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The tumor immune 
microenvironmental analysis of 
2,033 transcriptomes across 7 
cancer types
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Understanding the tumor microenvironment is important to efficiently identify appropriate patients for 
immunotherapies in a variety of cancers. Here, we presented the tumor microenvironmental analysis of 
2,033 cancer samples across 7 cancer types: colon adenocarcinoma, skin cutaneous melanoma, kidney 
renal papillary cell carcinoma, sarcoma, pancreatic adenocarcinoma, glioblastoma multiforme, and 
pheochromocytoma / paraganglioma from The Cancer Genome Atlas cohort. Unsupervised hierarchical 
clustering based on the gene expression profiles separated the cancer samples into two distinct 
clusters, and characterized those into immune-competent and immune-deficient subtypes using the 
estimated abundances of infiltrated immune and stromal cells. We demonstrated differential tumor 
microenvironmental characteristics of immune-competent subtypes across 7 cancer types, particularly 
immunosuppressive tumor microenvironment features in kidney renal papillary cell carcinoma with 
significant poorer survival rates and immune-supportive features in sarcoma and skin cutaneous 
melanoma. Additionally, differential genomic instability patterns between the subtypes were found 
across the cancer types, and discovered that immune-competent subtypes in most of cancer types 
had significantly higher immune checkpoint gene expressions. Overall, this study suggests that our 
subtyping approach based on transcriptomic data could contribute to precise prediction of immune 
checkpoint inhibitor responses in a wide range of cancer types.

The tumor microenvironment (TME) is composed of many different types of cells such as fibroblasts and myofi-
broblasts, neuroendocrine cells, extracellular matrix, stromal cells, and immune cells1. As TME significantly 
contributes to the cancer development and malignancy2, understanding of TME is important. The paradigm 
of clinical cancer treatment has been shifted towards the use of immune checkpoint inhibitor (ICI) treatments, 
which target T cell inhibitory receptors3. The ICIs have shown promising clinical effects in several types of cancer, 
especially in non-small-cell lung cancer (NSCLC)4. However, most of the patients in different types of cancer 
still show non-responsiveness to the treatment, and instead suffer intolerable side effects5,6. The predictive and 
prognostic biomarkers for ICIs have been developed by estimating the expression levels of immune checkpoint 
genes including PD-1, PD-L1 and CTLA4 as well as mutational burden in cancer samples, but the heterogeneity of 
tumor microenvironment around tumor cells was not considered7. In addition, the expressions of immune check-
point genes and mutational burden are not sufficient to select the adequate patients and predict the responses to 
ICIs in several cancer types8,9.

The classifications of immunological associated subtypes in cancer have demonstrated its clinical signifi-
cance as prognostic and predictive factors that could be used for a personalized cancer immunotherapy10–12. 
For instance, enhanced cytolytic immune functions in infiltrating lymphocytes CD8 T cells improved efficacy of 
immunotherapy5,6, and the relative contribution of each immune cells was considered to estimate the anti-tumor 
response13,14. Since immunosuppression from abnormalities of the TME critically interrupts immunotherapeutic 
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approaches, understanding the TME and characterizing novel immune subtypes have been extensively researched 
to predict immunotherapy responses and enhance antitumor activity by targeting TME-induced ICI 
resistance15,16.

Here, we provide tumor microenvironmental analysis across 2,033 individuals in 7 cancer types from The 
Cancer Genome Atlas (TCGA) using our developed transcriptomic approach. The purpose of this extensive anal-
ysis is to elucidate the immunological characteristics and its association between cancer and TME in different 
types of cancer and to suggest potential stratification tool for ICI response prediction.

TCGA abbreviations.  BLCA; Bladder urothelial carcinoma, BRCA; Breast invasive carcinoma, CESC; 
Cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL; Cholangiocarcinoma, COAD; 
Colon adenocarcinoma, ESCA; Esophageal carcinoma, GBM; Glioblastoma multiforme, HNSC; Head and Neck 
squamous cell carcinoma, KICH; Kidney chromophobe, KIRC; Kidney renal clear cell carcinoma, KIRP; Kidney 
renal papillary cell carcinoma, LIHC; Liver hepatocellular carcinoma, PAAD; Pancreatic adenocarcinoma, PCPG; 
Pheochromocytoma and paraganglioma, PRAD; Prostate adenocarcinoma, READ; Rectum adenocarcinoma, 
SARC; Sarcoma, SKCM; Skin cutaneous melanoma, STAD; Stomach adenocarcinoma, THCA; Thyroid carci-
noma, THYM; Thymoma, UCEC; Uterine corpus endometrial carcinoma.

Results
Unsupervised hierarchical clustering and immune characterization using TME scores sepa-
rated 2,033 cancer samples into TME-related immune subtypes of 7 cancer types from TCGA 
cohorts.  We conducted unsupervised hierarchical clustering of 7,762 cancer samples and 622 non-cancer 
controls across 22 cancer types using gene expression data. Among these cancer types, non-cancer controls in 
BLCA, BRCA, CESC, ESCA, HNSC, KIRC, PRAD, STAD, THCA, THYM and UCEC were separated into 2 or 
3 clusters simultaneously along with cancer samples, which indicated that clusters cannot be defined into can-
cer-specific subtypes. Additionally, there was only one cancer sample at one of the clusters in READ. We thus 
excluded these 12 cancer types that were not clearly differentiated, and identified that 2,508 cancer samples in 10 
cancer types were clearly separated into subtypes by the clustering.

The subtyping approach distinguished samples in 6 cancer types at k = 2 and 4 types at k = 3 via additional 
clustering. The principal component analysis (PCA) represented clustering patterns between the immune sub-
types of cancer samples and non-cancer controls. At k = 2, immune-competent subtypes were closely clustered 
with non-cancer controls in PAAD, PCPG, SARC and SKCM while immune-deficient subtypes were closely clus-
tered with controls in GBM and LICH (Fig. 1a). At k = 3, non-cancer controls, subtype A and B were distinctly 
clustered in CHOL, COAD, KICH and KIRP (Fig. 1b). Cluster dendrograms further demonstrated differential 
clustering patterns in 10 cancer types (Supplementary Fig. 1). Gene set enrichment analysis of the 1,000 most var-
iables genes between cancer and controls for clustering in 10 cancer types demonstrated these genes overlapped 
with at least one immune-related gene set except KICH (Supplementary Table 2).

The subtypes of 2,508 cancer samples were defined by comparing their tumor microenvironmental (TME) 
characteristics based on the estimated abundance of infiltrating immune and stromal cells in tumor tissues, 
called immune and stromal scores, respectively, from Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE)13. Samples with relatively lower mean scores were classified 
as immune-deficient subtype (subtype A) and those with relatively higher mean scores as immune-competent 
subtype (subtype B).

To verify the significance of TME characteristics in immune-competent subtypes across 10 cancer types, we com-
pared immune and stromal scores using ESTIMATE, and estimated levels of cytolytic activity (CYT) scores using 

Figure 1.  Unsupervised hierarchical clustering separated cancer samples into two distinctive clusters. PCA 
at different number of clusters. In the plots, blue, purple and cyan represents immune-deficient (subtype A), 
immune-competent (subtype B) and non-cancer controls, respectively. (a), At k = 2. (b), At k = 3.
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Tumor IMmune Estimation Resource (TIMER)14. Also tumor purity scores were compared and calculated using  
ESTIMATE, which showed strong correlations with the purity scores inferred by ABSOLUTE algorithm using copy 
number alteration (CNA) and somatic mutation data17 (Supplementary Fig. 2). Immune-competent subtypes in 
10 cancer types showed enriched immune, stromal, CYT and lower tumor purity scores (Fig. 2a–d, respectively).  
We discovered significant differences in these well-established TME predictors between the immune subtypes 
in COAD, GBM, KIRP, PAAD, PCPG, SARC and SKCM. Although correlation between tumor purity data from 

Figure 2.  Comparison of predicted tumor microenvironmental related scores between immune subtypes 
across 10 cancer types. (a), Immune score. (b), Stromal score. (c), Tumor purity. (d), Cytolytic activity (CYT) 
score. The level of significance denoted as: ns., non-significant, *p < 0.05, **p < 0.01, ***p < 0.001 and 
****p < 0.0001. Statistical significances between subtypes were measured by unpaired Student t test.
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ESTIMATE and ABSOLUTE was poor in PAAD (R2 = 0.16 and P = 5.08 × 10-2; Supplementary Fig. 2), we included 
this cancer for further analysis due to strong evidences of low tumor purity: significantly elevated immune, stromal 
and CYT scores.

In summary, we carried out unsupervised hierarchical clustering on 7,762 samples in 22 cancer types, and 11 
cancers that were not clearly differentiated were excluded. A total of 2,675 samples in 11 cancer types were clearly 
differentiated at k = 2 and k = 3. Among these clearly differentiated cancer types, READ was excluded due to 
dramatically unbalanced distribution of the samples between subtypes, and we also excluded CHOL, KICH and 
LIHC based on criteria for TME characteristics using four estimated scores. Therefore, a total of 2,033 samples in 
7 cancer types were selected and analyzed for further investigation (Supplementary Fig. 3.). Among these sam-
ples, 728 cancer samples were identified as immune-deficient subtypes and 1,305 samples as immune-competent 
subtypes in 7 cancer types (Table 1).

Immune-competent subtypes in 7 cancer types demonstrated differential TME character-
istics.  To further elucidate TME features of immune-competent subtypes in 7 different types of cancer, we 
compared the estimated abundances of infiltrated immune cells, including B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages and dendritic cells (DC) from TIMER, which were appropriate for inter-sample com-
parison and validated using multiple approaches14,18. We found that most of these immune cells were significantly 
infiltrated in the TME of immune-competent subtypes across 7 cancer types (Fig. 3a).

Specifically, M1 macrophages, M2 macrophages and regulatory B (Breg) cells were known to show differen-
tial effects on the TME: M2 macrophages and Breg were involved in immune evasion, and reduced the sensitiv-
ity to immune-checkpoint inhibitors, while M1 macrophages along with CD8+ T cells and DC played roles in 
anti-tumor activity19,20. Therefore, we investigated average z scores of signature gene expressions for M1 mac-
rophages, M2 macrophages21,22, and Breg cell infiltrations that were experimentally validated23,24 between the sub-
types in this study. As immune-competent subtypes in 7 cancers demonstrated relatively increased abundance 
of infiltrated immune cells, the expressions of signature genes for M1 macrophages, M2 macrophages and Breg 
cells were also elevated in these TME highlighted subtypes. The signature genes for both M2 macrophage and 
Breg were significantly elevated in immune-competent subtypes of KIRP and PAAD among 7 types of cancer and 
only Breg cells in immune-competent subtypes of SKCM. While the signature genes for M1 macrophages were 
significantly elevated in immune-competent subtypes of PAAD and SARC (Fig. 3b). We also compared several 
immune-related molecules that were up-regulated within high cytolytic activity subtypes in colon cancer25 for 
clarification of TME within our immune-competent subtypes. The majority of expressions of immune-related 
genes were also elevated in immune-competent subtypes across 7 cancers which clearly indicated high proportion 
of immune molecules within these subtypes (Supplementary Fig. 4).

In addition to signature gene expressions for these immune cells and molecules, we compared the expres-
sion levels to estimate the abundance of NK cells26, which were well known to be involved in anti-tumor effects 
in the TME27,28. We discovered that immune-competent subtypes showed significantly elevated expressions of 
signature genes for NK cell infiltration in both KIRP and SKCM among 7 cancers (Fig. 3b). We further analyzed 
detailed transcriptomic signatures of anti-tumor effects induced by NK cells within two types of cancer: KIRP 
and SKCM as immune-competent subtypes in these cancer types showed significant elevation of genes related 
to NK cell infiltration compared to the other cancer types. Recruiting conventional type 1 dendritic cells (cDC1) 
into the TME by NK cells induced anti-tumor effects29. Interestingly, we found that the expressions of signature 
genes for cDC1 were only significant in SKCM (P = 9.60 × 10-3; Fig. 3c). In contrast, only immune-competent 
subtypes in KIRP had significantly increased expression of HLA class 1 molecules antigen E (HLA-E), which 
suppressed NK cell activity30 (P = 4.76 × 10-5; Fig. 3c). At gene levels, immune-competent subtypes in KIRP 
and immune-deficient subtypes in SKCM showed decreased expression of C-type lectin domain containing 9 A 
(CLEC9A) (P = 4.82 × 10-1 and P = 4.08 × 10-3, respectively; Supplementary Fig. 5). The expressions of other 
markers for cDC1, including XCR1, CLNK and BATF3 were increased in both immune-competent subtypes 
of SKCM and KIRP. We also investigated NK inhibitory receptors: KLRC1 (NKG2A) and KLRD1 (CD94) that 
suppressed NK cell anti-tumor activity via binding HLA-E30 to evaluate differential NK cell-mediated effects 
in KIRP and SKCM. However, they were increased in both immune-competent subtypes of KIRP and SKCM 
(Supplementary Fig. 5).

We conducted survival analysis between the subtypes across 7 cancer types to support immune character-
istics of TME in the immune-competent subtypes and to evaluate clinical significance of immune subtyping. 

TCGA Cancer Type
Immune-deficient 
subtype (Subtype A)

Immune-competent 
subtype (Subtype B)

Non-cancer 
Controls Total

Colon adenocarcinoma (COAD) 264 216 41 521

Glioblastoma multiforme (GBM) 37 132 5 174

Kidney renal papillary cell carcinoma (KIRP) 172 117 32 321

Pancreatic adenocarcinoma (PAAD) 8 170 4 182

Pheochromocytoma and paraganglioma (PCPG) 164 19 3 186

Sarcoma (SARC) 29 234 2 265

Skin cutaneous melanoma (SKCM) 54 417 1 472

Total 728 1,305 88 2,121

Table 1.  Number of samples that are distinguished by unsupervised hierarchical clustering in 7 cancer types.
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We excluded PAAD and PCPG for the survival analysis because of the following reasons: overall survival (OS) 
was used as an endpoint since it is recommended to be used for the majority of TCGA cancer types except 
PCPG due to insufficient follow-up time31, and all of immune-deficient subtypes were identified as alive in 
PAAD. Our survival analysis found that immune-competent subtypes had significantly poorer survival rates 
than immune-deficient subtypes in KIRP (P = 1.42 × 10-2; Fig. 3d). In contrast to KIRP, immune-deficient sub-
types showed poorer survival rates than immune-competent subtypes in SARC and SKCM (P = 9.04 × 10-3 and 
P = 1.11 × 10-5, respectively; Fig. 3d). Unlike KIRP, SARC and SKCM, non-significant differences in survival 
rates between the subtypes in COAD and GBM were found (P = 4.84 × 10-1 and P = 3.67 × 10-1, respectively; 
Fig. 3d).

We also performed univariate Cox regression analysis to discover hazard ratio (HR) of immune-competent 
subtypes in 7 cancer types. In KIRP and GBM, immune-competent subtypes had HR of 2.06 and 1.17 (95% 
CI = 1.13–3.74 with P = 1.80 × 10−2 and 95% CI = 0.77–1.77 with P = 4.67 × 10−1; Fig. 3e), while HR of 0.84, 0.51 
and 0.38 in SARC and SKCM, respectively (95% CI = 0.57–1.26 with P = 4.04 × 10−1, 95% CI = 0.30–0.88 with 
P = 1.49 × 10−2 and 95% CI = 0.24–0.60 with P = 3.12 × 10−5, respectively; Fig. 3e).

Figure 3.  Estimated infiltration of immune cells, transcriptomic signatures for tumor microenvironment 
related immune cells and survival analysis of 7 cancer types. (a) Diagram of the estimated abundance of B cells, 
CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells inferred by TIMER were compared 
between the subtypes. Statistical significance was measured by Student t test. (b) Diagram showing the status 
of elevated expression of signature genes for M1 macrophage, M2 macrophage, regulatory B cell, and NK cell 
in immune-competent subtypes across 7 cancer types using the average z-scores of the genes. For subtype B, 
yellow color and red color squares represent elevation without and with statistical significance, respectively. For 
subtype A, blue color and sky blue color squares, respectively. Statistical significances between subtypes were 
measured by unpaired Student t test. (c) Expression pattern of NK antitumor activities in KIRP and SKCM. 
Average z-score for cDC1 and gene expression in TPM between the subtypes in KIRP and SKCM. ns., non-
significant, *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. Statistical significances between subtypes 
were measured by unpaired Student t test. d, Kaplan-Meier survival curves of COAD, GBM, KIRP, SARC and 
SKCM. Blue lines represent immune-deficient and magenta lines for immune-competent subtypes. Statistical 
significance was measured by log rank test. (e) Hazard ratio between subtypes by univariate Cox regression. 
Forest plot illustrates hazard ratio and 95% confidence intervals in COAD, GBM, KIRP, SARC and SKCM. 
Positive rates represent that subtype B is negatively associated with survival and negative rates represent that 
subtype A is negatively associated with survival.
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Comparison of genomic instability and the immune checkpoint gene expressions between the 
subtypes in 7 cancer types.  We illustrated the comparison of genomic instability status including somatic 
copy number variations (sCNV) and tumor mutation burden (TMB) between the subtypes across 7 cancer types. 
Number of sCNV segments in immune-deficient subtypes of COAD and PCPG (P = 6.40 × 10-2 and 2.20 × 10-1, 
respectively; Fig. 4a) was increased, which was consistent with previous results of TME highlighted subtypes in 
LUSC, COAD and READ11,25. In contrast, elevated segment number was observed in immune-competent sub-
types of GBM, KIRP, PAAD, SARC and SKCM (P = 1.70 × 10-2, P = 1.20 × 10-1, P = 1.20 × 10-1, P = 4.80 × 10-1 
and P = 6.40 × 10-1, respectively; Fig. 4a). We identified significantly amplified or deleted loci and genes within 
both subtypes across 7 cancers except few subtypes (Supplementary Table 3 and 4, respectively), and recurrent 
amplifications and deletions at several loci with immune checkpoint genes were found in KIRP, PAAD, PCPG, 
SARC and SKCM (Supplementary Fig. 6).

For nonsynonymous TMB, immune-deficient subtypes in GBM, KIRP, and PCPG (P = 3.50 × 10−1, 
P = 1.40 × 10−2, and P = 7.40 × 10−3, respectively; Fig. 4b) and immune-competent subtypes in COAD, 
PAAD, SARC and SKCM had increased non-silent mutation rates (P = 7.90 × 10−2, P = 2.50 × 10−1, 
P = 2.40 × 10−3, and P = 2.40 × 10−4, respectively; Fig. 4b). Along with TMB, we calculated SNV neoepitope 
loads. Predicted neoepitope loads were also elevated in immune-competent subtypes of COAD, PAAD, SARC 
and SKCM (P = 3.50 × 10−2, P = 7.60 × 10−2, P = 1.10 × 10−2, and P = 4.10 × 10−2; Supplementary Fig. 7), 
and immune-deficient subtypes of GBM, KIRP and PCPG (P = 7.20 × 10−2, 3.40 × 10−2, and 8.70 × 10−2; 
Supplementary Fig. 7). Additionally, we conducted correlation analysis between CYT scores and neoepitope 
loads within immune-deficient and immune-competent subtypes across 7 cancer types. We observed no dif-
ferences in these correlation patterns between the immune subtypes, and most of cancer types showed weak 
correlations within both subtypes across 7 cancer types except COAD, which had noticeable correlations in both 
subtypes (R2 = 0.47 and P = 3.18 × 10−13 in immune-deficient subtypes and R2 = 0.51 and P = 1.60 × 10−12 in 
immune-competent subtypes; Supplementary Fig. 8) as previously reported25.

To investigate the potentials of immune-competent subtypes as efficient targets for immune checkpoint inhib-
itors, we compared the expressions of immune checkpoint genes: PD-1, PD-L1, PD-L2 and CTLA4 which are 
well-known targets of immune checkpoint inhibitors3 between the subtypes in 7 cancer types. Immune-competent 
subtypes in 7 cancers had increased expression of these genes compared to immune-deficient subtypes except 
PD-1 expression in GBM and PD-L1 in PCPG, and CTLA4 in SARC. Particularly, the expressions of PD-L1 and 
PD-L2 in immune-competent subtypes were significantly elevated in 7 types except PCPG. In addition to those 
ligands, the expressions of PD-1 were significantly increased in COAD, PAAD and SKCM and those of CTLA4 in 
COAD, KIRP, PAAD and PCPG (Fig. 4c). There are several immune checkpoint genes including VTCN1, VISTA, 
LAG3, IDO1, IDO2 and TIM332–34 that are emerging in the development of immunotherapy, and we compared the 
expressions of these genes between the immune subtypes. The patterns of differences between expressions across 
7 cancers were inconsistent. The majority of immune-competent subtypes had increased expressions. However, 
immune-competent subtypes in several cancer types had relatively lower expressions than immune-deficient sub-
types, particularly VTCN1 in GBM and LAG3 and IDO1 in PCPG were significantly elevated in immune-deficient 
subtypes (Fig. 4c). Comparing absolute RNA expressions of four immune-checkpoint molecules across 7 cancers 
types also demonstrated elevated expressions in the immune-competent subtypes. Furthermore, in terms of can-
cer types, relatively higher expressions of PD-1 and CTLA4 in SARC and SKCM compared to the others, elevated 
expressions of PD-L2 in GBM, SARC and SKCM, and similar levels of PD-L1 expressions across cancer types were 
observed (Fig. 4d).

Discussion
Predictive methods for ICI response including immunohistochemistry (IHC) of immune checkpoint genes and 
emerging prognostic markers using genomic data such as TMB and CNV burdens35,36 are conventionally used, 
but more precise estimations with non-complex approaches still remain to be investigated and developed. Here, 
we represent a computational strategy to potentially maximize choosing targets for ICIs based on only transcrip-
tomic data that gives analytical advantages in measuring the expressions over IHC37.

Using unsupervised hierarchical clustering based on the gene expression, we presented the TME-dependent 
differentiation of cancer samples in 7 cancer types from TCGA. The identified immune-competent subtypes in 
these cancers showed TME signatures: significantly elevated immune and stromal cell infiltration and cytolytic 
activities, and lower tumor purity. The characteristics of TME in these subtypes were differentially identified 
using survival data along with the expressions of signature genes for several immune cells and molecules which 
were known to be involved in the TME. They often exhibit immunosuppressive characteristics that inhibit the 
functions of effector T cells, and reduce the efficacy of immunotherapy38. Interestingly from our results, the signa-
tures for immunosuppressive TME were clearly represented in only KIRP, shown by significantly poorer OS with 
elevated expression for signature genes of M2 macrophage and Breg, and clear transcriptomic patterns of impaired 
NK cell induced anti-tumor activities.

Meanwhile, immune-competent subtypes showed significantly improved OS in SARC and SKCM. These sub-
types in SARC had significantly increased signature gene expressions for M1 macrophage and estimated infil-
tration of CD8+ T cells and DC which are associated with anti-tumor activity19,20. In SKCM, we demonstrated 
that transcriptomic patterns in immune-competent subtypes potentially reflected anti-tumor activity from NK 
cell even though the expressions of signature genes for immunosuppressive Breg were significantly increased in 
SKCM. The results from SARC and SKCM implied that infiltrated immune cells in TME were not associated with 
immune evasion, and possibly formed immune-supportive TME in immune competent subtypes.

We then evaluated genomic instabilities including sCNV burden, TMB, and neoepitope loads between the 
immune subtypes. Differences in number of CNV segments between subtypes in the majority of cancer types 
showed inconsistent results in sCNV with previous TME studies from LUSC and colorectal cancers (CRC)11,25. At 
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gene levels, recurrent amplifications and deletions at immune checkpoint genes were found in several subtypes 
of cancers but not in TME-dependent manner. We also demonstrated that immune-competent subtypes had 
significantly increased TMB and neoepitope loads in SARC and SKCM. Subtypes in COAD also had increased 
these genomic instabilities without significance in TMB elevation, and correlation analysis suggested that 
neoepitope loads may play a role in CYT activity in both immune subtypes of COAD. In GBM, KIRP, and PCPG, 
immune-competent subtypes had lower TMB and neoepitope loads. Particularly, these subtypes in KIRP showed 
significant difference like LUSC11.

Figure 4.  Comparison of the genomic instability scores and the expressions of immune checkpoint genes 
between immune subtypes in 7 cancer types. (a), Comparison of the sCNV burden, measured by the log10-
transformed total number of segments in each sample’s copy number profile between the subtypes across 7 
cancer types. (b), Comparison of the log10-transformed the number of nonsynonymous mutations per Mb 
in the genome between the subtypes across 7 cancer types. (c), Heatmaps of the log2-transformed expression 
levels (TPM) of 10 immune checkpoint genes between the subtypes across 7 cancer types. (d), RNA expressions 
(TPM) of four immune checkpoint genes in immune-deficient and immune-competent subtypes across 7 
cancers. The level of significance denoted as: ns., non-significant, *p < 0.05, **p < 0.01, ***p < 0.001 and 
****p < 0.0001. Statistical significances of the genomic instability scores and the expression of the genes 
between subtypes were measured by unpaired Student t test.
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The fact that expressions of immune checkpoint genes were significantly elevated in the immune-competent 
subtypes and higher expressions in certain types of cancer could potentially suggest and optimize usage of ICIs. 
However, we need to compare these immune-related subtypes in terms of responses to ICIs, to evaluate the prog-
nostic value of this immune subtyping in 7 cancer types in the future.

Since we applied a single subtyping approach to different types of cancer originated from different types of tis-
sue, inconsistency in identifying the characteristics of TME in immune-competent subtypes across 7 cancers was 
discovered. Also M1 and M2 macrophages are not always associated with anti-tumor effect and tumor-associated 
macrophages, respectively39 as macrophage populations are tissue- and tumor-specific. Hence experimental vali-
dation of immune cell infiltration is needed to be conduct to clarify the TME characteristics for each cancer type 
in the future.

Although further studies are required on this approach to become clinically significant, our subtyping pro-
vides convenient prediction for identifying the prognostic and predictive factors that could guide personalized 
cancer immunotherapies using only transcriptomic data. We believe that considering the immune subtypes in a 
TME dependent manner will be a decent diagnostic biomarker and predictor for responses to immunotherapy.

Materials and Methods
The Cancer Genome Atlas (TCGA) data sets.  RNA sequencing data in TCGA, which are composed of 
cancer and non-cancer control data were used for characterizing the tumor microenvironment and classifying 
immune subtypes in 22 cancer types. We excluded ACC, DLBC, LAML, LGG, MESO, OV, TGCT, UCS and UVM 
as there were no non-cancer controls in those types, and also excluded previously studied LUAD and LUSC. The 
raw reads of RNA expression datasets as htseq count format were obtained in the TCGA40. The list of TCGA can-
cer type abbreviations is available (see URL).

Identification of immune subtypes.  Immune subtypes of TCGA cancers were identified by unsupervised 
complete linkage clustering method, then we cut cluster trees into 2 and 3 groups to identify subtypes. Raw reads 
were processed and transformed to variance stabilizing data (VSD) using R package ‘DESeq2’41, then 1,000 most 
variable genes were used for subtype classification of cancer samples. The PCA was plotted using first three prin-
cipal components with a 95% confidence interval.

Processing RNA-seq based gene expression.  For normalized RNA data, fragments per kilobase million 
(FPKM) was computed from the raw reads from HTseq counts by using the R package ’edgeR’42, and the FPKM 
expression values were adjusted to log2 and centered median expression values by cluster 3.043. For comparing 
the expressions for immune checkpoint gene between the subtypes, log2 FPKM was used. We converted FPKM 
to transcripts per kilobase million (TPM) using the formula as described below44.

= ∗TPM FPKM of gene A
Sum of FPKMs of all genes

106

Estimated abundance of stromal and immune cells.  The composition of stromal and immune cells 
(stromal, immune, and tumor purity) and CYT score in each tumor samples were estimated by ESTIMATE and 
TIMER algorithms13,14. The infiltrating immune cells (B cells, CD4 T cells, CD8 T cells, neutrophils, macrophages, 
and dendritic cells) were compared in each cancer type and subtype in TCGA cohorts. The previously validated 
immune type specific gene sets were used for identifying the impacts and roles of the immune cells on tumor 
microenvironment.

Calculation of Z-scores.  The Z-score of each signature gene was calculated as below.

­Z score FPKM of tumor samples mean FPKM of noncancer control samples
Standard deviation of mean FPKM of noncancer control samples

=
−

Since there was only one non-cancer control sample in SKCM, we calculated Z scores for SKCM using mean 
FPKM of cancer samples instead of values from non-cancer control samples.

Scores for genomic instability.  The mutation rates, scores for sCNV and neoantigen loads were derived from 
previous studies45,46. We excluded the samples without available genomic instability data for this analysis. Silent and 
non-silent mutation rates were the number of mutations divided by target length of the genome in Mb. In sCNV bur-
den, ‘Number of segments’ equals to total number of segments in each sample’s copy number profiles.

Identification of recurrent sCNV.  The copy number SEG file of TCGA samples was downloaded17. 
GISTIC analysis47 was conducted to find recurrent amplification and deletion in the subtypes of 7 cancer types. 
The confidence level for the significant region was 0.90 and the q value was 0.25.

Statistical analyses.  R-3.3.0 was used for statistical analyses. In the case that the sample size was bigger 
than 30, we used the unpaired student’s t test for comparison between immune subtypes. The p-value for overall 
survival curve was compared by the log-rank test. The Cox hazardous ratio was estimated by using the R package 
‘survminer’. The boxplot with the quantitative data was presented as mean ± standard deviation. For correlation, 
Pearson’s product-moment correlation was used.

URLs.  TCGA abbreviations list: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/
tcga-study-abbreviations
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