, SPEED, AND
SCALABLE

Although the enzyme-linked immunosorbent test is extensively
used for detecting SARS-CoV-2 specific antibodies, it does not
offer information on virus-neutralizing antibody titers (Roy et al.,
2020). The neutralization test is a technique for determining
the presence of neutralizing antibodies. The traditional viral
neutralization experiment necessitates the use of a live SARS-
CoV-2 virus, which must be handled in a BSL-3 facility. The
downside of using a live viral test is that it is labor-intensive,
taking up to 4 days to complete (Ogando et al., 2020). To address
these challenges, the pseudovirus neutralization assay (PVNA) is
a viable option since it can be conducted under BSL-2 settings
and is a safe, rapid, and scalable test. ppVSV1G-SARS-CoV-
2 S can be kept for an extended period (≥6 months) with
negligible titer loss at −20 or −80, 4◦C (4 weeks), or even at
room temperature (1 week). Furthermore, ppVSV-SARS-CoV-
1-S may withstand many freeze-thaw cycles without decreasing
their infectivity (Wright et al., 2009; Molesti et al., 2014). Another
advantage of using PVNA is that most ppVSV1G-SARS-CoV-2
S contain a marker gene that can be detected by a fluorescence
or luminescence signal, with a linear correlation between the
value of fluorescence or chemiluminescence and the number of
infected ppVSV1G-SARS-CoV-2 S, allowing for easier and more
accurate quantification (Case et al., 2020b; Nie et al., 2020a).

Material and Equipment
Microplate luminometer is a sensitive, ready-to-use device for
gene reporter, cell-based, and biochemical experiments in 96-
well plates with luminous responses (Alam and Cook, 1990).
Fluorescent imaging and quantitation may be assessed using
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a variety of microscopes that must automatically scan 96-well
plates and include quick focusing, image collection, and big data
processing (Case et al., 2020b). Flow cytometers can also be used
to assess fluorescent-based techniques. ppVSV1G-SARS-CoV-2
S titration is performed in 96-well plates with 10-fold serial
dilution until a total of nine dilutions with six duplicates are
obtained (Figure 5; Crawford et al., 2020).

Calculation of Tissue Culture Infectious
Dose or Pseudotyped Virus
Neutralization Doses
The Reed-Muench method is used to determine the 50%
tissue culture infectious dose (TCID50) or pseudotyped virus
neutralization doses (PVND50) of the ppVSV1G-SARS-CoV-
2 S, which includes calculating the proportional distance (PD)
between dilutions above and below the 50% endpoint (Reed,
2010; Gauger and Vincent, 2014; Manenti et al., 2020). The
dilution factor is defined as the fold difference between two
inoculum titers that are above and below a 50% response rate.
Based on the results of Figure 5, the equation must be applied as
follows:

PD =
(50%)− (% of infected at dilution next below at 50%)

(% of infected next above at 50%)

−(% of infected next below at 50%)

(1)

log ID50 =
(
log of dilution next below at 50%

)
+

(
PD × log of dilution factor

)
(2)

ID50 = 10ID50 (3)

TCID50

mL
= inverse of ID50

/
inoculum volume in mL

×numerical factor to reach 1 mL (4)

Neutralization Assay and Correlation
Sera samples must be diluted before being combined with
ppVSV1G-SARS-CoV-2 S 325 to 1,300 TCID50/mL and
incubated at 37◦C for 1 h. Pre-incubated ppVSV1G-SARS-CoV-
2 S are used to infect cell lines for 24–72 h at 37◦C and 5% CO2,
and the quantification of ppVSV1G-SARS-CoV-2 S infecting
the target cells is estimated by measuring the production of
luciferase or fluorescence as stated in the section “Pseudotyped
Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-
Coronavirus-2 Spike titration” (Figure 5B). The luciferase
activity is determined by relative light units (RLU), whereas
the fluorescence is determined by the number of GFP-positive
cells. Percent neutralization must be adjusted by assuming
uninfected cells to be 100% neutralized and infected cells
with ppVSV1G-SARS-CoV-2 S alone to be 0% neutralized
(Crawford et al., 2020). The PVND50 (50% ppVSV1G-SARS-
CoV-2 S neutralizing doses) is determined as described in the
section “Pseudotyped Vesicular Stomatitis Virus-Severe Acute
Respiratory Syndrome-Coronavirus-2 Spike Titration” (Reed,
2010; Gauger and Vincent, 2014; Manenti et al., 2020).

For some groups, there is a good connection between the
experimental data acquired using authentic SARS-CoV-2 and
the PVNA. Neutralizing activity was detected with a remarkable
connection between the two tests, as demonstrated by Spearman’s
correlation with R values ranging from 0.76 to 0.939 and p values
of <0.001 (Case et al., 2020b; Dieterle et al., 2020; Hyseni et al.,
2020; Nie et al., 2020a; Xiong et al., 2020; Zettl et al., 2020;
Tolah et al., 2021). Furthermore, once a ppVSV1G-SARS-CoV-2
S stock is produced, the PVNA may be completed in 1 day with a
GFP or RLU readout of 7.5 h, whereas the live SARS-CoV-2 assay
takes 30 h (Case et al., 2020b; Nie et al., 2020b).

PSEUDOTYPED VESICULAR
STOMATITIS VIRUS-SEVERE ACUTE
RESPIRATORY
SYNDROME-CORONAVIRUS-2 SPIKE
AND ITS USE

New Variants of Severe Acute
Respiratory Syndrome-Coronavirus-2
A SARS-CoV-2 variant is identified by alterations in receptor
binding, decreased antibody neutralization (post-infection or
post-vaccination), decreased treatment effectiveness, or even a
possible influence on diagnostics, as well as increased anticipated
transmissibility or disease severity (WHO). ppVSV1G-SARS-
CoV-2 S particles can rapidly be produced with the changes in
newly define variants and tested for alterations in neutralizing
capacity and entry efficiencies.

South Africa was the first to describe the SARS-CoV-2
B.1.351 variety (Beta), which was characterized by N501Y,
K417N, and E484K alterations. This variant is more transmissible
and resistant to neutralizing antibodies. ppVSV1G-SARS-CoV-
2 S containing the S protein (B.1.351)-associated mutations
can quickly infect cell cultures and tolerate neutralizing
action of monoclonal antibodies against SARS-CoV-2 S RBD
(Kim et al., 2021).

The SARS-CoV-2 B.1.427/B.1.429 variant (epsilon), a novel
variant with S13I, W152C, and L452R amino acid changes,
was reported for the first time in California (34 nations,
beginning May 2021) with enhanced transmissibility and
infectivity. When compared to the D614G change, ppVSV1G-
SARS-CoV-2 S bearing the L452R change showed a 6.7- to
22.5-fold higher infectivity in cell cultures and lung organoids,
while the W152C change showed just a little increase in
infection in these cells. Furthermore, ppVSV1G-SARS-CoV-
2 S with S13I, W152C, and L452R changes demonstrated
considerable resistance to neutralization by post-infection
(4.0- to 6.7-fold) and vaccination-elicited antibodies (2-
fold) as well as monoclonal antibodies (Deng et al., 2021;
McCallum et al., 2021).

In the New York region, the SARS-CoV-2 B.1.526 variation
(Iota), defined by L5F, T95I, D253G, E484K, or S477N, D614G,
and A701V change, was identified. ppVSV1G-SARS-CoV-2 S
harboring L5F, T95I, D253G, E484K, D614G, and A701V, as
well as L5F, T95I, D253G, S477N, D614G, and Q957R changes,
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FIGURE 5 | The design of titration and pseudovirus neutralization assay (PVNA). (A,B) Infection, titration and PVNA was performed in a 96-well plate with 10-fold
serial dilution of ppVSV1G-SARS-CoV-2 S until a total of 8 or 10 dilutions and 6 or 8 replicates were obtained. Neutralization assay was also performed in a 96-well
plate with 6 dilutions and 2 replicates; however, the sera samples were previously diluted and then mixed with ppVSV1G-SARS-CoV-2 S 325 to 1,300 TCID50/mL
and incubated for 1 h at 37◦C. (C) In titration, the cells containing the luciferase were lysed to perform the luciferase assay and a 96-well-plate luminometer was
used. In the fluorescence method, the DAPI-stained cells containing GFP were analyzed by fluorescence microscope, and the images were analyzed with
specialized software. An alternative method is by using a flow cytometer equipped with a 96-well-autosampler. In PVNA, the luciferase activity was determined by
the relative light units (RLU) and the fluorescence by the number of GFP-positive cells. Percent neutralization must be normalized considering uninfected cells as
100% neutralization and infected cells with ppVSV1G-SARS-CoV-2 S alone as 0% neutralization. (D) The 50% tissue culture infectious dose (TCID50) and/or the
50% ppVSV1G-SARS-CoV-2 S neutralizing doses (PVND50) were calculated according to the Reed-Muench method and reference table.
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showed reduced neutralization by post-infection- (2- to 4.5-fold)
and vaccine-elicited antibodies (2- to 6-fold) (West et al., 2021).

Recently, a new SARS-CoV-2 VOC was identified in
November 2021 and named as Omicron (B.1.1.529) variant
by the WHO10. This variant was first detected in Botswana
(Gauteng Province) on November 11, 2021, and 3 days later
in South Africa. The Omicron variant is characterized by 26–
32 changes in the S protein, particularly within the RBD, as
well as three deletions and one insertion in the S protein, along
with mutations outside of the S protein [Network for Genomic
Surveillance in South Africa (NGS-SA)]. Many of these mutations
are either known or predicted to contribute not only to increase
infectivity and transmissibility, but also to confer therapeutic and
neutralization resistance (Schmidt et al., 2021). Indeed, Pulliam
et al. (2021), reported that reinfections in South Africa have
increased as Omicron has spread. Therefore, studies comparing
the SARS-CoV-2 Omicron variant vs. ppVSV1G-SARS-CoV-2
S are urgently needed to get a better understanding of how the
immune system is reacting to this variant.

We propose comparing the SARS-CoV-2 B.1.617.2 (delta)
variant to ppVSV1G-SARS-CoV-2 S with L452R, D614G, and
P681R amino acid changes. This variety, which is the most
common SARS-CoV-2 strain in Mexico and across the world,
necessitates immediate monitoring for vaccination effectiveness.
In addition, given the fast spread of the Omicron variant, we
also propose to compare the SARS-CoV-2 Omicron variant to
ppVSV1G-SARS-CoV-2 S.

Coronavirus Disease Vaccine
The ongoing development of SARS-CoV-2 variants of concern
(VOC) across the world emphasizes the need of monitoring
the effectiveness of approved vaccinations for human use. So,

10https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.
529)-sars-cov-2-variant-of-concern

far, six very effective COVID-19 vaccines have been approved
for human use: Moderna mRNA1273, BioNTech BNT162b2,
Janssen Ad26.COV2.S, Gamaleya’s Sputnik V, AstraZeneca’s
AZD1222, and CoronaVac. All of these vaccines, albeit in
various forms, are based on the Spike protein. Because VOC
contains polymorphisms on the S gene, there is an urgent
need to evaluate vaccination effectiveness against prevalent
SARS-CoV-2 VOC in all geographic areas. As a result,
ppVSV1G-SARS-CoV-2 S have played an important role in
determining vaccination effectiveness for SARS-CoV-2 VOC.
ppVSV1G-SARS-CoV-2 S, in particular, has been frequently
used in assessing neutralizing antibody titers of vaccinated
persons to evaluate if vaccinations provide enough protection
against SARS-CoV-2 VOC infection (Table 2; Collier et al.,
2021; Ikegame et al., 2021; McCallum et al., 2021; Muik
et al., 2021; Shen et al., 2021a,b; Wang G.-L. et al., 2021;
Wang P. et al., 2021).

Overall, the data show that SARS-CoV-2 VOC can reduce
neutralization potency in vaccinated people’s sera. To note,
the SARS-CoV-2 beta variant exhibited the greatest decrease
in PVNAs in sera from persons who had been vaccinated
with Moderna, Novavax, or PfizerBioNTech (Table 2). Despite
the apparently worrying results obtained in the neutralization
tests, it is important to consider that vaccines also induce
cell mediated immunity; thus, even when neutralization levels
decrease, vaccine effectiveness is still high. As a result,
monitoring the neutralizing activity evoked by vaccine sera
will be required to assess whether a vaccination update is
required to limit the establishment and spread of new SARS-
CoV-2 variations, such as the delta and omicron variants.
Furthermore, ppVSV1G-SARS-CoV-2 S are being utilized in the
development of a vaccine against SARS-CoV-2. Thus, various
VSV-SARS-CoV-2 vaccines have been shown in animal models
to be effective in both generating neutralizing antibodies at
high titers and protecting against the SARS-CoV-2 challenge

TABLE 2 | Summary of post-vaccine sera evaluated for neutralization potency by using pseudotyped VSV-Severe Acute Respiratory Syndrome-Coronavirus-2
(SARS-CoV-2) Spike variants of concern (VOC).

Vaccine Company Spike
construct

Number of
samples

Time of sample
collection

B.1.1.7a (Alpha) P.1a

(Gamma)
B.1.351a (Beta) B.1.429a (Epsilon) References

BNT162b2
BNT162b2

Pfizer/BioNTech
Pfizer/BioNTech

2P
2P

37
21

3 weeks after 1st boost
3 weeks after 2nd boost

3.2-fold decrease
1.9-fold decrease

ND
ND

ND
ND

ND
ND

Collier et al.,
2021

mRNA-1273
NVX-CoV2373

Moderna
Novavax

2P
3Q-2P

29
28

28 days after 2nd boost
2 weeks after 2nd boost

1-3-fold decrease
1-3 fold decrease

ND
ND

ND
ND

ND
ND

Shen et al.,
2021b

BBIBP-CorV
CoronaVac

Sinopharm
Sinovac

Native
Native

25
25

2-3 weeks after 2nd boost
2-3 weeks after 2nd boost

Unchanged
0.7-fold change

ND
ND

2.5-fold change
3.3-fold change

ND
ND

Wang G.-L.
et al., 2021

mRNA-1273
NVX-CoV2372

Moderna
Novavax

2P
3Q-2P

26
23

28 days after 2nd boost
14 days after 2nd boost

ND
ND

ND
ND

9.7-fold decrease
14.5-fold decrease

2- fold decrease
2.5-fold decrease

Shen et al.,
2021a

Sputnik V Gamaleya Native 12 1 month after 2nd boost Unchanged 2.1-fold
decrease

6.1-fold decrease ND Ikegame et al.,
2021

mRNA-1273
BNT162b2

Moderna
Pfizer/BioNTech

2P
2P

12
10

15 days after 2nd boost
7 days after 2nd boost

Unchanged
Unchanged

ND
ND

12.4-fold decrease
10.3-fold decrease

ND
ND

Wang P. et al.,
2021

BNT162b2

BNT162b2

Pfizer/BioNTech

Pfizer/BioNTech

2P

2P

26 (23-55
year-old)

14 (57-73-
year-old)

29 days after 2nd boost

43 days after 2nd boost

0.78-fold decrease

0.83-fold decrease

ND

ND

ND

ND

ND

ND

Muik et al.,
2021

mRNA-1273
BNT162b2

Moderna
Pfizer/BioNTech

2P
2P

15
18

7-27 days after 2nd boost
7-27 days after 2nd boost

ND
1.3-fold reduction

ND
1.7-fold

decrease

ND
3.2-fold decrease

2.2-fold decrease
2.9-fold decrease

McCallum
et al., 2021

aNeutralization assay (IC50 fold reduction compared to WT) in VOC, ND, not determined.
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(Case et al., 2020a; Yahalom-Ronen et al., 2020; Lu et al., 2021;
Malherbe et al., 2021). Although the evidence provided by these
vector vaccines is encouraging, it is still early in the research
process, and additional study is needed before moving forward
with human trials.

Coronavirus Disease Therapeutics
Some COVID-19 treatment drugs are directed against the SARS-
CoV-2 S protein and its receptor ACE2, which are found on the
membranes of different human cells. Through ACE2 attachment,
SARS-CoV-2 causes cell-membrane fusion, facilitating viral
entrance (Hoffmann et al., 2020). Although preclinical research
for effective drugs against SARS-CoV-2 necessitates the use of
live SARS-CoV-2, ppVSV1G-SARS-CoV-2 S can be utilized
for S protein-focused therapy evaluation by blocking or down-
regulating ACE2 or preventing viral fusion.

MEK inhibitors (VS-6766, trametinib, and selumetinib)
have been used to reduce ACE2 cellular expression as a
method to prevent early SARS-CoV-2 infection. ppVSV1G-
SARS-CoV-2 S and human bronchial epithelial, small airway
epithelial, and lung cancer cells were utilized to assess
infectivity alterations caused by MEK inhibitors (Zhou et al.,
2020). Furthermore, PVs were used to test the creation of
fusion inhibitor peptides against SARS-CoV-2, and micromolar
concentrations of peptides suppressed ppVSV1G-SARS-CoV-
2 S infection by inhibiting viral fusion (Kandeel et al., 2021).
Demethylzeylasteral, another inhibiting drug, can interact with
hACE2 and the RBD of the SARS-CoV-2 S protein, thus when
tested in ppVSV1G-SARS-CoV-2 S, it inhibited ppVSV1G-
SARS-CoV-2 S entrance into 293T cells (Zhu et al., 2020).
Polyunsaturated-3 fatty acids limit SARS-CoV-2 binding and
cellular entrance, while linolenic and eicosapentaenoic acids
prevent ppVSV1G-SARS-CoV-2 S penetration (Goc et al., 2021).
Inhalable nano catchers containing hACE2 are a proposal for
SARS-CoV-2 suppression, which was tested with ppVSV1G-
SARS-CoV-2 S and shown a strong capability for infection
inhibition in a hACE2-expressing mouse model (Zhang et al.,
2021). Furthermore, when tested with ppVSV1G-SARS-CoV-
2 S and live SARS-CoV-2, hACE2-Fc inhibited Vero E6 cells
(Case et al., 2020b).

CONCLUSION

There are only seven BSL-3 laboratories in Mexico, four
of which are in Mexico City. Because of the scarcity of
BSL-3 facilities, research into existing and newly emerging
infectious diseases are hampered. Furthermore, there is no BSL-
4 laboratory in Mexico, making it impossible to research the
viruses that are classified as risk group 4 and are designated
priority diseases by the WHO. This is an invitation to
the Mexican government to develop research policies and
infrastructure for the construction of BSL3 and BSL4 facilities.
ppVSV1G-SARS-CoV-2 S is an excellent choice for studies
of host and cellular tropism, interspecies transmission, viral
pathogenesis, and host cell entry pathways with risk group 3

and 4 viruses such as SARS-CoV-2. It can be used in BSL-2
facilities for studies of host and cellular tropism, interspecies
transmission, viral pathogenesis, and host cell entry pathways.
ppVSV1G-SARS-CoV-2 S can be supplemented with SARS-
CoV-2 S protein via changes that improve expression efficiency,
and we propose the cloning of Met1-S-121 with usage codons.
Once the S gen has been refined and cloned, we propose
using site-directed mutagenesis to generate novel variations
of the SARS-CoV-2 S protein. ppVSV1G-G and ppVSV1G-
SARS-CoV-2 S particles must be produced in HEK 293T
cells, and infection assays with ppVSV1G-SARS-CoV-2 S in
Vero E6 or ACE2- and Furin-transfected HEK 293T cells are
suggested. The ppVSV-SARS-CoV-1-S are stable once produced,
and they may be kept with low activity loss for up to 6
months (−20 or −80◦C), 4 weeks (4◦C), and just 1 week
(room temperature) with up to four freeze-thaw cycles. PVNA,
surprisingly, is a safe (BSL-2), efficient (7.5 h), and scalable
(r ≥ 0.9 and p ≤ 0.001) method that may be utilized
to evaluate novel SARS-CoV-2 variants, post-infection- and
vaccine-elicited neutralizing antibodies, and S protein-based
COVID-19 therapies. ppVSV1G-SARS-CoV-2 S can be detected
by a fluorescence or luminescence signal with a linear correlation
between the value of fluorescence or chemiluminescence and
the number of infective ppVSV1G-SARS-CoV-2 S, and these
particles can be easily calculated using the TCID50/mL or
PVID50 equations, which are included in this review. We
are the first Mexican organization to employ ppVSV1G-
SARS-CoV-2 S for preclinical assessment of post-infection-
neutralizing antibodies, evaluation of a possible COVID-19
vaccine and decontamination equipment, and evaluation of
vaccinated volunteers against SARS-CoV-2 delta variants.
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