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Melting Temperature Mapping 
Method: A Novel Method for 
Rapid Identification of Unknown 
Pathogenic Microorganisms within 
Three Hours of Sample Collection
Hideki Niimi1, Tomohiro Ueno1, Shirou Hayashi1, Akihito Abe2, Takahiro Tsurue2, 
Masashi Mori3, Homare Tabata4, Hiroshi Minami4, Michihiko Goto5, Makoto Akiyama6, 
Yoshihiro Yamamoto7, Shigeru Saito8 & Isao Kitajima1

Acquiring the earliest possible identification of pathogenic microorganisms is critical for selecting 
the appropriate antimicrobial therapy in infected patients. We herein report the novel “melting 
temperature (Tm) mapping method” for rapidly identifying the dominant bacteria in a clinical 
sample from sterile sites. Employing only seven primer sets, more than 100 bacterial species can 
be identified. In particular, using the Difference Value, it is possible to identify samples suitable for 
Tm mapping identification. Moreover, this method can be used to rapidly diagnose the absence 
of bacteria in clinical samples. We tested the Tm mapping method using 200 whole blood samples 
obtained from patients with suspected sepsis, 85% (171/200) of which matched the culture results 
based on the detection level. A total of 130 samples were negative according to the Tm mapping 
method, 98% (128/130) of which were also negative based on the culture method. Meanwhile, 70 
samples were positive according to the Tm mapping method, and of the 59 suitable for identification, 
100% (59/59) exhibited a “match” or “broad match” with the culture or sequencing results. These 
findings were obtained within three hours of whole blood collection. The Tm mapping method is 
therefore useful for identifying infectious diseases requiring prompt treatment.

Acquiring the earliest possible identification of pathogenic microorganisms is critical for selecting the 
appropriate antimicrobial therapy and obtaining a favorable outcome in infected patients1–3. Severe sys-
temic infections, such as sepsis, are a primary cause of morbidity and mortality in hospitalized patients, 
the definitive diagnosis of which requires proper identification of the causative microorganism4. However, 
as current pathogen-identification methods using microbial cultures require several days, empirically 
selected antimicrobial agents are often administered until the pathogenic microbes are identified5,6. As 
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a result, the use of inappropriate antimicrobial agents in the initial treatment period often results in 
life-threatening conditions in patients with severe infections7. In addition, the overuse of broad-spectrum 
antimicrobial agents has led to the emergence of drug-resistant bacteria. Hence, there are significant risks 
associated with the initial treatment of infectious diseases and there is thus a critical need to develop new 
methods capable of rapidly identifying pathogenic microorganisms. Such methods would make possible 
the more informed use of antimicrobial agents at an earlier stage and consequently reduce the inappro-
priate overuse of broad-spectrum antimicrobial agents and slow the emergence of more drug-resistant 
bacteria8. In this way, the rapid identification of pathogenic microorganisms is a powerful tool for opti-
mizing antibiotic stewardship. For clinicians, the clock starts long before the growth of bacterial colonies, 
beginning with patient sample collection. As long as microbial cultures are used, it is difficult to establish 
a rapid system because the speed of detection depends on the growth rate of the bacterial species. In this 
regard, even mass spectrometry-based identification, which at present also require microbial culture, is 
no exception9,10.

In order to identify pathogens more rapidly, genetic testing methods have been developed for 
non-culture diagnosis. Identification of the pathogenic species can be achieved using a range of molecu-
lar genetic techniques, including multiplexing11, hybridization probes12, microarrays13 and gene sequenc-
ing14. However, the number of pathogens capable of being identified using multiplexing and hybridization 
probes is limited, as the usable number of species-specific primers or probes is also limited technically. 
In addition, microarrays cannot quickly adapt to the emergence of mutant strains of bacteria and both 
microarrays and gene sequencing analyses tend to be costly. These techniques therefore have limited 
applications for identifying infectious diseases in clinical practice.

In an attempt to address these problems, we herein report the development of a novel rapid, easy and 
cost-effective method for identifying a broad range of pathogenic bacteria using a real-time PCR-based 
system. Employing only seven primer sets, more than 100 bacterial species can be rapidly identified 
without the need for microbial culture, multiplexing, hybridization probes or gene sequencing, and the 
number of identifiable bacterial species is easily expandable.

Results
Workflow of the novel rapid identification method.  The workflow of the novel rapid identifica-
tion method for unknown pathogenic bacteria developed in our laboratory is shown in Fig. 1. Within 
three hours of whole blood collection, this method identifies the dominant bacteria, which is usu-
ally pathogenic, in a clinical sample. This method consists of four major steps. First, bacterial DNA is 
extracted directly from a clinical sample (2 mL of a whole blood sample, etc.) as a template for PCR. 
Step two involves a nested PCR using seven bacterial universal primer sets (one primer set per tube in 
the second PCR); these primers can detect almost all species of bacteria. In order to achieve accuracy in 
this PCR step, we developed a eukaryote-made thermostable DNA polymerase that is free from bacterial 
DNA contamination15. The eukaryote-made thermostable DNA polymerase is a recombinant polymerase 
manufactured using eukaryotic (yeast) host cells. Employing this DNA polymerase, sensitive and reliable 
detection of bacteria without false-positive results is feasible, thereby making it possible for PCR to iden-
tify bacterial isolates directly from patient samples. The nested PCR procedure is performed and seven 
(or less) PCR amplicons are obtained. If none of the seven amplifications are observed by the 30th cycle 
in the second PCR, then we defined the sample as having no bacteria present. In step three, the seven 
melting temperature (Tm) values are acquired by analyzing the amplicons. Step four involved mapping 
the seven Tm values on two dimensions (see Fig.  1). The plot creates a unique species-specific shape: 

Figure 1.  Workflow of the novel rapid method for identifying unknown pathogenic bacteria within 
three hours of whole blood collection. 
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the Tm mapping shape. This is NOT a high-resolution melting-curve (HRM) analysis, and only the Tm 
values were recorded. By comparing the Tm mapping shape to the shapes in the database, the bacterial 
isolates can be rapidly identified. We named this novel method the “Tm mapping method.” In order to 
make this method accessible globally, we developed an identification software program available on the 
World Wide Web.

Concept of the Tm mapping method.  The strategy for the primer designs is shown in Fig.  2A. 
In order to detect a wide range of bacteria, we designed seven bacterial universal primer sets targeting 
bacterial conserved regions in 16S ribosomal RNA gene (rDNA)16. We then devised a nested PCR assay 
to detect and identify bacterial isolates with high sensitivity and specificity.

Almost all measured Tm values contain measurement errors caused by the instrument. There are 
two types of measurement errors: measurement error among trials and measurement error among PCR 
tubes within the same trial (tube-to-tube variation). Measurement error among trials affects each Tm 
value equally, such that the overall Tm mapping shape is not affected by this kind of error (Fig.  2B). 
Tube-to-tube variation, however, is a serious issue, because it affects the Tm mapping shape. In order 
to minimize this variation, we decided to use an analytical instrument with a high degree of thermal 
accuracy among PCR tubes and performed the Tm value analysis with EvaGreen dye (Biotium, Inc.). 
Employing EvaGreen dye, it is possible to obtain stable Tm values, thereby minimizing the deviation 
error associated with tube-to-tube variation. Using an optimal instrument (Rotor-Gene Q by QIAGEN 
or LightCycler®  Nano by Roche Applied Science) and the Tm value analysis with EvaGreen dye in 36 
samples of the same bacterial DNA in the same trial, the tube-to-tube variation was within ± 0.1 °C 
(standard deviation =  0.047) (Fig. 2C), which has little effect on the Tm mapping shape of the bacterial 
isolates, allowing for accurate identification.

In order to analyze the Tm mapping “shape”, we developed a method to measure the distance of each 
individual Tm value from the average value (Fig. 2D). Tm values above the average receive a “+ ” desig-
nation, while those below the average receive a “− ” designation. These distances are not affected by the 
measurement error among trials. The Tm mapping shape is identified by comparing the seven distances 
obtained from unknown bacteria to those in the database.

Using the identification software program available on the World Wide Web, any user can identify 
bacterial isolates rapidly and easily without additional training (Fig. S1). In order to identify a bacterial 
isolate, the identification software program calculates the Difference Values using the formula shown in 
Fig. 2E. The Difference Value reflects the difference between the Tm mapping shape and that observed 
in the database. The closer the Difference Value is to zero, the more similar the Tm mapping shape is to 
the shape of the pathogenic bacteria contained in the database. From a mathematic point of view, the 
Difference Value is the distance between two points in seven dimensions. However, mapping the shape 
onto two dimensions provides much more information about each amplicon at a glance. Therefore, we 
decided to use the concept of the Tm mapping method. If the tube-to-tube variation is within ± 0.1 °C, 
then the measurement error in the Difference Values is within 0.26 calculated by the Difference Value 
formula: ( × (± . )7 0 1 2), which should be taken into consideration when assessing the Tm mapping 
results.

Construction of the Tm mapping database.  Using the mean of triplicate Tm value measurements, 
we constructed a preliminary database with the Tm mapping shapes of 107 species, all of which are 
bacterial species detected in our hospital within the past five years (Fig. S2). The bacteria were obtained 
from clinical samples, then sequenced and identified to the species level. We also registered mutant 
strains (1 to 4 mutant strains per species) of the same bacterial species if the Tm mapping shape was a 
bit different compared with the shape in the database. The database is scalable and can be easily modified 
and updated. The individual Tm mapping shapes in the database show unique shapes reflecting the base 
sequence of each bacterial strain. Some Tm mapping shapes are missing data points; this is due to the 
fact that such Tm values cannot be obtained because the primers do not bind to their target regions. The 
primers binding to the bacterial target regions registered in the database are shown in Table S1. When 
the cycle threshold (Ct) is delayed for 10 or more cycles compared to the other primers in the amplifi-
cation plot, we defined such primers as being unbound based on the low sequence homology between 
the universal primers and the bacterial target regions (Table S2). In order to identify the bacterial isolate, 
the identification software program narrows the scope of its search to bacteria in the database with the 
same pattern of primer binding in addition to calculating the Difference Values. That is, the pattern of 
the primer binding is also a characteristic of the bacteria.

Assessment of the accuracy of the Tm mapping method.  In order to assess the accuracy of 
the Tm mapping method, we first performed blind tests using the same 107 species of bacterial DNA 
registered in the database. That is, concealing the name of the bacteria, we tried to identify the bacterial 
DNA. In all 107 trials, the Tm mapping results matched the pre-sequenced bacterial DNA. The mean 
Difference Value was 0.178, with a range of 0.06 to 0.28 (standard deviation =  0.05).

Next, we set preliminary interpretative criteria to assess the suitability of the Tm mapping identifi-
cation. The interpretative criteria for identification based on the Difference Value are shown in Table 1. 
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Considering the range of Difference Values in the blind test, all test isolates with a Difference Value less 
than or equal to 0.28 have the same possibility of being the bacterial isolate (given that the theoretical 
error is 0.26, as described above). For this reason, if the Tm mapping method identified two or more 
species of bacteria with a Difference Value less than or equal to 0.28, the results cannot be narrowed 
down to one species, and we concluded that one of these bacterial species is the isolate. In this case, if 
one of these species matched the culture/sequencing results in our experiments, we defined the result as 
a “broad match”. If the Tm mapping method shows identification results with Difference Values greater 

Figure 2.  Concept of the Tm mapping method. (A) The strategy for the primer designs is shown. Nested 
PCR is performed using seven bacterial universal primer sets, and then the seven Tm values are obtained. 
(B) Mapping the seven Tm values on two dimensions leads to the identification of the unique bacterial 
species-specific shape. The average of all seven Tm values includes the measurement error among trials; 
however, the Tm mapping shape is not affected by this type of error. (C) Using an analytical instrument 
with a high degree of thermal accuracy among PCR tubes and Tm value analysis with EvaGreen dye in 36 
samples of the same bacterial DNA in the same trial, the tube-to-tube variation is within ± 0.1 °C. (D) In 
order to analyze the Tm mapping “shape”, we developed a method to measure the distance of each individual 
Tm value from the average value. Tm values above the average receive a “+ ” designation, while those below 
the average receive a “− ” designation. The Tm mapping shape is identified by comparing the seven distances 
obtained from the unknown bacteria to those in the database. (E) In order to identify a bacterial isolate, 
the identification software program calculates the Difference Values using the indicated formula. The closer 
the Difference Value is to zero, the more similar the Tm mapping shape is to the shape of a given species of 
pathogenic bacteria in the database.
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than 0.28 and less than or equal to 0.5, the identification result with the lowest Difference Value is highly 
likely to be the bacterial isolate. In this case, the bacterial isolate would be either a mutant strain or a 
polymicrobial infection with one dominant bacterial species. If the Tm mapping method identifies a bac-
terial species with a Difference Value greater than 0.5, the result is not suitable for identification due to 
the low specificity of the Tm mapping identification (Table S3). In these cases, we do not try to identify 
the bacterial isolate and instead conclude only that bacteria are present.

We then validated the measurement error among three different instruments and trials using the same 
Escherichia coli (ATCC25922) DNA template (Table S4). Because the Tm mapping identification requires 
a tube-to-tube variation of no more than 0.1 °C within the same trial, we selected optimal instruments, 
such as the RotorGeneQ or LightCycler®  Nano. The mean Difference Values of the validation procedures 
were as follows: first instrument (RotorGeneQ) =  0.191, second instrument (RotorGeneQ) =  0.164 and 
third instrument (LightCycler®  Nano) =  0.199. All Difference Values were less than or equal to 0.28. We 
also assessed the range of Difference Values among 15 different trials starting from DNA extraction of 
the same Escherichia coli (ATCC25922) (Table S5). The mean Difference Value was 0.179, with a range 
of 0.13 to 0.26, which indicated that the reproducibility of the Tm mapping identification is stable from 
trial to trial.

Using the current protocols, the limit of identification is as follows (Table S6): Escherichia coli =  1.25 
CFU/PCR tube (62.5 CFU/mL), Staphylococcus aureus =  1.25 CFU/PCR tube (62.5 CFU/mL), and 
Klebsiella pneumoniae =  0.63 CFU/PCR tube (31.3 CFU/mL). The limit of identification was determined 
to be the final log2 dilution of the template in which the Tm mapping result was correct, with the correct 
number of PCR amplicons (Table S1) and a Difference Value less than or equal to 0.5. Around the limit 
of identification, adequate amplification (melting peak curve) could not be obtained, therefore some of 
the Tm values could not be measured accurately (the Difference Values were greater than 0.28, but still 
within identification range).

We subsequently evaluated the accuracy of the Tm mapping method versus the culture/sequencing 
method (Table 2) using 140 bacterial colonies (51 bacterial species, shown in Table S7) obtained from 
various types of samples collected from different patients in chronological order of reception. Excluding 
10 colonies not suitable for Tm mapping identification because the Difference Value was greater than 
0.5, 98% (128/130) of the Tm mapping results were found to be either a “match” or “broad match” in 

Difference Value (D)
Suitability for 
identification Identification Interpretation

0.0 ≤  D ≤  0.28 High
All identification results 

within this range have the 
same possibility of being 

the bacterial isolate

Matched the bacteria 
registered in the database

0.28 <  D ≤  0.5 }Medium
to Low

The identification result 
with the lowest Difference 
Value is highly likely to be 

the bacterial isolate

Mutant strain, or 
Polymicrobial infection*1

0.5 <  D Not suitable Does NOT identify the 
bacterial isolate

Polymicrobial infection*2, 
or Not registered in the 

database, or Under the limit 
of identification*3

Table 1.  Interpretative criteria. *1Polymicrobial infection with one dominant bacterial species. 
*2Polymicrobial infection with no dominant bacterial species. *3Under the limit of identification, but over or 
equal to the limit of detection.

Difference 
Value (D)

No. of 
samples

vs. Conventional culture method vs. Sequencing method

No. of 
matches

No. of 
broad 

matches
No. of 

mismatches
No. of 

matches

No. of 
broad 

matches
No. of 

mismatches

0.0 ≤  D ≤  0.28 108 102 (2a) 2 4 106 2 0

0.28 <  D ≤  0.5 22 16 1 5 19 1 2

0.5 <  Db 10 6 0 4 6 0 4

Table 2.  Comparison of the Tm mapping and culture/sequencing results starting from bacterial 
colonies. aThe number of matches at the genus level. In these cases, bacterial isolates were identified using 
the conventional culture method at the genus level, not the species level. bIf the Difference Value is greater 
than 0.5, the result is below the level of identification and is not suitable for Tm mapping identification. 
Details of the identification results for these samples is only included here to demonstrate the accuracy of 
the Tm mapping method.
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comparison to the sequencing results. Concerning the accuracy of the culture results of these 130 sam-
ples, 93% (121/130) matched the sequencing results. All of the broad matches with sequencing results 
belonged to the genus Staphylococcus (Table S8). In this trial, all samples with Difference Values of greater 
than 0.5 occurred because the colonies contained more than one type of bacteria, although our intent 
was to test monomicrobial colonies. Some colonies had mutations in the 16S rDNA, so their Difference 
Values were higher than usual (0.28 < Difference Value ≤ 0.5). Whenever mutant strains are found, we 
make it a rule to register these strains in the database.

Finally, using 200 whole blood samples randomly collected from patients with suspected sepsis, we 
assessed the accuracy of the Tm mapping method compared that of the conventional culture method 
(Table 3). Of a total of 200 patient samples, 85% (171/200: A +  D/Total) matched the culture results at 
the detection level (+  and − ). Of the 130 samples negative according to the Tm mapping method, 98% 
(128/130) were also negative based on the culture method. Here, the culture method identified two types 
of bacteria that the Tm mapping method failed to detect. Using real whole blood samples the culture 
method identified Staphylococcus epidermidis and Bacillus cereus. We concentrated the DNA solution and 
tried to detect bacteria again however no bacteria were identified in either sample.

Seventy samples were positive according to the Tm mapping method, of which 43 were also positive 
using the culture method. In these 43 samples, 41 identifications matched the culture results, and two 
samples were not suitable for identification due to polymicrobial infections (Difference Value > 0.5). Of 
the 27 samples found to be positive based on the Tm mapping method and negative based on the culture 
method, 18 could be identified, whereas the other nine could not.

The individual Tm mapping results compared with the culture or sequencing results are shown in 
Table 4. If the Tm mapping result did not match the culture result, we checked it again using the sequenc-
ing method. Of a total of 59 Tm mapping results suitable for Tm mapping identification (Difference Value 
≤ 0.5), 100% (59/59) of the Tm mapping results were a “match” or “broad match” with the culture or 
sequencing results. For example, in patient No.4, the culture results showed both Streptococcus agalactiae 
and Escherichia coli, while Tm mapping and sequencing results showed only Streptococcus agalactiae. This 
is because the Tm mapping method is able to identify only the dominant bacteria in a clinical sample. 
In addition, in patient No. 34, the Tm mapping result was Staphylococcus haemolyticus or Staphylococcus 
lugdunensis because both Different Values were less than 0.28, whereas the culture and sequencing results 
were Staphylococcus haemolyticus.

Discussion
The Tm mapping method can be used to identify bacterial isolates by mapping the unique shape of seven 
Tm values on two dimensions. This unique shape reflects the different DNA base sequences present 
among bacterial species. The Tm is defined as the temperature at which 50% of the double-stranded DNA 
dissociates into single strands. Based on the nearest neighbor thermodynamic theory, both the guanine 
and cytosine (GC) content of the DNA molecule and the specific nucleotide sequence has an effect on 
the Tm value17,18. For this reason, the Tm values provide adequate diversity for the Tm mapping method 
to identify many species of bacteria at the species level. The Tm mapping method does not require either 
bacterial cultures or sequencing analyses, thus permitting the rapid, easy and less expensive identification 
of bacterial isolates.

The Tm mapping method identifies the dominant bacteria in a clinical sample. Because no cultures 
are used, the number of bacteria in a clinical sample is accurately reflected, such that a small amount of 
contaminating bacteria can be distinguished using real-time PCR-based quantification. Depending on 
how quickly the dead bacteria are scavenged from the bloodstream19, rapid identification and real-time 
PCR-based quantification of the dominant bacteria may also make it possible to monitor the effects of 

Bacterial isolates

Tm mapping method

detection + − Total

Conventional culture method

+  43A 
(I: 41, NS: 2) 2C 45

−  27B 
(I: 18, NS: 9) 128D 155

Total 70 
(I: 59, NS: 11) 130 200

Table 3.  Comparison of the Tm mapping and culture results starting from whole blood samples.  
I: Identified according to the Tm mapping method (Difference Value ≤ 0.5). NS: Bacteria were detected, but 
not suitable for Tm mapping identification (Difference Value > 0.5). A41 Tm mapping identifications matched 
the culture (or sequencing) results, whereas two samples were not suitable for Tm mapping identification 
due to the presence of polymicrobial infection. B18 species could be identified and nine samples were not 
suitable for Tm mapping identification. CThese two samples were positive for Staphylococcus epidermidis and 
Bacillus cereus. DThese samples were negative using both the Tm mapping method and culture method.
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Identification results Match

CommentsTm mapping method Diff. Conventional culture method Sequencing method Cult. Seq.

Control: Healthy whole blood

None detected — No culture growth — — Negative control

Patient

  1 Staphylococcus capitis/epidermidis 0.09 Staphylococcus epidermidis ✔ —

  2 Staphylococcus capitis/epidermidis 0.12 Staphylococcus epidermidis ✔ —

  3 Staphylococcus capitis/epidermidis 0.13 No culture growth Staphylococcus epidermidis — ✔

  4 Streptococcus agalactiae 0.13 Streptococcus agalactiae Escherichia 
coli Streptococcus agalactiae ✔ ✔ dominant bacteria

  5 Staphylococcus aureus 0.14 Staphylococcus aureus ✔ —

  6 Staphylococcus capitis/epidermidis 0.15 Staphylococcus epidermidis ✔ —

  7 Staphylococcus haemolyticus 0.15 Staphylococcus haemolyticus ✔ —

  8 Bacteroides vulgatus 0.15 Bacteroides vulgatus ✔ —

  9 Acinetobacter baumannii 0.16 No culture growth Acinetobacter baumannii — ✔
  10 Staphylococcus aureus 0.16 Staphylococcus aureus ✔ —

  11 Escherichia coli 0.16 No culture growth Escherichia coli — ✔
  12 Escherichia coli 0.16 Escherichia coli ✔ —

  13 Bacillus cereus 0.17 No culture growth Bacillus cereus — ✔
  14 Staphylococcus haemolyticus 0.17 Staphylococcus haemolyticus ✔ —

  15 Escherichia coli 0.18 No culture growth Escherichia coli — ✔
  16 Staphylococcus capitis/epidermidis 0.18 No culture growth Staphylococcus epidermidis — ✔
  17 Streptococcus pyogenes 0.18 Streptococcus sanguinis Streptococcus pyogenes ×  ✔
  18 Staphylococcus capitis/epidermidis 0.18 Staphylococcus epidermidis ✔ —

  19 Escherichia coli 0.18 Escherichia coli ✔ —

  20 Staphylococcus caprae 0.18 Staphylococcus epidermidis Staphylococcus caprae ×  ✔
  21 Enterococcus facium 0.18 Enterococcus facium ✔ —

  22 Staphylococcus aureus 0.19 No culture growth Staphylococcus aureus — ✔
  23 Staphylococcus aureus 0.19 Staphylococcus aureus ✔ —

  24 Staphylococcus capitis/epidermidis 0.19 Staphylococcus epidermidis ✔ —

  25 Staphylococcus caprae 0.20 Staphylococcus epidermidis Staphylococcus caprae ×  ✔
  26 Pseudomonas aeruginosa 0.20 Pseudomonas aeruginosa ✔ —

  27 Bacillus cereus 0.20 Bacillus cereus ✔ —

  28 Staphylococcus haemolyticus 0.21 Staphylococcus aureus Staphylococcus haemolyticus ×  ✔

  29 Escherichia coli 0.21 Escherichia coli Bacteroides 
thetaiotaomicron Bacteroides vulgatus Escherichia coli ✔ ✔ dominant bacteria

  30 Escherichia coli 0.21 Escherichia coli ✔ —

  31 Staphylococcus haemolyticus 0.22 No culture growth Staphylococcus haemolyticus — ✔
  32 Staphylococcus capitis/epidermidis 0.22 Staphylococcus epidermidis ✔ —

  33 Staphylococcus caprae 0.22 Staphylococcus epidermidis Staphylococcus caprae ×  ✔
  34 Staphylococcus haemolyticus or 0.22 Staphylococcus haemolyticus Staphylococcus haemolyticus ✔ ✔ broad match

Staphylococcus lugdunensis 0.26

  35 Staphylococcus caprae 0.24 No culture growth Staphylococcus caprae — ✔
  36 Staphylococcus aureus 0.24 No culture growth Staphylococcus aureus — ✔
  37 Staphylococcus capitis/epidermidis 0.24 Staphylococcus epidermidis ✔ —

  38 Escherichia coli 0.24 No culture growth Escherichia coli — ✔
  39 Klebsiella pneumoniae 0.25 Klebsiella pneumoniae ✔ —

  40 Staphylococcus capitis/epidermidis 0.26 Staphylococcus epidermidis ✔ —

  41 Escherichia coli 0.26 Escherichia coli ✔ —

  42 Citrobacter freundii 0.26 Citrobacter freundii ✔ —

Continued
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treatment over time. In Table 4, in patients No. 4, No. 29 and No. 45, the Tm mapping method could 
not identify the bacterial isolates other than the dominant bacteria in polymicrobial infection, which is 
a weak point of this method. However, monitoring the effect of treatment, the Tm mapping method may 
identify the subdominant bacterial isolates because of microbial substitution induced by antibiotics. If 
the sample contains similar amounts of two or more species of bacteria, the Tm mapping method can-
not identify the bacterial isolate because the different Tm values overlap (Fig. S3) and we subsequently 
conclude only that bacteria are present. In this regard, using the Difference Value, it is possible to quickly 
identify samples suitable for Tm mapping identification. If the Difference Value is greater than 0.5, then 
the result is not suitable for identification and there are three interpretations: a) there is a polymicrobial 
infection with no dominant species or b) the bacteria is not registered in the database or c) the bacterial 
concentration in the sample is under the limit of identification (Table  1). Polymicrobial samples, such 
as those involving sputum, pus, stool, bile, etc., are not suitable for Tm mapping method, because these 
types of samples contain similar amounts of two or more species of bacteria. Therefore, when attempting 
to identify bacteria in these sample types using the Tm mapping method, it is necessary to start with 
bacterial colonies.

The Tm mapping identification requires a measurement error of no more than 0.1 °C among PCR 
tubes within the same trial (tube-to-tube variation). As long as an optimal instrument is used, the Tm 
mapping identification does not depend on a single instrument (Table S4). If the tube-to-tube varia-
tion is within ± 0.1 °C, then the measurement error in the theoretical Difference Value is within 0.26, 
whereas the measured values on the blind tests were within 0.28. Considering the range of Difference 
Values in the blind test, all test isolates with a Difference Value less than or equal to 0.28 have the same 
possibility of being the bacterial isolate. Even if the results cannot be narrowed down to one bacte-
rial species, the method provides information regarding the genus. This sometimes happens within the 
genus Staphylococcus, because bacteria within this genus have similar Tm mapping shapes (Table S3). 
Tm similarity does not always interfere with the Tm mapping identification as the Difference Value is 
determined by each of the seven Tm values (Fig. S4a, b). For example, Bacteroides dorei, which is similar 
to Bacteroides vulgatus shown in Table S3, does not always interfere with the identification of Bacteroides 
vulgatus and vice versa (Table S9). There are exceptional occasions when two different identification 
results with the same Difference Value are obtained, and so cannot be narrowed down to one bacterial 
species (Fig. S4c). This rarely happens, although it did occur in one experiment (Table S8). All of the 
problems described above are due to the measurement errors caused by the instrument. If these problems 
occur, it is better to measure the Tm values again, which only takes another 10 minutes.

Identification results Match

CommentsTm mapping method Diff. Conventional culture method Sequencing method Cult. Seq.

  43 Staphylococcus caprae 0.27 Staphylococcus epidermidis Staphylococcus caprae ×  ✔
  44 Acinetobacter calcoaceticus 0.28 No culture growth Acinetobacter calcoaceticus — ✔
  45 Escherichia coli 0.28 Escherichia coli Enterococcus faecalis Escherichia coli ✔ ✔ dominant bacteria

  46 Staphylococcus hominis 0.28 Staphylococcus hominis ✔ —

  47 Escherichia coli 0.30 No culture growth Escherichia coli — ✔
  48 Escherichia coli 0.30 Escherichia coli ✔ —

  49 Klebsiella pneumoniae 0.30 Klebsiella pneumoniae ✔ —

  50 Staphylococcus lugdunensis 0.31 No culture growth Staphylococcus lugdunensis — ✔
  51 Klebsiella pneumoniae 0.31 Klebsiella pneumoniae ✔ —

  52 Staphylococcus capitis/epidermidis 0.32 Staphylococcus epidermidis ✔ —

  53 Staphylococcus warneri 0.33 No culture growth Staphylococcus warneri — ✔
  54 Enterobacter cloacae 0.35 Enterobacter cloacae ✔ —

  55 Streptococcus pyogenes 0.36 No culture growth Streptococcus pyogenes — ✔
  56 Escherichia coli 0.38 Escherichia coli ✔ —

  57 Staphylococcus hominis 0.39 No culture growth Staphylococcus hominis — ✔
  58 Staphylococcus cohnii 0.43 No culture growth Staphylococcus cohnii — ✔
  59 Aeromonas hydrophila 0.50 Aeromonas hydrophila Aeromonas hydrophila ✔ ✔

Table 4.  Individual results of identification starting from whole blood samples. Diff. =  Difference Value, 
Cult. =  Culture results, Seq. =  Sequencing results, DB =  Database. ✔: matched the culture/sequencing 
result. × : did not match the culture/sequencing result. —: did not perform a comparison with the culture/
sequencing result. The bold line in the Difference Value column marks the interpretative criteria boundary 
(0.28) described in Table 1.
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To increase the reliability of the Tm mapping method, it is important to minimize tube-to-tube var-
iation of the instruments, and expand the Tm mapping database. Because smaller tube-to-tube varia-
tion means even more accurate Tm mapping identification, we look forward to the emergence of new 
instruments with more equalized tube-to-tube variation. The Tm mapping database is scalable and can 
be easily modified and updated. Currently, 107 bacterial species are registered in the database. Because 
the reliability of the Tm mapping method improves with the number of species in the database, we are 
planning to expand the database with American Type Culture Collection (ATCC) reference strains.

When identifying bacterial isolates, significant differences in the pH and salt concentration of the 
PCR buffer affect the Tm mapping shape. However, in individual clinical samples, foreign substances and 
differences in the pH and salt concentration do not affect the Tm mapping identification to any degree. 
This is because the DNA extraction step equalizes these differences, and the PCR product is diluted 
500-fold with molecular-grade distilled water before the second (nested) PCR. In order for everyone to 
use the same Tm mapping database, the pH and salt concentration of the PCR buffer, the bacterial uni-
versal primers and the eukaryote-made thermostable DNA polymerase should be consistent. Therefore, 
it is better to make a reagent kit.

We would like to emphasize that the Tm mapping method does not involve a high-resolution 
melting-curve (HRM) analysis. Rapid identification methods using HRM analyses have been previously 
reported20,21. HRM analyses primarily rely on differences in the melting curve shapes. The Tm mapping 
method does not use melting curve shapes, but rather only Tm values. For this reason, although melting 
curve shapes are affected by various DNA concentrations21, Tm values are not (Fig. S5).

Chakravorty and colleagues reported the rapid identification of bacterial isolates using a sloppy 
molecular beacon (SMB) melting temperature signature technique22. In that study, the authors used 
six Tm values as signatures of bacterial isolates and attempted to identify bacterial isolates using the 
D value as the distance between two points in six-dimensional space. The basic concept of the SMB 
melting temperature signature technique is similar to that of the Tm mapping method. In our case, we 
independently developed our method (a Japanese patent was applied for in 2006 and granted in 2010 
and an international patent was applied for in 2007 and granted in 2012). The major difference between 
these techniques is that the other authors use sloppy molecular beacon, a type of DNA probe, while we 
use bacterial universal PCR primers. Therefore, Tm variations in the SMB melting temperature signature 
technique depend on the number and position of probe-target mismatches on sloppy molecular beacon 
hybridization. In contrast, the Tm variations observed in the Tm mapping method depend on the base 
sequence differences of the amplicons. Therefore, the SMB melting temperature signature technique can 
be used to generate a wider range of Tm values than the Tm mapping method. However, the wider range 
of Tm values does not mean that this method is able to identify a wider range of bacterial isolates than 
the Tm mapping method, although it does mean that tube-to-tube variation is not a major problem for 
the SMB melting temperature signature technique. Regarding sensitivity, the sloppy molecular beacon is 
not a PCR primer; hence, bacterial DNA cannot be amplified with it. Furthermore, the sensitivity of the 
SMB melting temperature signature technique is dependent on linear-after-the-exponential (LATE)-PCR, 
indicating that it may be difficult to identify bacterial isolates directly from patient samples. In the above 
report, the SMB melting temperature signature technique was validated in cultured clinical isolates and 
positive patient blood cultures, not whole blood samples. Meanwhile, the Tm mapping method performs 
nested PCR using bacterial universal primers and the eukaryote-made thermostable DNA polymerase, 
thereby making it possible for PCR to identify bacterial isolates directly from patient samples within 
three hours of sample collection.

The limit of identification is not the same as the limit of detection (LOD) in the Tm mapping method. 
The LOD is determined using the most sensitive primer among the seven primer sets, and depending on 
this primer, the absence of bacteria in a sample can be diagnosed. The LOD values for the Tm mapping 
method are as follows (Table S6): Escherichia coli =  0.625 CFU/PCR tube (31.3 CFU/mL), Staphylococcus 
aureus =  0.625 CFU/PCR tube (31.3 CFU/mL), and Klebsiella pneumoniae =  0.313 CFU/PCR tube (15.7 
CFU/mL). This result indicates that the number of CFU could be lower than the actual number of bacte-
ria in a sample (Table S10). In the current protocol, bacterial DNA is eluted with 100 μ L of elution buffer, 
and 2 μ L of which is used as a PCR template. A larger amount of PCR template can be used to achieve 
higher sensitivity; however, using the current protocol, the Tm mapping method can be employed to 
identify bacterial isolates directly from whole blood samples. In fact, we quantified the approximate 
bacterial concentration in the blood of patients with sepsis, and confirmed that the limit of identification 
of the Tm mapping method is sufficient to identify bacterial isolates directly from whole blood samples 
(Table S11).

The number of Tm mapping and/or culture positive whole blood samples observed in this study was 
high because of the inclusion of samples from a geriatric hospital. Among the 200 whole blood samples 
from patients with suspected sepsis 23% (45/200) were positive according to the conventional culture 
method and 35% (70/200) were positive according to the Tm mapping method (Table 3). In the geriatric 
hospital, almost all patients were bedridden, and the Tm mapping method detected bacteria in nearly 
50% of the patients with suspected sepsis. The elderly are predisposed to sepsis due to the presence of 
co-existing co-morbidities, repeated and prolonged hospitalization, reduced immunity, functional limi-
tations and, above all, the effects of aging itself23. Of the samples collected from the university hospital, 
the rate of positivity was around 10%, which is in the normal range. Meanwhile, 70 samples were positive 
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according to the Tm mapping method, of which 39% (27/70) were negative based on the culture method. 
In general, PCR detects more than cultures because it can also detect dead bacteria. The inconsistent 
results are primarily the result of the fact that a certain number of patients were already being treated 
with antibiotics when we collected the samples, which could have resulting in the death of the bacterial 
cells while retaining detectable DNA. The efficacy of pathogen identification using the blood culture 
technique is significantly limited by the effects of previously initiated antimicrobial therapy24–26. There is 
also the possibility that some species of oral bacteria or intestinal bacteria, which cannot be identified 
according to the blood culture technique, may sometimes be circulating in the bloodstream. In order to 
verify this assumption, it is necessary to perform Tm mapping identification using many healthy blood 
samples.

In this study, we developed a bacterial contamination-free PCR system. Because we use the 
eukaryote-made thermostable DNA polymerase, the Tm mapping method can also be applied to diag-
nose the absence (less than the LOD: e.g. 31.3 CFU/mL of E. coli) of bacteria in patient samples within 
three hours. Of the 130 whole blood samples negative according to the Tm mapping method, two sam-
ples were positive based on the culture method (Table 3). However, these bacteria were Staphylococcus 
epidermidis and Bacillus cereus, which are often detected as sources of contamination. Therefore, we 
supposed that the samples had been contaminated during the culture process. It is very important to 
rapidly distinguish bacterial causes from non-bacterial causes in various clinical conditions, including 
meningitis, collagen diseases, fever of unknown origin (FUO), etc., in order to choose a suitable treat-
ment. Commercial thermostable DNA polymerases are known to have contamination with host-derived 
bacterial DNA. When using bacterial universal primers for PCR detection, the contaminating bacterial 
amplicons can be observed by the 40th cycles of PCR amplification15. We devised a nested PCR assay 
(first PCR: 40 cycles ➝ dilute 500-fold ➝ second, nested PCR: 30 cycles) in which, in approximately 90% 
of positive samples, amplification was observed not on the first PCR, but only on the second (nested) 
PCR. For this reason, without the eukaryote-made thermostable DNA polymerase, it would be difficult 
to identify the bacterial isolate directly from whole blood samples or diagnose the absence of bacteria 
in a given sample. In order to enable all researchers to perform bacterial contamination-free PCR, we 
are working to make this eukaryote-made thermostable DNA polymerase commercially available in the 
near future.

In conclusion, the Tm mapping method enables the identification of the dominant bacteria in a clin-
ical sample within three hours of whole blood collection. In particular, using the Difference Value, it 
is possible to quickly identify samples suitable for Tm mapping identification. Moreover, this method 
can be used to rapidly diagnose the absence of bacteria in clinical samples. The Tm mapping method is 
especially useful for detecting infectious diseases, such as sepsis, that require prompt treatment, and is 
expected to contribute to the treatment of patients with severe infections as well as reduce the rate of 
development of antibiotic resistance.

Methods
Clinical specimens.  A total of 200 whole blood samples were randomly collected from patients 
with suspected sepsis at Toyama University Hospital and Nagaresugi Geriatric Hospital. All procedures 
were performed under a protocol approved by the Ethics Committee at the University of Toyama and 
Nagaresugi Geriatric Hospital, and written informed consent was obtained from all patients. The meth-
ods were carried out in accordance with the approved guidelines.

Isolation of bacterial genomic DNA from whole blood.  A total of 2 mL of venous blood or, as a 
negative control for DNA extraction, 2 mL of molecular-grade distilled water (water deionized and ster-
ilized for molecular biology, NACALAI TESQUE, INC. Kyoto) were collected in EDTA-2K tubes (BD 
Biosciences Japan, Tokyo, Japan). The blood samples were then centrifuged at 100 ×  g for five minutes 
to spin down the blood cells, and the resulting supernatant fractions (1 mL) were used. The supernatants 
were centrifuged again at 20,000 ×  g for 10 minutes, and 950 μ L of the supernatant fractions was care-
fully removed in order to not disturb the pellets. Next, 1 mL of molecular-grade distilled water (water 
deionized and sterilized for molecular biology, NACALAI TESQUE, INC.) was added to the pellets, and 
the mixture was gently turned upside down several times, and subsequently centrifuged at 20,000 ×  g for 
5 minutes. Finally 1 mL of the supernatant fractions was again carefully removed unless you resuspend 
the pellet in this before using the DNA extraction kit. DNA was isolated from the pellets using a DNA 
extraction kit (High Pure PCR Template Preparation Kit, Roche Applied Science, Germany) in accord-
ance with the supplier’s instructions. Finally, bacterial DNA was eluted with 100 μ L of elution buffer.

Isolation of bacterial genomic DNA from colonies.  The bacterial colonies were picked up with a 
sterile inoculating loop and suspended in 1 mL of molecular-grade distilled water (water deionized and 
sterilized for molecular biology, NACALAI TESQUE, INC.). The samples were subsequently centrifuged 
at 20,000 ×  g for 10 minutes, and 950 μ L of the supernatant was carefully removed in order to not lose 
the pellets. DNA was isolated from the resulting pellets using a DNA extraction kit (High Pure PCR 
Template Preparation Kit, Roche Applied Science) in accordance with the supplier’s instructions. Finally, 
bacterial DNA was eluted with 100 μ L of elution buffer.
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PCR assays.  In each of the following processes, the QIAgility system (Qiagen) provided an automated 
PCR setup. The Rotor-Gene Q (Qiagen) or LightCycler®  Nano (Roche Applied Science) was used for 
the amplification, real-time detection of the target DNA and the Tm value analysis of the amplified 
products. In particular, when using the LightCycler®  Nano, which has two independent thermal blocks, 
we recommend using the same thermal block for all seven PCR tubes for Tm mapping identification. 
All PCR assays were performed as single-tube assays (no multiplex PCR). We used 1.5-mL PCR-clean 
Eppendorf tubes that were RNase- and DNase-free (Eppendorf, Germany), 0.2-mL PCR tubes (Qiagen) 
for the first PCR and 0.1-mL Strip Tubes and Caps (Qiagen) for the second (nested) PCR. All oligo-
nucleotide primers were designed using a multiple alignment software program (ClustalX) and were 
synthesized by Life Technologies Japan, Ltd. (Tokyo, Japan). Bacterial universal primers were designed 
to universally amplify the seven regions of the bacterial 16S ribosomal RNA gene (16S rDNA) (Fig. 2A). 
The primers were as follows: Region 1 primers (forward: 5′ -AGAGTTTGATCATGGCTCAG-3′ , rev 
erse: 5′ -CGTAGGAGTCTGGACCGT-3′ , amplicon size: 338 bp), Region 2 primers (forward: 5′ - 
GACTCCTACGGGAGGCA-3′ , reverse: 5′ -TATTACCGCGGCTGCTG-3′ , amplicon size: 199 bp), Region 
3 primers (forward: 5′ -AGCAGCCGCGGTAATA-3′ , reverse: 5′ -GGACTACCAGGGTATCTAATCCT-3′ ,  
amplicon size: 287 bp), Region 4 primers (forward: 5′ -AACAGGATTAGATACCCTGGTAG-3′ ,  
reverse: 5′ -AATTAAACCACATGCTCCACC-3′ , amplicon size: 181 bp), Region 5 primers (forward:  
5′ -TGGTTTAATTCGATGCAACGC-3′ , reverse: 5′ -GAGCTGACGACAGCCAT-3′ , amplicon size:  
120 bp), Region 6 primers (forward: 5′ -TTGGGTTAAGTCCCGC-3′ , reverse: 5′ -CGTCATCCCCAC 
CTTC-3′ , amplicon size: 109 bp), Region 7 primers (forward: 5′ -GGCTACACACGTGCTACAAT-3′ , 
reverse: 5′ -CCGGGAACGTATTCACC-3′ , amplicon size: 166 bp). The first PCR primer set was the same 
as the Region 1 forward primer and the Region 7 reverse primer (Fig. 2A).

During the first PCR procedure, the PCR reaction mixture (20 μ L) contained 2 μ L of DNA template 
in 200 μ M of each dNTP (CleanAmpTM Hot Start dNTP Mix, Sigma-Aldrich, USA) filtered using an 
Amicon Ultra 50 K centrifugal filter (Merck Millipore, Germany), 50 mM KCl, 2.25 mM MgCl2, 10 mM 
Tris-HCl (pH 8.3), 0.3 μ M of each primer, 1 ×  EvaGreen (Biotium Inc. CA, USA), and 1.0 units (0.5 μ L) of 
eukaryote-made thermostable DNA polymerase supplemented with stock buffer solution. The generation 
of eukaryote-made thermostable DNA polymerase using Saccharomyces cerevisiae has been described 
previously15. In place of 2 μ L of DNA template, the PCR reaction mixture contained 2 μ L (8.0 ng/μ L) 
of DNA extracted from Escherichia coli (ATCC 25922) as a positive control, or 2 μ L of molecular-grade 
distilled water (water deionized and sterilized for molecular biology, NACALAI TESQUE, INC.) as a 
negative control for the PCR step.

Each sample was incubated for five minutes at 95 °C to activate the Hot Start dNTPs, then was dena-
tured for 10 seconds at 94 °C, annealed for 10 seconds at 57 °C, extended for 30 seconds at 72 °C and 
subjected to fluorescence acquisition for 2 seconds at 82 °C for 40 cycles. The PCR product was diluted 
500-fold with molecular-grade distilled water (water deionized and sterilized for molecular biology, 
NACALAI TESQUE, INC.) and then used as a template for the second (nested) PCR procedure.

For the second (nested) PCR procedure, the PCR reaction mixture (20 μ L) contained 2 μ L of DNA 
template of the diluted first PCR product in 200 μ M of each dNTP (CleanAmpTM Hot Start dNTP Mix, 
SIGMA-ALDORICH) filtered using an Amicon Ultra 50 K centrifugal filter (Merck Millipore), 50 mM 
KCl, 2.5 mM MgCl2, 10 mM Tris-HCl (pH 8.3), 0.25 μ M of each primer, 1 ×  EvaGreen (Biotium, Inc.) 
and 1.0 units (0.5 μ L) of eukaryote-made thermostable DNA polymerase supplemented with stock buffer 
solution. The seven samples used to amplify Regions 1 to 7 were incubated for five minutes at 95 °C to 
activate the Hot Start dNTPs, then denatured for 10 seconds at 94 °C, annealed for 10 seconds at 57 °C, 
extended for 10 seconds at 72 °C and subjected to fluorescence acquisition for 2 seconds at 82 °C for 30 
cycles. The seven PCR amplicons were then analyzed to obtain the Tm values. If no amplification was 
observed by the 30th cycle of all 7 secondary PCRs, we defined the sample as containing no bacteria.

Melting temperature (Tm) value analysis.  For the Tm value analysis, the resulting seven ampli-
cons were heated at 95 °C for 10 seconds and then cooled at 72 °C for 90 seconds. A post-PCR Tm value 
analysis was performed from 72 °C to 95 °C, increasing at 0.5 °C/step. The data profile was subsequently 
analyzed using the Rotor-Gene Q or LightCycler®  Nano software program, and the Tm values were 
identified.

Analytical sensitivity tests.  Prior to performing the sensitivity tests, Escherichia coli was cultivated 
in Mueller-Hinton Broth at 37 °C for 12 hours, and bacterial suspensions (1 mL) was prepared. 50 μ L of 
the diluted suspensions were inoculated on Standard Methods Agar/Plate Count Agar (BD, USA). After 
incubation at 35 °C for 10 hours, the number of colony-forming units (CFU) was determined by counting 
the colonies grown on the agar plates in triplicate.

The limits of identification and detection were determined by serially diluting (log2-fold) cultures with 
known counts (CFU) of E. coli in PBS and subjecting the samples to Tm mapping identification or PCR 
detection using Region 1 to 7 primers. The limit of identification was determined to be the final log2 
dilution of the template in which the Tm mapping result was correct, with the correct number of PCR 
amplicons (Table S1) and a Difference Value less than or equal to 0.5. The LOD was determined to be 
the final log2 dilution of the template in which at least one of the seven amplifications was observed by 
the 30th cycle in the second (nested) PCR.
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Nucleotide sequence-based analysis of bacterial genomic DNA.  Amplicons from the samples 
used in the first PCR procedure were purified (QIAquick PCR Purification Kit; QIAGEN) and then 
sequenced (3500 Genetic Analyzer; Applied Biosystems) using the Region 1 forward primer and the 
Region 6 or 5 reverse primer. The Region 6 reverse primer does not bind to the target region of some 
species of bacteria (Table S1). In these cases, we use the Region 5 reverse primer. An online homology 
search was performed for strain identification using the BLAST nucleotide database tool of the DNA 
Data Bank of Japan (http://www.ddbj.nig.ac.jp/index-j.html). The presence of several species of bacteria 
in a sample was confirmed based on overlapping sequence data (reads). This sequencing method can be 
used to identify the dominant bacteria in a sample; however, when the sample contains similar amounts 
of two or more species of bacteria, the sequencing method cannot identify the bacterial isolate due to 
the presence of multiple overlapping reads.

Culture-based biochemical identification of bacteria.  The whole blood samples (one aerobic 
blood culture bottle and one anaerobic blood culture bottle, respectively) were collected simultaneously 
with the blood sample for Tm analysis from the same puncture site. The whole blood samples were then 
analyzed according to standard methods used by the Clinical Laboratory Center (certified ISO15189) at 
Toyama University Hospital. The blood culture procedures were performed using the BacT/ALERT 3D 
system (bioMerieux, Inc., Mercy-l’Etoile, France). Positive blood culture bottles were subcultured in the 
appropriate media and incubated aerobically or anaerobically until sufficient growth was present to pro-
ceed with testing (usually 18 to 24 hours). The specific identification methods differed according to the 
organism, although they included the MicroScan WalkAway system (Siemens Healthcare Diagnostics, 
IL, USA), RapID ANA II (Thermo Fisher SCIENTICIC, UK) and various latex agglutination and bio-
chemical spot tests.
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