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Abstract 
Chemokines play important roles in homeostasis and inflammatory 
processes. While their roles in leukocyte recruitment are well-
appreciated, chemokines play additional roles in the body, including 
mediating or regulating angiogenesis, tumor metastasis and wound 
healing. In this opinion article, we focus on the role of CXCR3 and its 
ligands in fibrotic processes. We emphasize differences of the effects 
of each ligand, CXCL9, CXCL10 and CXCL11, on fibroblasts in different 
tissues of the body. We include discussions of differences in signaling 
pathways that may account for protective or pro-fibrotic effects of 
each ligand in different experimental models and ex vivo analysis of 
human tissues. Our goal is to highlight potential reasons why there 
are disparate findings in different models, and to suggest ways in 
which this chemokine axis could be manipulated for the treatment of 
fibrosis.
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Introduction: understanding CXCR3’s typical and 
atypical functions
Chemokine receptors are a subgroup of class A G-protein  
coupled receptors (GPCRs) that are relatively conserved across 
eukaryotes1. They bind to chemokine ligands, a special class of  
8-10kDa chemotactic cytokines, which are classified based  
on their amino acid structure (e.g. CC, CXC, or CX3C)2. With a few 
exceptions, most ligand-receptor relationships are promiscuous,  
meaning that a single chemokine receptor has multiple ligands  
and a single chemokine can bind to multiple receptors. As of now, 
there are 18 known chemokine receptors with Gαi-dependent  
chemotactic activity, and 5 atypical (non-chemotactic,  
recycling or scavenging) chemokine receptors in humans. 
Many chemokines are considered inflammatory, as they recruit  
leukocytes during inflammatory responses. However, there are 
also homeostatic chemokines that are important for immune cell  
maturation, tissue development, and angiogenesis. Homeostatic 
chemokines often exhibit tissue tropism, providing signals for  
recirculating immune cells, paracrine signals for cells that  
comprise tissues, and even tumor growth and metastasis3.

CXCR3 is typically considered to be an inflammatory chemok-
ine receptor because it is expressed by leukocytes that migrate 
towards interferon-induced ligands to sites of tissue inflammation4.  
However, CXCR3 is also expressed on non-hematopoietic  
cells including endothelial cells, where it plays roles in  
promoting or inhibiting angiogenesis, and fibroblasts, in which it 
mediates wound healing responses.

There are several examples of diseases where inflammation  
precedes or is admixed with fibrosis, including infectious dis-
eases (e.g. schistosomiasis, tuberculosis), cancers (e.g. pancreatic  
cancer, post-irradiation breast cancer) and autoimmune dis-
eases (e.g. hepatitis, pulmonary fibrosis in scleroderma and skin 
fibrosis in morphea). Hallmarks of inflammatory fibrosis include  
infiltration of leukocytes; activation of endothelium; fibroblast 
activation, migration, proliferation and differentiation; production 
of collagen and other extracellular matrix proteins; and increased 
collagen bundle thickness and disorganization5. Data from  
our lab and others have demonstrated that the CXCR3 chemok-
ine axis can mediate protective or pro-fibrotic signals depending  
upon the context of the involved organs. In this opinion arti-
cle, we will discuss potential reasons for disparate findings, 
and provide our opinions about how this system can be targeted  
therapeutically for the treatment of fibrosis.

CXCR3 signaling pathways in leukocytes
CXCR3 has four extracellular domains that bind its ligands 
(CXCL9, CXCL10, and CXCL11), and four intracellular  
domains that mediate the receptor’s different functions. The  
differential involvement of CXCR3 receptor domains in ligand  
binding and subsequent differences in downstream signaling con-
tribute to the complex nature of this chemokine system, which  
has been mapped out in leukocytes using mutational constructs  
and competition binding assays. Like many other GPCRs,  
CXCR3-mediated chemotaxis is pertussis-toxin sensitive.  
However, CXCR3 activates several other pathways in addition  
to Gα subunit proteins, which we will review below.

CXCR3 binding and activation requires ligand interactions  
with at least one sulfated tyrosine in the N terminus and an  
interaction with amino acid residue R216 in the second  
extracellular loop6. The proximal 16 amino acid residues of  
the N terminus are required for CXCL10 and CXCL11 binding 
and activation, but not CXCL9 activation. R216 in the second  
extracellular domain plays no role in CXCL10 or CXCL11  
binding or ligand-mediated internalization, but this residue  
is necessary to activate chemotaxis by all three CXCR3  
ligands7. Both the DRY site, which encompasses the R216,  
and the CXCR3 carboxyl terminus are essential for  
CXCL9-, CXCL10-, and CXCL11-induced chemotaxis, calcium 
mobilization, and Erk phosphorylation (Figure 1A).

CXCR3 ligands selectively activate different receptor inter-
nalization pathways via β-arrestin and Gαi family members. 
Differences in signaling pathway activation by each ligand is 
called biased agonism8,9. CXCL10-induced receptor internali-
zation relies on the CXCR3 carboxyl terminus, dynamin and 
β-arrestin110. CXCL11 is the most potent inducer of CXCR3 
internalization11, and dominant negative dynamin and β arres-
tin 1 are unable to impede internalization10. The third intra-
cytoplasmic loop is required for maximal CXCL11-induced 
internalization (Figure 1A).

In T cells, Gαi2 is required for mediating CXCR3 ligand  
signaling, whereas Gαi3 limits activation of this signaling  
pathway12. Western blotting of peripheral blood leukocytes  
stimulated with CXCR3 ligands demonstrated that CXCL11 and,  
to a lesser extent, CXCL9/10 induce dose- and time-dependent  
phosphorylation of p44/42 MAPK (ERK) and Akt that is pre-
vented by pertussis toxin treatment (inhibition of Gα subunit  
binding)13. However, inhibition of MEK/ERK (U0126 or PD98059) 
does not prevent CXCL11-mediated chemotaxis, whereas  
PLC inhibition (U73122), PI3K (wortmannin) or, to a lesser extent, 
AKT inhibition (LY294002) does abrogate or reduce human  
T cell migration, respectively. Akt activation in human T cells was 
recently reported to be dependent upon β-arrestin214.

There is increasing evidence that chemokine receptors can  
mediate JAK/STAT signaling, which has typically been attributed  
to common gamma chain cytokine signaling15. While JAK activation 
downstream of CXCR3 has not yet been studied, STAT activation  
in response to incubation with CXCL9/10/11 has been assessed 
in T cell cultures: addition of recombinant CXCL9/10 activates  
STAT1/STAT5 to promote Th1 and/or Th17 differentiation via  
Tbet/RORγT expression, whereas CXCL11 activates STAT3/ 
STAT6 via GATA3 expression to augment regulatory function16.

CXCR3 signaling pathways in vascular endothelial 
cells, smooth muscle cells, pericytes and fibroblasts
CXCR3 is also expressed by some non-hematopoietic cells,  
including endothelial cells, smooth muscle cells and fibroblast 
subsets. In endothelial cells, CXCR3 ligands mediate pro- or  
anti-angiogenic signals depending upon the model and tissue  
of origin. CXCL10 inhibits VEGF-induced dermal endothelial  
cell motility and tube formation in vitro via cAMP, PKA and  
MEK inhibition of m-calpain; this likely serves as a way to  
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Figure 1. CXCR3 signaling pathways in different cell types. (A) Major CXCR3 signaling pathways in leukocytes. CXCL9, CXCL10 or CXC11 
bind to CXCR3 to mediate chemotaxis and T cell skewing. Different domains facilitate ligand binding, with the N terminus of CXCR3 facilitating 
binding of CXCL10 and CXC11. R216 in the second extracellular loop (green star) is required for chemotactic responses for all 3 ligands. All 
three ligands can induce calcium flux, pERK, and pAKT, though CXCL9/10 require Gαi2 for pERK and β-arrestin2 for pAkt. CXCL11 can activate 
PLC and PI3K/AKT to mediate migration independent of Gαi. Internalization of CXCR3 induced by CXCL9/10 requires the C terminus, whereas 
CXC11 requires the 3rd intracellular loop. CXCL9/10 can activate STAT1/5 to enforce Tbet/RORγT expression, whereas CXCL11 activates 
STAT3/6 to enforce GATA3 expression. (B) CXCR3-dependent and independent signaling pathways in endothelial cells. CXCL10 activates cAMP, 
PKA and MEK in dermal endothelial cells to inhibit m-calpain and dampen angiogenesis. In cardiac microvascular endothelial cells, CXCL10 
activates the p38/FAK pathway to induce migration, but not proliferation. CXCL10 also exerts effects on endothelial cells independently of 
CXCR3, but in a manner that requires GAG binding. (C) CXCR3 signaling in pericytes. Pericytes activate Src, Ras/ERK and PI3K/AKT pathways 
downstream of CXCR3, which mediate chemotactic responses. Kidney pericytes exhibit increased proliferation downstream of CXCL9/10, 
which is ERK-dependent (inhibited by PD98059). Interferons inhibit proliferation of pancreatic stellate cells via STAT1, though it is unclear 
whether this response is via CXCR3 ligands. (D) Fibroblast responses to CXCR3 ligands. Intestinal myofibroblasts exhibit calcium flux and 
phosphorylation of PKB, ERK, p90RSK induced by all three ligands. All three ligands induce actin polymerization in a Rho-associated coiled 
coil-forming protein kinase (ROCK)-dependent manner that is independent of PI3K and Gαi. Signaling in skin dermal fibroblasts has not 
been fully mapped, though CXCR3 deficiency leads to hypertrophic and hypercellular scarring in mice via increased extracellular matrix 
proteins, including tenascin C, fibronectin, type I & III collagen, MMP9 and decorin. Color key: CXCL9 = red; CXCL10 = blue; CXCL11 = yellow; 
CXCL9/10 = purple; CXCL9/10/11 = green.

inhibit angiogenesis late in the wound healing process17. CXCL10 
exhibits angiostatic properties in non-small cell lung cancer  
and idiopathic pulmonary fibrosis18,19. CXCL10 is also able 
to induce angiostatic effects by binding glycosaminoglycans 
(GAGs) independently of CXCR320. However, CXCL10 induces  
migration, but not proliferation, of rat cardiac microvascular 

endothelial cells via the p38/FAK pathway21 and rat and mouse  
liver endothelial cell progenitors through an unknown pathway22 
(Figure 1B).

Pericytes are contractile cells on capillaries and post-capillary 
venules in tissues that play integral roles in tissue healing  
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and remodeling23. Examples include hepatic stellate cells in the 
liver, glomerular mesangial cells in the kidney and pancreatic  
stellate cells. Pericytes express CXCR3, and activate the Src,  
Ras/ERK, and PI3K/Akt pathways downstream of CXCR3 lig-
and binding24. Inhibitor studies indicate that Src and subsequent  
Ras/ERK activation are required for chemotaxis of hepatic  
pericytes, which is in direct contrast to observations in T cells. 
PI3K/Akt also plays an important role in hepatic pericyte  
migration as evidenced by abrogation of CXCL10 migra-
tion in the presence of wortmannin or LY294002. In addition to  
chemotaxis, kidney pericytes exhibit increased proliferation  
downstream of CXCL9/10, which is ERK-dependent (inhibited 
by PD98059). Unlike hepatic pericytes, kidney pericytes exhibit 
a second wave of ERK phosphorylation following incubation  
with CXCL10. CXCR3 signaling in pancreatic stellate cells  
has not been as extensively mapped, but they respond to PDGF 
by activating Src-JAK2-STAT325. Interferons (IFNs), which  
drive expression of CXCR3 ligands, inhibit proliferation of  
pancreatic stellate cells via STAT126 (Figure 1C).

CXCR3 plays a homeostatic role in wound healing and  
re-epithelialization responses by fibroblasts27–29. CXCR3 defi-
ciency leads to hypertrophic and hypercellular scarring in mice 
that have experienced skin trauma30,31. While CXCR3-mediated  
signaling in skin fibroblasts has not been well-characterized,  
the consequence of loss of signaling during wound healing 
includes increases in extracellular matrix proteins including  
tenascin C, fibronectin, type I & III collagen, MMP9  
and decorin 180 days post-wounding compared to WT controls31.

Studies of CXCR3 signaling downstream of CXCL9 and  
CXCL10 in intestinal myofibroblasts have shown modest  
differences in signaling, including CXCL9/10-induced calcium  
flux at 10min versus 8min for CXCL11, and prolonged phos-
phorylation of PKB, ERK, p90RSK induced by all 3 ligands as  
compared to shorter phosphorylation time in peripheral blood  
leukocytes (e.g. 2-20min versus 1-2min)32. All three ligands induce 
actin polymerization in a Rho-associated coiled coil-forming  
protein kinase (ROCK)-dependent manner that is independent  
of PI3K and Gαi (Figure 1D). Further detailed signaling path-
way analyses for CXCL9/10/11 signaling are warranted in  
non-hematopoietic cells from different organs.

Post-translational modifications, proteolytic 
processing and potential alternate receptors for 
the CXCR3 chemokine axis
Post-translational modifications of the CXCR3 chemokine  
axis modulates the function and signaling ability of the ligands  
and their receptor. CXCL10/11 have heparin binding sites  
that allow it to be presented on endothelium33. CXCL10  
presentation by the endothelium requires oligomerization34. 
CXCL10/11 may be citrullinated by peptidylarginine deiminase, 
which inhibits their ability to induce chemotaxis and calcium  
flux and reduces their ability to bind heparin35. CXCR3  
itself requires tyrosine sulfation to bind to its ligands and mediate 
chemotaxis6.

CXCL9/10/11 are cleaved/truncated by CD26, and CXCL11  
is cleaved by CD1336,37. The CD26 truncations of CXCR3  

ligands retain angiostatic activity while losing CXCR3-mediated  
signaling38. The C’ terminus of CXCL9 can inhibit neutrophil 
migration via competition with CXCL8-mediated binding to 
heparin, heparan sulfate, and cellular GAGs, which normally  
facilitate adhesion to vessels and subsequent transmigration39,40. 
CD13 is expressed by endothelial and epithelial cells as well  
as fibroblasts in angiogenic tissue, but not normal tissue41.  
Truncation of just the first two amino acids in CXCL11 by CD13 
abrogates Akt and ERK phosphorylation and greatly reduces  
calcium flux to prevent migration of CXCR3-transfected CHO 
cells36. Truncation of the first six amino acids still retains angi-
ostatic activity as assessed by scratch assay of endothelial cell 
cultures.

There are two other isoforms of CXCR3: CXCR3-B which  
binds to CXCL4 and mediates angiostatic effects in cultured  
human endothelial cells42; and CXCR3-alt which binds CXCL1143. 
Of note, C57BL/6 (B6) mice do not express CXCR3-B20.  
The roles of CXCR3-B and CXCR3-alt in fibrosis have  
not been studied. CXCR3 can also crosstalk with CXCR4 
and CXCR7 via CXCL11 and CXCL1244. CXCR4 mediates 
profibrotic effects in the liver, while CXCR7 mediates more  
homeostatic regenerative responses45. CXCL9 can induce het-
erologous desensitization of CXCR4 to its ligand CXCL1246.  
Notably, autoantibodies against CXCR3 and CXCR4 correlate 
with increased lung and skin disease severity in scleroderma  
patients, though it is unclear exactly how these impact  
signaling47,48. CXCL11 binds to CXCR7, which is expressed  
on activated endothelial cells, tumor cell lines and fetal liver  
cells49. CXCL11 ligation by CXCR7, which has an affinity of  
2-5nM, does not induce calcium flux or migration; rather it  
promotes survival and adhesion. CXCR7 has been proposed  
to be a scavenger receptor for CXCL1150. CXCR7 can attenuate 
TGFβ signaling in the lung, though the role of CXCL11 in this 
process has not been studied51,52.

Profibrotic roles of CXCR3 ligands
CXCR3 and its ligands are reported to promote fibrosis  
in certain disease models and organs. An important caveat  
to bear in mind when assessing B6 mouse models is that 
CXCL11 is not expressed in this strain due to a null mutation.  
However, CXCL9 and CXCL10 knockout mice were gener-
ated using 129 oocytes and were backcrossed to B6. Therefore,  
WT B6 mice express CXCL9 and CXCL10, CXCL9-/- mice  
express CXCL10 and CXCL11, and CXCL10-/- mice express 
CXCL9 and CXCL11. This means that while CXCL11 cannot  
be directly assessed in B6 models, insights about its function  
can be gleaned by comparing CXCL9-/-, CXCL10-/- and  
WT B6 mice.

The nephrotoxic serum nephritis model of inflammatory  
kidney disease, which exhibits tubulointerstitial fibrosis, is  
dependent on CXCR3 and CXCL9, but not CXCL10, as  
determined by histopathology and loss of renal function53.  
CXCR3-/- and CXCL9-/- mice had fewer intrarenal activated  
T cells and macrophages, as well as fewer IgG glomerular  
deposits and antigen-specific IgG in serum. These data sug-
gest that CXCR3 and CXCL9 initiate nephritis through cell-
mediated events, which ultimately promote tubulointerstitial 
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fibrosis. CXCL10-/- animals developed kidney disease  
similar to WT controls, indicating that any potential antifi-
brotic role of CXCL11 in the kidney is potentially nullified by  
profibrotic effects of CXCL9. Similarly, any potential profi-
brotic role of CXCL11 in CXCL9-/- mice may be nullified by  
antifibrotic effects of CXCL10. However, a Balb/c mouse model 
of unilateral ureteral obstruction-induced renal tubulointerstitial  
fibrosis was exacerbated by JAK inhibition, and STAT3  
played a protective role54. Several factors may contribute to  
the disparate findings between these models, namely whether 
the process is immune-mediated or obstructive nephropathy,  
which other signals are being disrupted by JAK inhibition, and 
whether all three CXCR3 ligands are present to balance pro- versus 
anti-fibrotic signaling (Table 1).

Morphea, or localized scleroderma, is an inflammatory  
fibrosing disease of the dermis and underlying tissue. Several  
studies have identified CXCR3 ligands as positively correlat-
ing with disease severity and activity in patients55–57. Systemic  
sclerosis, or scleroderma, also exhibits upregulation of CXCR3 
ligands that correlates with disease severity58. Preliminary  
studies from our laboratory support a pro-fibrotic role of CXCL9 
in the skin: CXCL9-/- mice are protected from bleomycin- 
induced skin fibrosis, and in vitro treatment of mouse and  
human fibroblasts with CXCL9 induces transcription of collagen 
1a1 (col1a1); these data are available on a preprint server and  
are currently undergoing peer review59.

CXCL10 has pro-fibrotic effects in the liver, where it prevents  
NK cells from inactivating hepatic stellate cells60. CXCL10-/-  
mice and WT mice treated with anti-CXCL10 antibody are  
protected from carbon tetrachloride-induced liver fibrosis.  
Hepatic stellate cells upregulate CXCR3 in response to carbon  
tetrachloride, and CXCL10 induces their migration but not  
proliferation. CXCL10 also mediates T and B cell aggregates  
in lymphoid tissue, which are essentially absent in CXCL10-/-  
mice (Table 1).

Antifibrotic roles of CXCR3 ligands
While CXCL9 has pro-fibrotic effects in renal and  
skin tissue, CXCL9 has direct angiostatic and antifibrotic  
effects in experimental models of pancreas and liver fibrosis.  
In the trinitrobenzene sulfonic acid (TNBS) induced-pancreatitis  
rat model, administration of anti-CXCL9 antibody worsened  
fibrosis, whereas administration of recombinant CXCL9 improved 
fibrosis, as assessed by trichrome staining and hydroxypro-
line assay61 (Table 1). In vitro stimulation of pancreatic stellate 
cells with CXCL9 downregulated TGFβ1 and col1a1 production  
by confocal microscopy. Of note, antibody and recombinant 
CXCL9 were administered subcutaneously (s.c.) to rats in this 
model. We hypothesize that this route of administration may  
have pulled inflammatory infiltrates away from the gastroin-
testinal (GI) tract and towards the skin, considering there was  
1.5ng/mL CXCL9 in serum and approximately 30µg was  
administered s.c. daily (assuming average weight of 300g/rat  
at a dose of 100 µg/kg body weight).

In the carbon tetrachloride-induced liver fibrosis model,  
CXCR3-/- mice exhibited augmented liver damage at 24h62. 
Follow-up studies from the same laboratory used mice treated  
exogenously with CXCL9, which reduced the severity of liver 
fibrosis as assessed by Sirius red staining, hydroxyproline  
assay, and α-SMA expression63 (Table 1). In vivo CXCL9 treat-
ment also inhibited angiogenesis as assessed by CD31 stain-
ing and ultrasound visualization of liver perfusion. However, 
CXCL9 treatment did not impact the number of Th1-polarized,  
IFN-γ-positive cells in the liver amongst treatment groups. 
Treatment of endothelial cells in vitro with CXCL9 was able to  
inhibit VEGF-mediated proliferation and migration via PLCγ, 
JNK and ERK. In vitro treatment of hepatic stellate cells  
reduced TGFβ and col1a1 by protein and RNA64.

While CXCL10 has profibrotic effects in the liver, CXCL10  
limits lung fibrosis in the murine model of bleomycin-induced  
pulmonary fibrosis (Table 1). CXCR3-/- and CXCL10-/- mice  
display exaggerated pulmonary fibrosis after bleomycin  
administration, and transgenic mice overexpressing CXCL10 
are protected from bleomycin-induced mortality65,66. Bleomycin  
did not alter the T cell cytokine milieu in CXCL10-/- mice,  
weakening the support for the idea that CXCL10 might limit 
fibrosis by skewing T cell polarization to the Th1 phenotype 
as demonstrated in hepatitis models. CXCL10 also did not  
decrease lung tissue-derived angiogenic activity and von  
Willebrand Factor expression after bleomycin delivery, despite 
that angiogenesis is considered a rate-limiting step in the  
development of pulmonary fibrosis. CXCR3 mRNA, but  
not protein, was detected in lung fibroblasts. Rather, direct  
interaction of the heparin-binding domain of CXCL10 and  
syndecan-4 on the lung interstitial compartment inhibits  
fibroblast recruitment, TGFβ signaling and subsequent fibrosis67,68.  
Similar findings were reported in myocardium, which required 
CXCL10 fibroblast responses through proteoglycans69, and  
urethral fibrosis, in which CXCL10 signaling interfered with  
profibrotic TGFβ signaling70.

Similar to CXCL10, CXCL11 attenuates lung fibrosis in the  
bleomycin mouse model and inhibits angiogenesis in the  
corneal micropocket assay71 (Table 1). A double-blind, placebo 
controlled study of 330 idiopathic pulmonary patients treated  
with subcutaneous IFN-γ 1b treatment exhibited increased  
CXCL11 in bronchoalveolar lavage fluid and plasma, with con-
comitant decreased elastin72. The pro- and anti-fibrotic roles of  
the CXCR3 ligands in different organs are summarized in Table 2.

Potential therapeutic manipulations of CXCR3 for 
the treatment of fibrosis
To select how to manipulate CXCR3 and/or its ligands for 
the treatment of fibrosis, it is our opinion that the suspected  
cell-of-origin in the fibrotic response and the level of  
angiogenesis during fibrogenesis need to be assessed. Based  
on the evidence discussed above, we hypothesize that fibrosing  
disorders primarily mediated by pericyte-type cells that require 
ERK signaling and exhibit more angiogenesis as a disease  
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Table 2. Comparison of CXCR3 ligand actions in organ 
fibrosis.

CXCL9 CXCL10 CXCL11

Profibrotic Heart, Kidney, Skin Heart, Liver ?

Antifibrotic Liver, Pancreas Lung Lung

feature would be more dependent upon CXCL10, and fibrosing 
disorders primarily mediated by fibroblast or myofibroblast-type  
cells that require AKT and JAK signaling and exhibit less  
vascular involvement would be more dependent upon CXCL9. 
For example, hepatic fibrosis has prominent vascular changes  
and is driven by hepatic stellate cells and CXCL10, whereas 
morphea has a low incidence of vascular changes and is driven 
by fibroblasts/myofibroblasts and CXCL9. GI organs, in which  
fibrosis is driven by pericytes, also generally seem to use CXCL9 
for protective responses, whereas lung and skin, in which  
fibrosis is driven by fibroblast subsets, use CXCL10 for protec-
tive responses. Nuances in the signaling pathways, the relative  
chemokine responsiveness, as well as potential coreceptors, 
will need to be addressed in future studies. Technologies such as  
single cell RNA sequencing and proteomics may ultimately 
help resolve the heterogeneity of chemokine receptor and core-
ceptor expression, as well as preferential signaling pathway  
usage.

The first potential class of small molecules that could be  
used to disrupt CXCR3-mediated inflammatory fibrosis are 
JAK inhibitors. We and others have shown that JAK inhibitors  
prevent fibrosis in mice73–75, and demonstrated efficacy in our 
case studies of human morphea patients who were recalcitrant  
to standard therapies73,76. In our study of intradermal bleomy-
cin injection in mice and human morphea tissue, we observed  
p-STAT1 and p-STAT3 activation in both immune infiltrates and 
cells with fibroblast morphology73. Notably, STAT1, STAT3 and 
STAT5 have predicted binding sites in the collagen 1a1 (col1a1) 
promoter and enhancer regions (GeneCards), which may account 
for our observation that JAK inhibitors were able to suppress  
col1a1 transcription by human and mouse fibroblasts in vitro73.  
We also noted that the JAK 1/2 inhibitor ruxolitinib yielded  
a slightly better p value than the JAK 3>>1>2 inhibitor tofacitinib 
for inhibition of dermal thickening in the intradermal bleomy-
cin mouse model. These data are in agreement with previously  
published studies examining JAK2 as a driver of fibrosis in  
scleroderma fibroblasts and a bleomycin mouse model74. Zhang 
et al demonstrated that following long-term selective inhibition  
of JAK2, JAK2 may be transphosphorylated by JAK1 to mediate 
fibrosis77, supporting the use of a combination JAK1/2 inhibitor  
for treatment of fibrosis. It is interesting to note that ruxolitinib  
was originally FDA approved for myelofibrosis78, and patients 
receiving ruxolitinib therapy often resolve fibrosis79. While  
this is encouraging for potential repurposing of ruxolitinib  
for other fibrosing diseases, we would caution that careful  
tapering and monitoring is needed to prevent potential rebound 
effects80,81. Cessation of ruxolitinib can cause hyperphospho-
rylation of JAK2, increasing inflammation and subsequent  
fibrosis82. Selecting a JAK1/2 inhibitor with a longer half-life, 

such as baricitinib83, might be a safer option for patients who  
are tapering.

The second potential class of therapeutics would be agonist  
peptides to mimic the antifibrotic role of CXCL10 for lung  
fibrosis. As suggested by Tager and Jiang et al, maintaining  
heparin binding but excluding CXCR3 binding would  
mitigate potential toxicities related to T cell recruitment65,67. 
CXCL10-based therapeutics might also prove useful for  
improving lung fibrosis and function in patients recovering  
from infectious lung disease, particularly Sars-CoV2 infec-
tion/COVID-19 disease84. Smith et al recently reported biased  
agonists of CXCR3 that can differentially mediate inflamma-
tion and migration of immune cells which they examined in the  
context of contact hypersensitivity in skin14, providing a basis  
for the feasibility of this approach.

The third potential class of therapeutics would be agents that  
inhibit the pro-fibrotic signaling events mediated by CXCR3 
ligands, such as CXCL9 in Th1/IFNγ-driven kidney disease 
or morphea. These approaches could include anti-CXCL9  
blocking/neutralizing antibodies, CXCL9 siRNA, or antagonis-
tic peptide ligands. Of note, antibody neutralization of CXCL10  
for treatment of hepatic fibrosis may be challenging, as CXCL10 
antibodies neutralize the free form and not endothelial-bound  
chemokine85. Similar challenges may arise when attempt-
ing to neutralize CXCL9 with antibody, as would anti-drug  
antibody responses.

A fourth class of therapeutics could leverage the cell- or  
organ-specific context of chemokine expression. For exam-
ple, stimulating γδ T-cells to produce CXCL10 in the lung could  
have therapeutic benefits in pulmonary fibrotic disease. Inhibit-
ing macrophage production of CXCL9 in the skin could prevent  
collagen deposition in morphea. Drawing immune infiltrates  
away from the pancreas and towards the skin could reset the  
fibrotic process, as in the TNBS-induced rat model. Agents are in 
development to target specific cell types, such as antibody-drug 
conjugates86 some with cleavable linkers87, bispecific antibodies88,89 
and nanoparticles90, which can be preferentially phagocytosed  
by antigen presenting cells of the immune system. These could 
be leveraged to achieve the aforementioned goals of stimulat-
ing CXCL10 or inhibiting CXCL9 production by key cell types.  
Different drug delivery routes and systems may also help  
accomplish the goal of drawing immune cells away from the  
pancreas or other organs, with cutaneous administration via  
creams, injections or microneedle patches91 helping to achieve a 
high local concentration.

A fifth class of therapeutics could leverage existing  
enzymatic cleavage of CXCR3 ligands. Recombinant peptides  
lacking amino-terminal amino acids can exert angiostatic effects, 
while inhibiting CXCR3-mediated migration. Administration 
of bioactive CD26 and/or CD13, or inhibitors of these enzymes, 
may modulate fibrotic processes in specific organs or diseases. 
CD26 inhibitors have been reported to reduce or prevent fibrosis  
in models of myocardial fibrosis, lung fibrosis and kidney  
fibrosis92–94, and a CD13 inhibitor improved fibrosis in a mouse 
model of silica-induced lung fibrosis95.
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Last, combination therapies targeting both prevention of  
inflammation and fibrosis in addition to promoting tissue  
remodeling will likely provide the best therapeutic outcome  
for fibrosis patients96. Tissue remodeling will ultimately allow  
for breakdown of fibrotic plaques and better disease out-
comes, which could be achieved through agonists or inducers of  
matrix metalloproteinases (MMPs) or antagonists of tissue  
inhibitors of MMPs (TIMPs).

Conclusion
The differential impact of CXCR3 and its ligands on tissues  
depends on disparate signaling pathways involving multiple  
cell types and potential coreceptors; the nuances of which 
should be addressed in future research involving single cell RNA  
sequencing and proteomics. As we have examined the  

known fibrotic and antifibrotic roles of CXCR3 and its ligands, 
we suggest that future therapeutic options should be centered  
around the suspected cell-of-origin in the fibrotic response,  
tissue-specific signaling factors and the degree of angiogenesis 
is during fibrosis. Likely, a combination of these therapies  
will have the best potential to ameliorate symptoms of patients  
with fibrosing diseases.
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