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ABSTRACT

It is becoming increasingly clear that chromosome
organization plays an important role in gene regula-
tion. High-resolution methods such as 4C, Capture-C
and promoter capture Hi-C (PCHiC) enable the study
of chromatin loops such as those formed between
promoters and enhancers or CTCF/cohesin binding
sites. An important aspect of 4C/Capture-C/PCHiC
analyses is the reliable identification of chromatin
loops, preferably not based on visual inspection of
a DNA contact profile, but on reproducible statisti-
cal analysis that robustly scores interaction peaks
in the non-uniform contact background. Here, we
present peakC, an R package for the analysis of
4C/Capture-C/PCHiC data. We generated 4C data for
13 viewpoints in two tissues in at least triplicate to
test our methods. We developed a non-parametric
peak caller based on rank-products. Sampling anal-
ysis shows that not read depth but template qual-
ity is the most important determinant of success in
4C experiments. By performing peak calling on sin-
gle experiments we show that the peak calling re-
sults are similar to the replicate experiments, but
that false positive rates are significantly reduced by
performing replicates. Our software is user-friendly
and enables robust peak calling for one-vs-all chro-
mosome capture experiments. peakC is available at:
https://github.com/deWitLab/peakC.

INTRODUCTION

The 3D organization of the genome plays an important role
in the regulation of genes. Many examples have been de-
scribed of enhancer sequences that activate gene expression
over large distances. One of the most extreme cases is a Shh
enhancer, which regulates its target gene at a distance of
∼1 Mb (1–3). In contrast to activating promoter–enhancer
loops, insulated neighborhoods prevent the spurious acti-

vation of neighboring genes by a distal super-enhancer (4),
in line with their proposed role as insulator sequences (5).
To measure the organization of the 3D genome, various
adaptations of the original 3C (6) method have been de-
veloped (4C (7)/5C (8)/Hi-C (9)/Capture-C (10)/promoter
Capture Hi-C (11)). 4C, Capture-C and promoter capture
Hi-C (PCHiC) are so-called one-vs-all methods, which en-
able the measurement of contact frequencies of a single lo-
cus (the ‘viewpoint’) in the case of 4C and Capture-C or
multiple single loci in the case of PCHiC with the entire
genome in-depth and at high resolution.

In previous work we have presented strategies for the
identification of far-cis interactions (generally > 5 Mb from
the viewpoint) (12,13). However, the strongest regulatory
interactions occur in near-cis regions, in the form of pref-
erential chromatin loops, for instance between promoters
and enhancers or between convergently oriented CTCF
sites (14,15). To discover these loops, here we focus on
identifying significant interactions, apparent as peaks in
4C/Capture-C data. To this end we have defined a number
of characteristics a contact peak should adhere to. First, a
loop or contact peak should be identified in replicate exper-
iments. Second, when the genomic region of a peak identi-
fied in a 4C experiment is used as a viewpoint in a subse-
quent 4C experiment, it should identify the original view-
point; a characteristic we term reciprocity. Finally, because
of the nature of ‘C’-methods, neighboring fragments co-
migrate in the cross-linking step and therefore peaks cannot
be interpreted at the single fragment level.

A crucial first step in the identification of peaks is to prop-
erly model the background distribution, which is non-trivial
for two reasons. First, the background in a 4C/Capture-C
experiment is highly non-uniform, with the ‘random’ con-
tact frequency decreasing with an increase in the distance
from the viewpoint. In addition, the background distri-
bution can differ substantially depending on where in the
genome the viewpoint is chosen. For instance, if a view-
point is close to the border of a topologically associating
domain (TAD) there will be higher contact frequencies with
loci inside the TAD compared to outside the TAD, lead-
ing to a strong skew in the distribution of 4C coverage. We
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(16) and others (17) have previously used monotonic regres-
sion to empirically model the background distribution. The
FourCSeq analysis method (17) uses a transformation of
the data and subsequent variance stabilizing normalization
prior to fitting the regression model and the identification of
peaks. We developed peakC, a novel non-parametric peak
caller for 4C, Capture-C and PCHiC data based on mono-
tonic regression and rank-product based statistics. Our 4C-
Seq peak calling dataset enables us to put a lower bound on
the number of reads required for robust peak calling and
show that template complexity is a more important deter-
minant for success in a 4C experiment than read depth. Fur-
thermore, we show that peakC can be applied to Capture-
C data resulting in robust kilobase resolution peak calling
and to PCHiC data enabling the analysis of thousands of
genomic regions in parallel.

MATERIALS AND METHODS

44C dataset

E14 ES cells (IB10 cells) were cultured in BRL-conditioned
Dulbecco’s Modified Eagle Medium (DMEM with High
Glucose, GlutaMAX™, pyruvate; Life Technologies) sup-
plemented with 10% fetal calf serum (FCS), non-essential
amino acids (NEAA) (Life Technologies), 1000 U/ml
leukemia inhibitory factor (LIF) and 2-mercaptoethanol.
We isolated fetal livers from e14.5 embryos by dissection
and obtained single cell suspensions by filtration through
a cell strainer (BD biosciences). 4C was performed as de-
scribed previously (18) using DpnII as a first restriction
enzyme and Csp6I as a second restriction enzyme. For
mESCs we generated three biological replicates from indi-
vidual dishes (∼10 × 106 cells). For fetal livers, biological
replicates were generated from individual embryos from a
single pregnant mouse. We used barcoded primers to dis-
tinguish between replicates and tissues. 4C PCR amplicons
were sequenced on a HiSeq 2500.

Sequencing reads consist of a viewpoint specific sequence
which is equal to the forward primer that was used in the
4C PCR and the sequence that was ligated to the view-
point fragment. The primer sequence is used to identify
the reads that belong to a specific viewpoint. After split-
ting the reads into viewpoint specific fastq files, the primer
sequence, excluding the restriction site (i.e. GATC for Dp-
nII) is trimmed from the reads. The trimmed reads are sub-
sequently mapped to the genome (mm9) with bowtie2 (19)
using standard settings. Reads with a mapping quality of 1
or higher are retained. Next, we apply three filters for the
mapped reads: whether (i) they overlap with a restriction
fragment end, (ii) whether they are unique in the genome
and (3) whether they are ‘blind’ fragments or not. We will
briefly explain these filters below.

Before any 4C mapping is done we perform an in sil-
ico digestion of the reference genome (in our case mm9)
using the first and second restriction enzyme (in our case
DpnII/MboI and Csp6I, respectively). In the 3C ligation
step, every restriction fragment has two restriction fragment
ends (or fragment ends), that can ligate to the viewpoint
fragment. Fragment ends are therefore the natural high-
est resolution of 4C experiments (12,20). The in silico frag-
ment ends are mapped back to the reference genome, from

which we get the position of the original fragment end and
whether the fragment end is unique in the genome. We re-
move non-unique fragment ends from our dataset, because
filtering non-uniquely mapping reads would otherwise lead
to an excess of zeros in the data at these fragment ends.
Finally, a special class of fragments that are ligated to the
viewpoint fragment, but that do not contain a restriction
site for the secondary restriction enzyme (i.e. DpnII-DpnII
fragments or so-called ‘blind’ fragments (18)) were also re-
moved from the dataset, because they give a systematically
lower level of signal. The analyses described in this work are
focused on the intrachromosomal (‘cis’) interactions and we
performed read depth normalization across experiments by
simple scaling of mapped reads to 1 million mapped reads in
cis. The data have been deposited to GEO under accession
number GSE105177.

External data

Capture-C data was taken from (10) and (21) and
was downloaded from GEO (accession GSE67959 and
GSE97867, respectively). Erythroblast PHiC data was
taken from (11) and was downloaded from https://osf.io/
u8tzp/.

External ChIPseq datasets were downloaded for CTCF
and H3K27ac in mESC (16,22) and Ter119+ cells (21,23).

peakC was developed in R and is provided as a package
on github: https://github.com/deWitLab/peakC. The pack-
age enables peak calling for both single and replicate exper-
iments. The reading functions of peakC perform the nor-
malization of the data (see above) and provide the user
with some quality characteristics (for instance the number
of captured fragments within the 100 kb flanking the view-
point). For the analysis a subset of the data is chosen (for
instance 1 Mb up- and downstream of the viewpoint). We
urge the user to exercise caution is selecting the size of the
genomic window. We have observed a slight tendency for a
higher probability of false positive identification of peaks
at more proximal sites (data not shown). All the statistical
analyses implemented in peakC that we describe below are
performed on this subset of the data flanking the viewpoint.

Identification of spatial contacts in replicate experiments

The main assumption in our 4C analysis is that the contact
frequency decreases monotonically with the distance. We
use monotonic regression to model the background contact
frequency. Because the background contact frequency can
differ between the regions upstream and downstream of the
viewpoint (see Figure 1A) we model these independently.
In order to identify regions that are significantly contacted
by the viewpoint we have developed a statistical framework
that enables the analysis of replicate 4C experiments from
the same viewpoint. For every experiment a background
model is calculated. Next, we calculate both the ratio (R)
and the difference (Δ) between the running mean of the ob-
served fragment end coverage and the expected background
coverage for this fragment end. The number of fragment
ends in the running mean can be set using the parameter
wSize. For 4C experiments we typically set this value to 21,
for the Capture-C data we have set wSize to 11. Our peak
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Figure 1. Monotonic regression procedure for peak calling in 4C data. (A) 4C profiles for the Sox2 locus in mouse ESCs are shown. Read coverage to
individual fragments normalized to 1 million intrachromosomal reads is shown for three replicates. red line shows the background distribution estimated
from a monotonic regression analysis for the up- and downstream regions separately. (B) Summary of the parameters that are used for the identification of
peaks. Δfrag is calculated as the difference between the coverage over the fragment (Dfrag) and the estimated background value for that fragment (bgfrag).
For every fragment three Δfrag values are determined (one for every replicate) and the corresponding rank within each replicate. The ranks are multiplied
and transformed into a P-value (see Materials and Methods). For the second threshold the ratio (Rfrag) between Dfragand bgfrag is calculated. The threshold
value is set as Q3 + qRw x IQR (Q3 is the third quartile and IQR the Interquartile Range). By varying the qRw threshold can be set more or less stringent.
The data is based on the three replicates shown in (A). (C) Combined 4C profile of the replicates in (A). Red and blue triangles show the orientation of
CTCF binding sites. Levels of the active enhancer mark H3K27ac from mESCs (22) are shown in darkblue. (D) Combined sextuplicate 4C profiles and
peak calls for reciprocal viewpoints. Viewpoint names indicate the closest gene. Red and blue rectangles show the orientation of CTCF binding sites.
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calling consists of a two-step process. First, we determine
fragment ends whose coverage significantly exceeds back-
ground coverage using a rank-product statistic based on the
Δ scores from multiple replicate experiments. Second, we
apply an empirical post-hoc effect size threshold filter based
on the R scores. Both will be discussed below.

For combining multiple replicate experiments we make
use of the rank-product (24). Originally developed for the
identification of differentially expressed genes, rank prod-
ucts are an intuitive, non-parametric way of modeling varia-
tion observed across independent experiments. Within each
experiment we rank the Δ scores (from high to low), giving
us a rank for every fragment in each experiment. We com-
bine experiments by calculating the product of the ranks for
every fragment. For significance testing, the observed rank
products are compared to their sampling distribution un-
der a permutation null model (25). A simple approximation
to this distribution, which facilitates the computation of P-
values, is provided by Koziol (26): This is implementend
in the statistical programming language R as follows: 1 –
pgamma(–log(r/(n + 1)k), k, scale = 1), where r is the rank-
product, n is the number of fragments and k is the number of
samples. Although, an exact calculation of the P-value has
been proposed by Eisinga et al. (27), for larger samples this
is computationally prohibitive. A Benjamini and Hochberg
multiple testing procedure (28) is then applied with the aim
to control for the false discovery rate (‘fdr’). We use the im-
plementation in R by the function p.adjust for this and con-
trol the fdr at level alphaFDR; a parameter whose value we
typically set to 0.1.

Next, we calculate the average R of the replicate experi-
ments and determine the quartiles and interquartile range
(IQR) of the distribution of R. Let Q3 be the third quartile,
then the threshold for R is set as Q3+ qWr * IQR (Figure
1B). qWr can be set as a parameter in peakC to filter results
based on effect size and is typically set to 1, after which the
data-adaptive threshold is calculated using the formula.

In order to estimate the effect of the sequencing depth of
4C experiments on the reproducibility of the peak calling we
performed an in silico analysis where we repeatedly subsam-
pled the 4C data and recalculated the significant interac-
tions. All the fragment ends within a running mean window
containing at least one significant fragment end are called
as significant fragments. We treat the fragments called in the
full data set as the ‘truth’ and calculate the number of true
positive, false positive and false negative fragments based
upon the overlap between the significant fragments in sub-
sampled datasets and those from the full dataset.

Identification of peaks in single experiments

The approach we follow to identify peaks in a single experi-
ment is also based on monotonic regression. However, since
single experiments do not allow us to model the effect of
random variation on the 4C coverage, rather than calculat-
ing a rank-product based P-value we determine an empiri-
cal threshold analogous to the effect size filter for R scores.
Fragments are selected when the Δ score is above Q3Δ +
qWd * IQR and the R score of the same fragment is greater
than Q3

R + qWr * IQR. Typical values that seem to work
well across our dataset are qWd set to 1.5 and qWr set to 1.

The computational analysis that guides the selection of ‘op-
timal’ values for these parameters, i.e. values that result in
high reproducibility of peaks in replicate experiments, will
be discussed in the Results section.

FourCSeq analysis

FourCSeq analysis was performed as described in the
vignette (https://bioconductor.org/packages/release/bioc/
vignettes/FourCSeq/inst/doc/FourCSeq.pdf). In the calls
to the FourCSeq analysis function getZScores, we used
the following parameters: fitFun = distFitMonotone,
removeZeros = TRUE, minCount = 0 and minDist = 20
000. In the parameter sweep we varied two parameters: zS-
coreThresh and fdrTresh. The z-score was varied between
1.96 and 50 and the FDR between 0.1 and 0.001.

RESULTS

To test our peak calling software, we generated a set of high-
resolution 4C datasets. We prepared biological triplicate 4C
templates in two mouse tissues, embryonic stem cells (ESCs)
and fetal liver. On each of these six templates we assessed
the contact profile of 10 different viewpoints, resulting in
60 individual 4C datasets. Eight of these 10 viewpoints were
from CTCF binding sites close to TAD borders or loop an-
chors. The remaining two viewpoints were designed close
to the promoter of the mESC-specific gene Sox2 and the
fetal liver specific gene α-globin. The tissue-specific expres-
sion of these genes is associated with differential chromatin
architecture (Supplementary Figure S1A), presumably be-
cause the (super)-enhancer-promoter interactions guide the
tissue-specific expression. In addition to this collection of
data we generated six templates in ES cells for three differ-
ent viewpoints that showed reciprocal interactions between
CTCF binding sites. Read counts and other statistics can
be found in Supplementary Table S1. All of the viewpoints
showed a certain degree of distal looping. We used these
data to evaluate our peak calling procedure.

We sought to develop a robust non-parametric method
for the identification of contact peaks in the 4C data. Con-
tact peaks are genomic regions that in replicate experiments
show a statistically significant increase in contact frequency
over the expected background. We would like to emphasize
that contact peaks are different from contact frequency. We
acknowledge that contact frequency can be an important
measure for promoter–enhancer communication, however,
our aim is to identify peaks (or preferential loops), rather
than regions with high contact frequency per se. In some
ways measuring of contact frequency is easier as it is di-
rectly related to the coverage in a 4C experiment. Identi-
fication of contact peaks is less trivial as it requires the cor-
rect estimation of the background model. peakC fits the
background independently for every replicate using mono-
tonic regression (29) and estimates the decay trend in 4C
contacts. Monotonic (or isotonic) regression calculates a
flexible regression model under the constraint that the de-
pendent variable can only increase or decrease with an in-
crease in the independent variable. This is a reasonable as-
sumption for a chromatin fiber because in a random, unre-
strained, polymer model the contact frequency is expected
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to decrease exponentially with increasing distance for an en-
semble of polymers (30). Figure 1A shows the raw 4C data
for the promoter of the Sox2 gene in mESCs. The red line
shows the estimated background contact frequency. This
example clearly indicates why it is important to calculate the
background model for up- and downstream sequences inde-
pendently: contact profiles of individual sites can be highly
asymmetric. Ignoring this could lead to either over- or un-
derestimation of the background model. In the next step of
the algorithm the difference (�) and ratio (R) between the
fragment coverage and the predicted fragment coverage is
calculated and a statistical analysis is performed to identify
significant fragments (see Methods for further details, Fig-
ure 1B). As an example, Figure 1C shows the result of the
peak calling for the Sox2 locus in mESCs. The most preva-
lent interaction is the one with the super-enhancer (2,16),
but an additional interaction with a very distal convergently
oriented CTCF site is also identified. peakC can thus faith-
fully identify promoter–enhancer interactions and CTCF-
mediated chromatin loops.

Because performing replicate experiments is not always
possible, for instance due to limited source material, we have
also developed a slightly modified version of our peak call-
ing method for single template 4C experiments. The single
template peak calling algorithm is based on double thresh-
olding, i.e. on the distributions of both � and R (see Ma-
terials and Methods for a detailed explanation). In Supple-
mentary Figure S1b we show the results of statistical anal-
ysis with peakC on a triplicate experiment. In Supplemen-
tary Figure S1C, the results of application of peakC to the
individual replicates separately is shown. Although most of
the called peaks are shared between the combined and the
single experiments, clearly there are regions that are identi-
fied in only one of the replicates. Although we do not have
a ground truth for 4C peaks, we reason that it is likely that
regions identified exclusively in one of three replicate 4C ex-
periments result from random variation in 4C ligation and
amplification frequencies and hence constitute false positive
peak calls. Below, we will therefore analyze and compare the
results from peak calling in single and replicate 4C experi-
ments in more detail.

An important way to validate a 4C peak is to determine
reciprocity. For a peak to represent a specific interaction
or loop, it should also be appreciable in the reciprocal 4C
experiment where the interacting locus is chosen as view-
point. Therefore, to further validate peakC we designed
viewpoints at sites identified as peaks by peakC in our first
set of 4C experiments and performed 4C PCRs on six sepa-
rate 4C templates. Figure 1D shows that for every interact-
ing site for which we performed 4C, we were able to identify
the original viewpoint as a contact peak, emphasizing the
robustness of our peak calling method.

Peak sizes and their degree of overlap between replicates
depend on the significance threshold parameters alphaFDR
and qWr (see Methods). To optimize these parameters and
assess the importance of using replicate templates in a 4C
experiment, we divided the dataset into non-overlapping
pairs of three replicates (n = 10). As shown in Figure 2A,
at a given combination of thresholds peakC consistently
finds for all 20 sets of triplicates three contact peaks: they
do however differ somewhat in their start and end posi-

tion across the sets. We subsequently systematically varied
the threshold parameters, performed peak calling and de-
termined their similarity by calculating the Jaccard similar-
ity coefficient (i.e. the intersection divided by the union) of
the restriction fragments called under these conditions (Fig-
ure 2B). The optimal parameters we thus selected were al-
phaFDR = 0.1 and qWr = 1 (Figure 2C) (for further de-
tails, see methods). When reducing the number of repli-
cates per set to two or even single experiments, the average
Jaccard similarity coefficient drops correspondingly (Figure
2D). Importantly, we find this trend for all three viewpoints,
which suggests that robust peak calling benefits from the in-
clusion of replicate experiments. We repeated this analysis,
but this time calculating overlap between peak regions (de-
fined as collapsed sets of consecutive significant peak frag-
ments) where two peaks overlap when there is an overlap
of at least one fragment (Figure 2E). This analysis reveals
that peakC is very consistent in identifying broader regions
with increased contacts and that when only a single 4C tem-
plate is available, more regions are being called that cannot
be reproduced in independent 4C experiments.

In order to further benchmark our method, we compared
the peak calls from peakC to peak calls from FourCseq, an
alternative 4C analysis method. We first analyzed a view-
point from the original FourCseq publication (31), that
studied the interaction profile of cis-regulatory modules in
Drosophila embryos. Viewpoint CRM 4319 shows a sta-
ble loop across three different tissue/timepoints (whole em-
bryo 3–4 h, whole embryo 6–8 h and mesoderm 6–8 h)
(Supplementary Figure S2A). Both FourCseq and peakC
consistently identify this loop across the tissues. However,
in the regions between the loop and the viewpoint there
seems to be more discrepancy between the interaction calls,
with peakC being seemingly better at identifying the visu-
ally apparent peaks and preventing identification of seem-
ingly spurious peaks. In order to objectively measure repro-
ducibility, we used our set of six templates to compare two
sets of three templates that were processed under the exact
same conditions. We first performed a parameter sweep for
FourCSeq, like we did for peakC to obtain the parameters
that give the most optimal reproducibility. Our first obser-
vation was that the FDR threshold affects neither the repro-
ducibility nor the number of called fragments very much
(Supplementary Figure S2B). The z-score threshold does
affect the number of called fragments, however, the repro-
ducibility as measured by the Jaccard index is not strongly
affected. Only at very high z-score thresholds (i.e. >50) for
data from the Grp viewpoint FourCSeq gives good repro-
ducibility, but this is for a very small number of fragments
(∼7). In Supplementary Figure S2C we show the effect of
varying the z-score threshold for the Oacyl viewpoint (see
Figure 2A for comparison to peakC). It is important to
note that the individual fragments identified by FourCSeq
show a low reproducibility, suggesting a high rate of false
positives. We chose rational thresholds for FourCSeq (i.e.
FDR < 0.05 and z-score > 7.13) and determined the re-
producibility between the various sets of replicates. Sup-
plementary Figure S2D shows that the Jaccard index for
FourCSeq for almost every comparison is <50%, with Oa-
cyl and Malt1 having Jaccard indices between 40% and 45%.
peakC peak calling on the other hand, on average results
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Figure 2. Replicate experiments show high level of reproducibility for contact peak calls. (A) Plots of Oacyl 4C profiles (4C coverage per 1 million of
mapped reads) in two independent sets of triplicate 4C experiments. Genomic regions indicated in black underneath the peak regions in red represent the
peaks called in all 20 different (non-overlapping) sets of triplicates (10 in each panel). Red and blue triangles show the orientation of CTCF binding sites.
(B) Schematic showing how to compute the Jaccard coefficient to measure the overlap of peak fragments identified by peakC in independent sets. The panel
on the left shows 2 independent sets (labeled X and Y) of triplicate 4C experiments. The peak fragments identified are represented in the Venn diagram by
a green (set X) and a blue (set Y) circle, and partitioned into subsets labeled x, XY and y representing fragments found exclusively in set X, the overlap of
fragments found in set X and set Y and fragments found exclusively in set Y respectively. The formula shows how to calculate the corresponding Jaccard
coefficient. (C) Heatmaps of average Jaccard coefficients (green) and average number of peak fragments identified (red) with peakC in independent sets of
triplicates for different values of the significance thresholds alphaFDR and qRw for three viewpoints. (D) Boxplots of Jaccard coefficients of independent
sets of 4C experiments for optimal values of the significance thresholds alphaFDR and qRw for the sets of triplicate 4C experiments for three different
viewpoints. e) Box plots of Jaccard coefficients for comparisons on the level of peaks (sets of collapsed consecutive peak fragments) rather than individual
fragments.
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in Jaccard indices >90%. From these comparisons we con-
clude that peakC is more conservative in its peak calls than
FourCseq, but that the called peaks are more reproducible.
In the Discussion we examine how the fundamental differ-
ences between the two methods can lead to differences in
the results.

Our 4C dataset and peak calling procedure offers an op-
portunity to assess the effect of 4C data quality on the re-
producibility of 4C results. We investigated the minimum
amount of reads required for reproducible peak calling by
subsampling analysis. We iteratively (100x) and randomly
sampled 200k, 100k, 50k, 20k, 10k and 5k reads from our
datasets and performed peak calling. To estimate the effect
of sequencing depth on performance we each time calcu-
late the number of fragments that are shared between the
original dataset and the sampled dataset (see Figure 3A for
explanation). Figure 3B shows the results for two tissue-
specific genes (Sox2 in mESC and α-globin (Hba1) in fe-
tal liver). When we systematically perform the subsampling
analysis for our 10 viewpoints, we find that with only 20k
intrachromosomal reads per experiment we still are able to
identify >90% of the original peak fragments in 15/20 4C
experiments, with the majority of the 20 experiments identi-
fying > 95% of the original fragments. Note also that down-
sampling does not necessarily come at the cost of a strongly
increased false positive rate (Figure 3, Supplementary Fig-
ures S3–S4).

We also performed the downsampling analysis on the sin-
gle experiments. As expected downsampling with single ex-
periments leads to higher levels of false positives and false
negatives, however the effect is rather modest. It is impor-
tant to note here that this analysis shows that discrepancy
in regions that were identified as peaks across the single ex-
periments, were persistent through repeated downsampling
(Supplementary Figure S5B). This means that deeper se-
quencing of 4C amplicons will not result in more reliable
contact peak calling. Rather, based on these analyses we
conclude that the inclusion of an additional 4C template
is a far more effective method to reduce false positive peak
calls.

To further emphasize the importance of adding replicate
template experiments, we determined the impact of down-
sampling on two sets of replicate experiments. To this end
we downsampled 6 replicate experiments and divided them
into two groups of three replicates and compared the identi-
fied contact peaks between the two experiments. As is clear
from Figure 3D downsampling to only 20k intrachromo-
somal reads per replicate results in only limited numbers
of false positive and false negative contact peak fragments.
Summarizing, these sampling results show that (i) our peak
calling algorithm with replicates is very robust between two
sets of replicate experiments, (ii) that only a very limited
number of reads is necessary for reproducible peak calling
and (iii) the inclusion of replicate templates reduces false
positive contact peak calls.

As an alternative to the inverse PCR-based 4C, one can
also use a hybridization capture strategy to identify ligated
fragments. Because the so-called Capture-C strategy (10,32)
is also a one-vs-all strategy like 4C, peakC can be used to
identify interactions from these data. Figure 4A shows ex-
amples from a multiplexed capture strategy (10) for the α-

globin (Hba) and β-globin (Hbb) genes in murine ter119+

cells. peakC clearly identifies the super-enhancers known as
the locus control regions that regulate these genes as inter-
actions. In Figure 4B, we show an analysis of a Capture-C
experiment in mESCs, which shows a more subtle interac-
tion pattern. From a CTCF binding site in the α-globin re-
gion we identify three consecutive CTCF sites as interac-
tion partners, even though the interactions are much less
pronounced in mESCs compared to ter119+ cells. These
results show the sensitivity of combining Capture-C with
the peakC analysis method. By performing a downsampling
analysis we can assess the amount of reads at which the sig-
nal starts to break down (Figure 4C). The results suggest
that decreasing the amount of reads in a Capture-C exper-
iment does not generate a large number of false negatives,
but that the number of false positives does increase. It is
important to note that, because Capture-C is less sensitive
to spurious fragment amplification, smaller window sizes
can be used for the identification of interaction regions; a
window size of five still gives significant interactions, which
brings the resolution in the kilobase range.

By using large capture libraries, it is possible to investi-
gate many different sites in parallel, albeit with less depth
per viewpoint or bait. We used peakC to perform peak call-
ing on a promoter capture Hi-C (PCHiC) dataset that was
generated for human erythroblasts to investigate the inter-
actome of over 30k promoters (11). Whereas the previously
analyzed 4C/Capture-C templates were generated with a
4-bp restriction enzyme (i.e. DpnII/MboI), it is important
to note that the PCHiC template was generated generated
with a 6-bp restriction enzyme (i.e. HindIII), which lowers
the resolution of the analysis. Figure 4D shows an exam-
ple of peakC analysis on these PCHiC data for one of the
H2B genes on chromosome 6. We used the reciprocal cap-
ture HiC dataset to perform peakC analysis from the site
that was identified in the promoter capture. For the recip-
rocal capture experiment peakC identifies the original pro-
moter as a significant interaction. Comparison with CTCF
binding data from lymphoblasts (33) shows that this loop
is formed between two convergently oriented CTCF sites.
These results show that peakC is a general-purpose analy-
sis toolkit for one-vs-all 3D genome methods.

DISCUSSION

Identifying interactions in chromosome capture data is a
non-trivial task because of the non-uniform distribution
of the background. Previous methods have tried to model
this distribution by averaging over multiple ‘viewpoints’
(34) or by calculating a genome-wide average (35,36). This
enables the identification of regions with significantly in-
creased contact frequency compared to a genome-wide av-
erage. The downside of these methods is that this can lead
to either under- or overestimation of the number of con-
tacts depending on the genomic location of the region. For
instance, when a viewpoint is located close to a TAD bound-
ary the distribution of captures (or interactions) is heavily
skewed (37), an observation which was crucial to the iden-
tification of TADs. Furthermore, if only one or a few view-
points are available for study, it is not possible to calculate
a genome-wide or multi-viewpoint average.
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Figure 3. Downsampling analysis shows lower bound for read depth in 4C experiments. (A) Explanatory figure for the interpretation of (B) and (C) (left)
and (D) right. (B) Barplots show the effect of downsampling on replicate experiments. Replicate 4C datasets were downsampled to a fixed number of reads
(shown inside the bars). Note that the number of reads per replicate is shown. peakC analysis was performed on the subsampled dataset and the result was
compared to the full dataset. Results for Sox2 in mESCs and α-globin in fetal livers are shown. (C) Similar analysis as in (B) but with single experiments
instead of replicate experiments. One of the three replicates was chosen for the analysis from the Sox2 and α-globin datasets. (D) Barplots show the effect of
downsampling on reproducibility. A sextuplicate 4C dataset is randomly split into two sets of triplicate experiments. Both sets are subsequently subsampled
to a fixed amount of reads (number of reads per replicate is shown inside the bars). After peakC analysis, the overlap in the fragments called as peaks is
plotted.



PAGE 9 OF 11 Nucleic Acids Research, 2018, Vol. 46, No. 15 e91

Figure 4. peakC enables the identification of peaks in Capture-C data. (A) peakC output for Capture-C data from the α-globin (Hba, top) and β-globin
locus (Hbb, bottom) in mouse erythroid cells. Capture-C data was taken from (10). α-globin and β-globin genes are marked in green. Below the Capture-C
data the H3K27ac ChIPseq signal (23) is plotted in darkblue. (B) peakC output for Capture-C data from a CTCF site in mESCs in the α-globin locus.
Capture-C data was taken from (21). CTCF data was taken from (16). (C) Downsampling analysis similar to Figure 2B) for the Capture-C datasets shown
in A). (D) peakC output for a selected locus from PCHiC data from human erythroblasts.
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Recent developments in high-resolution Hi-C have led to
the identification of preferential chromatin loops, many of
which overlap with TAD boundaries (14). This higher res-
olution also resulted in a different method for the identifi-
cation of loops, rather than selecting regions that show an
increase over an inferred background model, regions were
selected that show an increase in signal both upstream and
downstream of the loop anchors (14), a choice that was
mostly enabled by the increase in resolution and sequencing
throughput. Our previous work on CTCF loops followed
a similar rationale (16). In the current work, we have ex-
tended our previously described peak calling algorithm to
also include replicate experiments. The use of replicates also
enables the calculation of test statistics and the identifica-
tion of significantly contacted regions. In order to not have
to rely on arbitrary thresholds, inclusion of replicate experi-
ments is therefore strongly advocated. Our results show that
sequencing depth should not be a limiting factor for per-
forming these.

Because it is not always feasible to include replicates in
experiments, especially when a large number of genomic
sites is under investigation, we have also developed a robust
method for identifying peaks from single 4C experiments.
Many of the peaks we have identified in our replicate ex-
periment were also identified in our single experiments, of-
ten in all three replicates individually. However, because the
chance of identifying false positive peaks is substantial, the
peaks identified in single experiments should be thoroughly
scrutinized.

peakC is not the only method for the identification of in-
teractions in 4C data. We performed side-by-side compar-
ison of peakC to FourCseq. Using default and very com-
monly used significance thresholds, FourCseq seems to call
more significant interactions. We show here that the over-
lap between the fragments that are significantly identified
by FourCSeq in two independent sets of replicates is gen-
erally <50%, whereas for peakC this number is generally
>90%. What differences in the methods could account for
these differences in reproducibility? Although both meth-
ods rely on monotonic regression for the estimation of the
background model, FourCseq uses a smooth monotone fit
on the variance-stabilizing transformed data and peakC
uses pool-adjacent-violators algorithm (PAVA) isotonic re-
gression on the untransformed data. A more fundamental
difference is that, peakC analyses windows of fragments
whereas FourCseq performs single fragment analysis. We
believe that interpretation of signals from single fragments
should be performed with extreme caution. We have previ-
ously shown that the amplification of a fragment can be de-
pendent on sequence characteristics, such as length, of said
fragment (18). We further advocate the averaging of signals
of multiple fragments to acknowledge that neighbor frag-
ments inevitably co-migrate when loops are formed. Finally,
the inverse 4C PCR may result in non-systematic amplifi-
cation of DNA fragments. In our opinion, because peakC
takes these characteristics of the 4C method into account
we find that peakC shows a higher reproducibility between
sets of replicate experiments.

In conclusion, peakC is a lightweight R package that en-
ables conservative but robust loop calling and thereby facil-

itates the systematic analysis of 4C, Capture-C and PCHiC
experiments.

DATA AVAILABILITY

The data have been deposited to GEO under accession num-
ber GSE105177. peakC is available at: https://github.com/
deWitLab/peakC.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Adrien Melquiond and Valerio Bianchi for map-
ping 4C data and members of the de Laat and de Wit labs
for discussion.

FUNDING

European Research Council (ERC) [StG 637587 HAP-
PHEN to E.d.W.];Netherlands Organisation for Scientific
Research (NWO) [NWO-VICI 724.012.003 to W.d.L.]; On-
code Institute which is partly financed by the Dutch Cancer
Society. Funding for open access charge: ERC.
Conflict of interest statement. None declared.

REFERENCES
1. Tolhuis,B., Palstra,R.J., Splinter,E., Grosveld,F. and de Laat,W.

(2002) Looping and interaction between hypersensitive sites in the
active beta-globin locus. Mol. Cell, 10, 1453–1465.

2. Li,Y., Rivera,C.M., Ishii,H., Jin,F., Selvaraj,S., Lee,A.Y., Dixon,J.R.
and Ren,B. (2014) CRISPR reveals a distal super-enhancer required
for Sox2 expression in mouse embryonic stem cells. PLoS One, 9,
e114485.

3. Lettice,L.A., Horikoshi,T., Heaney,S.J.H., van Baren,M.J., van der
Linde,H.C., Breedveld,G.J., Joosse,M., Akarsu,N., Oostra,B.A.,
Endo,N. et al. (2002) Disruption of a long-range cis-acting regulator
for Shh causes preaxial polydactyly. Proc. Natl. Acad. Sci. U.S.A., 99,
7548–7553.

4. Dowen,J.M., Fan,Z.P., Hnisz,D., Ren,G., Abraham,B.J., Zhang,L.N.,
Weintraub,A.S., Schuijers,J., Lee,T.I., Zhao,K. et al. (2014) Control
of cell identity genes occurs in insulated neighborhoods in
mammalian chromosomes. Cell, 159, 374–387.

5. Chung,J.H., Whiteley,M. and Felsenfeld,G. (1993) A 5′ element of
the chicken beta-globin domain serves as an insulator in human
erythroid cells and protects against position effect in Drosophila.
Cell, 74, 505–514.

6. Dekker,J., Rippe,K., Dekker,M. and Kleckner,N. (2002) Capturing
chromosome conformation. Science, 295, 1306–1311.

7. Simonis,M., Klous,P., Splinter,E., Moshkin,Y., Willemsen,R., de
Wit,E., van Steensel,B. and de Laat,W. (2006) Nuclear organization
of active and inactive chromatin domains uncovered by chromosome
conformation capture-on-chip (4C). Nat. Genet., 38, 1348–1354.

8. Dostie,J., Richmond,T.A., Arnaout,R.A., Selzer,R.R., Lee,W.L.,
Honan,T.A., Rubio,E.D., Krumm,A., Lamb,J., Nusbaum,C. et al.
(2006) Chromosome Conformation Capture Carbon Copy (5C): a
massively parallel solution for mapping interactions between genomic
elements. Genome Res., 16, 1299–1309.

9. Lieberman-Aiden,E., van Berkum,N.L., Williams,L., Imakaev,M.,
Ragoczy,T., Telling,A., Amit,I., Lajoie,B.R., Sabo,P.J.,
Dorschner,M.O. et al. (2009) Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. Science,
326, 289–293.

https://github.com/deWitLab/peakC
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gky443#supplementary-data


PAGE 11 OF 11 Nucleic Acids Research, 2018, Vol. 46, No. 15 e91

10. Davies,J.O.J., Telenius,J.M., McGowan,S.J., Roberts,N.A., Taylor,S.,
Higgs,D.R. and Hughes,J.R. (2015) Multiplexed analysis of
chromosome conformation at vastly improved sensitivity. Nat.
Methods, 13, 74–80.

11. Javierre,B.M., Sewitz,S., Cairns,J., Wingett,S.W., Várnai,C.,
Thiecke,M.J., Freire-Pritchett,P., Spivakov,M., Fraser,P., Burren,O.S.
et al. (2016) Lineage-Specific genome architecture links enhancers
and Non-coding disease variants to target gene promoters. Cell, 167,
1369–1384.

12. Splinter,E., de Wit,E., van de Werken,H.J.G., Klous,P. and de
Laat,W. (2012) Determining long-range chromatin interactions for
selected genomic sites using 4C-seq technology: from fixation to
computation. Methods, 58, 221–230.

13. Splinter,E., de Wit,E., Nora,E.P., Klous,P., van de Werken,H.J.G.,
Zhu,Y., Kaaij,L.J.T., van Ijcken,W., Gribnau,J., Heard,E. et al. (2011)
The inactive X chromosome adopts a unique three-dimensional
conformation that is dependent on Xist RNA. Genes Dev., 25,
1371–1383.

14. Rao,S.S.P., Huntley,M.H., Durand,N.C. and Stamenova,E.K. (2014)
A 3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell, 159, 1665–1680.

15. Vietri Rudan,M., Barrington,C., Henderson,S., Ernst,C., Odom,D.T.,
Tanay,A. and Hadjur,S. (2015) Comparative Hi-C reveals that CTCF
underlies evolution of chromosomal domain architecture. Cell Rep.,
10, 1297–1309.

16. de Wit,E., Vos,E.S.M., Holwerda,S.J.B., Valdes-Quezada,C.,
Verstegen,M.J.A.M., Teunissen,H., Splinter,E., Wijchers,P.J.,
Krijger,P.H.L. and de Laat,W. (2015) CTCF binding polarity
determines chromatin looping. Mol. Cell, 60, 676–684.

17. Klein,F.A., Pakozdi,T., Anders,S., Ghavi-Helm,Y., Furlong,E.E.M.
and Huber,W. (2015) FourCSeq: analysis of 4C sequencing data.
Bioinformatics, 31, 3085–3091.

18. van de Werken,H.J.G., Landan,G., Holwerda,S.J.B., Hoichman,M.,
Klous,P., Chachik,R., Splinter,E., Valdes-Quezada,C., Oz,Y.,
Bouwman,B.A.M. et al. (2012) Robust 4C-seq data analysis to screen
for regulatory DNA interactions. Nat. Methods, 9, 969–972.

19. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment
with Bowtie 2. Nat. Methods, 9, 357–359.

20. Van De Werken,H.J.G., De Vree,P.J.P., Splinter,E., Holwerda,S.J.B.,
Klous,P., De Wit,E. and De Laat,W. (2012) 4C technology: protocols
and data analysis. Methods Enzymol., 513, 89–112.

21. Hanssen,L.L.P., Kassouf,M.T., Oudelaar,A.M., Biggs,D., Preece,C.,
Downes,D.J., Gosden,M., Sharpe,J.A., Sloane-Stanley,J.A.,
Hughes,J.R. et al. (2017) Tissue-specific CTCF-cohesin-mediated
chromatin architecture delimits enhancer interactions and function in
vivo. Nat. Cell Biol., 19, 952–961.

22. Creyghton,M.P., Cheng,A.W., Welstead,G.G., Kooistra,T.,
Carey,B.W., Steine,E.J., Hanna,J., Lodato,M.A., Frampton,G.M.,
Sharp,P.A. et al. (2010) Histone H3K27ac separates active from
poised enhancers and predicts developmental state. Proc. Natl. Acad.
Sci. U.S.A., 107, 21931–21936.

23. Kowalczyk,M.S., Hughes,J.R., Garrick,D., Lynch,M.D., Sharpe,J.A.,
Sloane-Stanley,J.A., McGowan,S.J., De Gobbi,M., Hosseini,M.,
Vernimmen,D. et al. (2012) Intragenic enhancers act as alternative
promoters. Mol. Cell, 45, 447–458.

24. Breitling,R., Armengaud,P., Amtmann,A. and Herzyk,P. (2004)
Rank products: a simple, yet powerful, new method to detect
differentially regulated genes in replicated microarray experiments.
FEBS Lett., 573, 83–92.

25. Breitling,R., Armengaud,P., Amtmann,A. and Herzyk,P. (2004)
Rank products: a simple, yet powerful, new method to detect
differentially regulated genes in replicated microarray experiments.
FEBS Lett., 573, 83–92.

26. Koziol,J.A. (2010) Comments on the rank product method for
analyzing replicated experiments. FEBS Lett., 584, 941–944.

27. Eisinga,R., Breitling,R. and Heskes,T. (2013) The exact probability
distribution of the rank product statistics for replicated experiments.
FEBS Lett., 587, 677–682.

28. Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery
Rate: A practical and powerful approach to multiple testing. J. R.
Stat. Soc. Ser. B, 57, 289–300.

29. de Leeuw,J., Hornik,K. and Mair,P. (2009) Isotone optimization in
R: Pool-Adjacent-Violators algorithm (PAVA) and active set
methods. J. Stat. Softw., 32, 1–24.

30. Rippe,K. (2001) Making contacts on a nucleic acid polymer. Trends
Biochem. Sci., 26, 733–740.

31. Ghavi-Helm,Y., Klein,F.A., Pakozdi,T., Ciglar,L., Noordermeer,D.,
Huber,W. and Furlong,E.E.M. (2014) Enhancer loops appear stable
during development and are associated with paused polymerase.
Nature, 512, 96–100.

32. Hughes,J.R., Roberts,N., McGowan,S., Hay,D., Giannoulatou,E.,
Lynch,M., De Gobbi,M., Taylor,S., Gibbons,R. and Higgs,D.R.
(2014) Analysis of hundreds of cis-regulatory landscapes at high
resolution in a single, high-throughput experiment. Nat. Genet., 46,
205–212.

33. Consortium,E.P. (2013) An integrated encyclopedia of DNA
elements in the human genome. Nature, 489, 57–74.

34. Sanyal,A., Lajoie,B.R., Jain,G. and Dekker,J. (2012) The long-range
interaction landscape of gene promoters. Nature, 489, 109–113.

35. Jin,F., Li,Y., Dixon,J.R., Selvaraj,S., Ye,Z., Lee,A.Y., Yen,C.-A.,
Schmitt,A.D., Espinoza,C.A. and Ren,B. (2013) A high-resolution
map of the three-dimensional chromatin interactome in human cells.
Nature, 503, 290–294.

36. Ay,F., Bailey,T.L. and Noble,W.S. (2014) Statistical confidence
estimation for Hi-C data reveals regulatory chromatin contacts.
Genome Res., 24, 999–1011.

37. Dixon,J.R., Selvaraj,S., Yue,F., Kim,A., Li,Y., Shen,Y., Hu,M.,
Liu,J.S. and Ren,B. (2012) Topological domains in mammalian
genomes identified by analysis of chromatin interactions. Nature, 485,
376–380.


