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Competing endogenous RNA (ceRNA) are transcripts that cross-regulate

each other at the post-transcriptional level by competing for shared micro-

RNA response elements (MREs). These have been implicated in various

biological processes impacting cell-fate decisions and diseases including

cancer. There are several studies that predict possible ceRNA pairs by

adopting various machine-learning and mathematical approaches; however,

there is no method that enables us to gauge as well as compare the propen-

sity of the ceRNA of a gene and precisely envisages which among a pair

exerts a stronger pull on the shared miRNA pool. In this study, we devel-

oped a method that uses the ‘tug of war of genes’ concept to predict and

quantify ceRNA potential of a gene for the shared miRNA pool in cancers

based on a score represented by SoCeR (score of competing endogenous

RNA). The method was executed on the RNA-Seq transcriptional profiles

of genes and miRNA available at TCGA along with CLIP-supported

miRNA-target sites to predict ceRNA in 32 cancer types which were vali-

dated with already reported cases. The proposed method can be used to

determine the sequestering capability of the gene of interest as well as in

ranking the probable ceRNA candidates of a gene. Finally, we developed

standalone applications (SoCeR tool) to aid researchers in easier imple-

mentation of the method in analysing different data sets or diseases.

1. Introduction

Recent studies have unmasked the ability of a tran-

script to influence the expression of similar or different

transcript via sequestration of shared microRNA

(miRNA). Such transcripts are named as competing

endogenous RNA (ceRNA), which include a mixed

pool or individual pools of messenger RNA (mRNA),

long-noncoding RNA (lncRNA), pseudogenes and

circular RNA (circRNA) (Cesana et al., 2011; Hansen

et al., 2013; Memczak et al., 2013). They regulate each

other by competing for the common pool of miRNA

(s) (Tay et al., 2011) and their shared miRNA

response elements (MREs) act as natural molecular

sponges for the miRNA (Cazalla et al., 2010; Jeya-

palan et al., 2011; Kloc, 2008; Lee et al., 2009; Poli-

seno et al., 2010; Seitz, 2009). miRNA is a noncoding

RNA of about 22 nucleotides modulating either
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degradation or silencing of the transcripts by binding

to them (Bartel, 2009; Liu et al., 2013; Roy and Mal-

lick, 2017; Samantarrai and Mallick, 2017) preferably

on 3/UTR. The interactions among the pool of

miRNA and their target MREs in a given biological

system give rise to an unprecedented complex network

of miRNA-mediated regulations. The rationale for the

existence of such a complex network is supported by

the facts that (a) each transcript containing multiple

MREs can be the target of multiple distinct miRNA

(Rennie et al., 2016), and (b) each miRNA can have

multiple target MREs belonging to the same or differ-

ent transcripts (Liu et al., 2013). This redundancy in

the synergy of the miRNA and the transcripts led to

the discovery of ceRNA. Salmena and colleagues for-

mally put forward the ceRNA hypothesis in August,

2011 (Salmena et al., 2011) that was later on endorsed

by several studies demonstrating functions of the

ceRNA in various biological processes such as viral

infections (Cazalla et al., 2010), muscle development

(Cesana et al., 2011), embryonic stem cell differentia-

tion (Wang et al., 2013), angiogenesis (Gao et al.,

2016a), tumorigenicity (Gao et al., 2016b; Jeyapalan

et al., 2011; Li et al., 2014b) and metastases (Li et al.,

2016; Zheng et al., 2015) in different cancers.

Although ceRNA research is in its infancy, emerging

evidence suggests that ceRNA can regulate the func-

tion of miRNA by acting as oncogenes or tumour sup-

pressors contributing to several tumorigenic processes.

Hence, ceRNA are pivotal in understanding the addi-

tional dimension of post-transcriptional gene regula-

tion that will unearth the underlying unknown

mechanism of cancers. Among the ceRNA, mRNA

have recently emerged as notable ceRNA candidates in

some of the cancers as well as in normal cells. The

competition between forkhead box protein O1

(FOXO1) and E-cadherin (CDH1) for miR-9 was

reported wherein FOXO1 acted as a ceRNA resulting

in inhibition of metastasis of breast cancer cells by

inducing CDH1 expression (Yang et al., 2014; Zhou

et al., 2014). A study reported significant positive cor-

relation between erythropoietin receptor (EPOR) and

erb-b2 receptor tyrosine kinase 2 (ERBB2) levels in

breast cancer, both of which are targeted by miR-125b

and behave as ceRNA (Ferracin et al., 2013). The

ceRNA activity of versican, a chondroitin sulphate

proteoglycan present in the extracellular matrix,

against fibronectin and CD34 via miR-133a, miR-

199a, miR-144 and miR-431 resulted in the develop-

ment of hepatocellular carcinoma (Fang et al., 2013).

A group studying HCT116 colon cancer cells detected

KRAS and ZEB2 to regulate and be regulated by

PTEN through ceRNA mechanism (Gao et al., 2012).

PTEN and ZEB2 are also found to modulate each

other’s expression in melanoma by competing for

miR-181, miR-92, miR-25 and miR-200b (Karreth

et al., 2011). In addition to these, several lncRNA and

pseudogenes have been reported to be involved in dif-

ferent cancers by sponging miRNA. Linc-RoR func-

tion as a ceRNA and impairs miR-205-dependent

repression of zinc finger E-box binding homeobox

(ZEB1 and ZEB2), aiding in the progression of breast

cancer by inducing epithelial mesenchymal transition

(EMT) (Hou et al., 2014). An oncogenic lncRNA,

highly upregulated in liver cancer (HULC) acts as a

ceRNA of PRKACB through miR-372 (Pilyugin and

Irminger-Finger, 2014). PTENP1 and KRAS1P affect

the expression levels of their cognate genes, PTEN and

KRAS, respectively, by sponging shared miRNA

through ceRNA-mediated mechanisms in carcinomas

(Alimonti et al., 2010; Poliseno et al., 2010; Trotman

et al., 2003).

Several parameters that determine ceRNA activity

have been proposed to mimic the milieu within a cell

(Ala et al., 2013), which include (a) the common num-

ber of miRNA, (b) the number of shared MREs, (c)

the concentration levels of ceRNA and miRNA and

(d) the binding affinity of miRNA to a transcript.

These along with the availability of a plethora of data

encouraged researchers to develop computational

methods and databases for prediction of the ceRNA.

A method named cefinder predicted ceRNA by rank-

ing mRNA according to the number of MREs shared

between two mRNA (Sarver and Subramanian, 2012).

The predictions of this method are publicly available

through a database, ceRDB. The method opened up a

new arena of ideas for the scientific community but

did not consider some essential variables such as the

concentrations of the transcripts and miRNA in the

system to predict ceRNA precisely. starBase v2.0 is

another database which predicts ceRNA using hyper-

geometric test (Li et al., 2014a) based on the number

of common miRNA shared between the transcripts.

The Database of Human long-noncoding RNA

(lnCeDB) predicts lncRNA as candidate ceRNA by

defining two scores (Das et al., 2014). However, this

failed to infer whether highly ranked pairs with lower

expression values or lowly ranked pairs with higher

expression values should be preferred as ceRNA. A

similar database, known as Pan-ceRNADB, predicted

only mRNA as ceRNA candidates across 20 cancer

types (Xu et al., 2015) using hypergeometric test.

Although it took into account the correlation between

the expressions of the genes, it did not consider other

features of ceRNA which makes it less sensitive in

making reliable predictions. TraceRNA predicts
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ceRNA by considering most of the known attributes

of the miRNA/mRNA interactions (Flores et al.,

2014). However, this method did not include miRNA

expression, an important parameter while making pre-

dictions, which was later considered optionally by its

sequel, NetceRNA. Moreover, the utility of Net-

ceRNA was illustrated and evaluated only in breast

cancer. SpongeScan (Furio-Tari et al., 2016) is another

web interface to predict MREs of lncRNA that act as

ceRNA. Apart from being concerned with only

lncRNAs, the method talks about individual MREs in

contrast to the entire transcript. The most recent addi-

tion to this effort is a machine-learning approach,

called CERNIA (ceRNA predIction Algorithm) that

considers the density, distribution and energy of the

MREs along with the number of common miRNA as

well as correlation of the gene expressions (Sardina

et al., 2017).

At present, there is a lack of methods that enable

to predict which of the transcripts in a ceRNA pair

will act as the natural miRNA sponge in a particular

cancer type. The majority of the available resources

simply predict pairs of transcripts along with their

shared miRNA and users have to intuit which tran-

script in the pair sequesters more. To address this

issue, we propose a mathematical model with the abil-

ity to predict potential ceRNA pairs as well as assign

relative sequestering strength to each of the genes in

the pair. The model computes SoCeR (score of com-

petitive endogenous RNA) by considering several key

target-binding features of CLIP-identified miRNA tar-

gets, expression profiles of individual miRNA and

mRNA as well as correlation in expression between

the transcripts obtained from RNA-Seq data of

TCGA. This score tells the user which of the tran-

scripts sharing a miRNA pool is potentially the stron-

ger attractive force and also indicates the strength of

the competition between them in the specified cancer

type.

2. Materials and methods

We adopted multiple steps and parameters (Fig. 1) to

incorporate ceRNA concept into a novel mathematical

model to predict ceRNA of a GOI (gene of interest)

that share MREs from a set of miRNA expressed in

32 cancer types (Table S1).

2.1. Data collection and processing

The expression profile of genes and miRNA of differ-

ent cancer types were obtained from RNA sequencing

(RNA-Seq) data available at The Cancer Genome

Atlas (TCGA). We preferentially selected 32 cancer

types for which transcriptional profiles of both genes

and miRNA were available at TCGA. Importantly, we

used level 3 RNA-Seq (IlluminaGA and Illu-

minaHiSeq) data sets for genes as well as for miRNA

that have normalized expression values in terms of

RPKM/RSEM. These values indicate the abundances

of an individual transcript in a sample from the tran-

scriptome reads generated from the sequencing data.

We parsed miRNA identifiers of TCGA using miR-

Base (Release 20) (Kozomara and Griffiths-Jones,

2014) to get expression profiles of 1100 mature

miRNA.

The targets of 1100 miRNA that comprised of 249

conserved and 851 nonconserved human miRNA were

downloaded from miRSVR, which is a part of miR-

anda (http://www.microrna.org) (Betel et al., 2008).

The target pool includes 2940741 MREs of 20 817

transcripts (18 913 genes), which contains information

about its conservation, energy, alignment score and

seed type residing on different transcripts. The

miRSVR algorithm identifies a significant number of

experimentally verified MREs based on a regression

model trained on contextual features of CLIP-Seq pre-

dicted target sites (Betel et al., 2010). The genes con-

sidered for the study included mostly 17 685 (93.51%)

mRNA in addition to 218 (1.15%) lncRNA, 166

(0.88%) pseudogenes and 844 (4.46%) miscellaneous

RNA (Fig. S1).

2.2. Computation of positively correlated genes

An elevated expression of ceRNA leads to increased

expression of its paired gene by limiting the amount of

shared miRNA bound to the latter. Consequently,

genes of a ceRNA pair are positively co-expressed in a

cell (Chiu et al., 2015; Sumazin et al., 2011; Tay et al.,

2011). Therefore, we computed the correlation between

each pair of genes across all the available samples of

cancer to identify preliminary sets of probable ceRNA

pairs in them. We considered the transcripts with non-

zero expression values (RPKM/RSEM) in a cancer

type for correlation analyses. Spearman’s correlation

coefficient (q) was used over that of Pearson’s as gene

expression profiles of cancers are not normally dis-

tributed. Spearman correlation coefficient allows more

robustness towards any extreme values in the expres-

sion profiles (Mukaka, 2012). We filtered only posi-

tively correlated genes with q > 0.0. The P-values of

all positively correlated pairs were sorted and then

FDR corrected. The pairs with corrected P-value

≤ 0.001 were considered in subsequent steps to find

potential ceRNA pairs.
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2.3. miRNA-mediated ‘tug-of-war’ model for

predicting ceRNA and their strength

We devised a model based on the ‘tug of war’ of genes

for the shared pool of miRNA that can precisely pre-

dict the possible ceRNA gene candidates (PCCs)

responsible for modulating the expression of co-

expressed genes indirectly through shared miRNA.

Dynamic steady state of the cells precisely executes the

processes of replication, transcription, and translation

in a harmonic manner rejuvenating the cellular envi-

ronment maintaining defined cellular fate. Here, the

dynamic steady state is defined as the varying steady

states of the tumour cells in the cancerous tissues. This

is based on the observations that the primary tumour

after attaining a steady state concentration in due time

induces a secondary tumour which also attains a

steady state concentration with time (Gatenby, 1995;

Nishikawa et al., 1994).

We assume such a steady state system in the model

to mimic the ceRNA mechanism in a cell and propose

a discrete time model that is characterized by two

stages of action (Fig. 2). In the initial stage, there is

no interaction between the miRNA and target genes,

and hence, the complete pool of miRNA is freely

available for binding to different genes in the system.

In the next stage, the available miRNA bind to pre-

ferred MREs on individual genes according to their

inclination and the concentration of individual genes.

These stages are recursive because the corresponding

cell system will be back to the first stage after comple-

tion of the second stage when it is replenished with a

fresh pool of unbound miRNA and transcripts. The

propensity of miRNA binding to targets can be influ-

enced by (a) relative expression of miRNA and target

genes, (b) seed types (8mer, 7mer-m8, 7mer-A1, 6mer)

(Grimson et al., 2007; Liu et al., 2013), (c) binding

energy of the miRNA-target duplex, (d) alignment

score of miRNA with target at the MRE and (e) con-

servation score of the MREs (Rennie et al., 2016). The

seed types considerably influence the competition in

binding to mRNA and the potency of repression

(Agarwal et al., 2015; Chen et al., 2015; Denzler et al.,

2016). Based on this, we define the weights of individ-

ual seed types to bring out their importance in calcu-

lating ceRNA propensity. We defined the binding

affinity (b) of a miRNA towards a gene as the product

of the features of miRNA-target duplexes.

Fig. 1. The prediction pipeline incorporating miRNA-mediated ‘tug of war of genes’ model to predict ceRNA propensity of genes.
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b ¼ c � e � a � s ð1Þ
where c, e, a and s are conservation score, binding

energy, alignment score and seed type, respectively.

We used a multiplicative combination that would

ensure homogeneous changes in the binding affinity

with changes in the features, that is proportional

changes in the features will result in proportional

changes in the binding affinity. The rate of miRNA-

ceRNA target complex formation depends on the con-

centration and the relative binding affinity of the tran-

script. The relative binding affinity of a PCC with

respect to its GOI (bPCCjGOI) is defined as:

bPCCjGOI ¼ bPCC � z
bGOI þ bPCC

ð2Þ

where z is the coefficient of relative binding affinity

and is found to be 2 as bg1|g1 should be 1. An advan-

tage of calculating the relative binding affinity is to

avoid the bias introduced by the different scales and

their extreme values.

In our miRNA-sponging model, we have integrated

the expression values of targets with above target-

binding features, which will be useful to break the tie

in cases of similar binding affinities. The expression

value, EPCC, used is the average of the expressions of

the PCC taken from all the samples. This term is

termed as the total binding affinity (TBA) of a gene

(denoted as B) and is used to predict PCCs of a GOI.

BPCCjGOI ¼
X

PCCMREs

EPCC � bPCC � 2
bGOI þ bPCC

ð3Þ

Here, PCC MREs are the MREs present on the

PCC. The TBA of a PCC with respect to the GOI is

the cumulative of the relative binding affinity of the

MREs present on all the transcripts of the PCC. TBA

is a measure of the rate of the complex formation

expressed as the product of expression levels (E) and

affinity of a gene towards a miRNA. Further, we have

also included the expressions of miRNA in the model

as it is a crucial factor in influencing the rate of degra-

dation or inhibition of the genes. EmiRNA is defined as

the average of all the miRNA samples.

As the system is in a steady state, the time taken for

formation of the duplex by both the genes of a ceRNA

pair is equal. Therefore,

x

BPCCjGOI

¼ EmiRNA � x

BGOIjPCC
ð4Þ

Here, x is the part of the miRNA pool that is

sequestered due to the TBA of the PCC. The equa-

tion (4) is reminiscent of the ‘tug of war’ between GOI

and PCC for their shared miRNA with respect to their

TBAs. In equation (4), the denominators are the rates

Fig. 2. Two proposed steady states with respect to miRNA pool that our system can attain: (I) Shows the unbound state of miRNA and

MREs. (II) Shows the bound states of the miRNA that have complementary MREs.
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at which the miRNA form duplexes while the numera-

tors are the expression levels of miRNA. Thus, values

on left-hand side and right-hand side of the equa-

tion (4) symbolize the time taken for formation of

complex with PCC and GOI, respectively. We defined

our score, SoCeR, by solving equation (4) and calcu-

lating the differences between the amount of miRNA

binding to PCCs and GOIs. Mathematically, we pre-

sent SoCeR (non-normalized) as:

X
AllmiRNA

EmiRNA

�
P

PCCMREs EPCC � bPCC �P
GOIMREs EGOI � bGOIP

PCCMREs EPCC � bPCC þP
GOIMREs EGOI � bGOI

� �

ð5Þ
Theoretically, equation (5) gives the excess (or defi-

cit) of amount of miRNA binding to PCC over GOI

of a ceRNA pair sharing MREs, which is mathemati-

cally represented by a positive (or negative) score. The

scores lie between �1 and +1 by normalizing with the

highest absolute score for a particular GOI. A negative

score implies that the GOI sequesters a higher number

of miRNA in the pair, and thus, the GOI has higher

ceRNA propensity in that system with respect to the

same pool of miRNA. Similarly, a positive score sug-

gests that the predicted gene has higher ceRNA

propensity in that particular system. The magnitude of

the score indicates the imbalance in sequestering

strength of the genes of a ceRNA pair. A magnitude

close to unity suggests the case of ceRNA dominance,

while a score closer to zero (or exactly zero) indicates

a state of ceRNA dependency (or no ceRNA activity)

of the genes in the cell. The terms ceRNA domination

and dependency are defined with respect to the power

of individual ceRNA to influence the system. A domi-

nant ceRNA can strongly influence its partner gene

and thus, the system, whereas a dependent ceRNA has

a weak influence on its partner gene and the combined

effect of the pair is needed to influence the system.

These extreme cases show a clear rift in the strength of

the genes symbolizing weak ceRNA regulation either

due to the inability of a gene to compete or due to the

similarity in strength of the two genes to sponge

miRNA.

3. Results and Discussion

Here, we have proposed a novel miRNA-mediated

‘tug-of-war’ sponging model and a well-defined score

(SoCeR), which can accurately interpret all possible

conditions while predicting ceRNAs in a system. Stan-

dalone applications, SoCeR (for Windows as well as

Linux), have been developed to assist the scientists in

performing similar analysis on different data sets and

systems and is available at http://vvekslab.in/tools.

html. Hereon forth, we use the notation GOI–PCC for

the ceRNA pairs. SoCeR not only gives a measure of

the sequestering capability of the GOI but can also be

used for ranking the PCCs of a GOI. For example, in

breast cancer, PTEN-PTENP1 is ranked 48th, and

PTENP1-PTEN is ranked 4th when their ceRNA are

sorted in ascending and descending manner, respec-

tively. To test the robustness of SoCeR, we swapped

the GOI and PCC of a ceRNA pair. As expected, we

obtained a non-normalized score of the same magni-

tude but of opposite sign predicting the same conclu-

sion as before. This ascertains the sturdiness of the

score. Although the non-normalized SoCeR for a pair

can be obtained by multiplying negative unity to the

same of the opposite pair, it is not true for SoCeR as

the latter gives the relative strength of a pair with

respect to all of the ceRNA pairs of its GOI. Refer

Table 1 to compare SoCeR of PTEN-PTENP1 and

PTENP1-PTEN predicted across all cancers. Our

model is further validated by considering different

cases and interpreting their scores. We tested cases

with respect to three possible conditions in a cell: (a)

expression of miRNA is zero; (b) either or both,

expression and affinity of a gene is zero; and (c) total

binding affinity of a gene is greater than its ceRNA

counterpart. The case with no miRNA in the system

gives an obvious score of zero because a common pool

of miRNA is absent, and hence, there would be no

influence on either the genes or the system. The second

condition can be regarded as a case of complete

ceRNA dominance due to the inability of binding or

unavailability of the other genes. The last case, as

expected, gives a positive score if the PCC has a

greater total binding affinity (than the GOI) symboliz-

ing that more miRNA would be sequestered by the

PCC. The above evaluations reveal SoCeR as a

dependable score. Refer to Table S2 that enlists all the

experimentally validated ceRNA predicted by our

model in different cancers.

3.1. ceRNA profile across 32 cancers

The profiles of ceRNA across 32 cancers were pre-

dicted using our ‘tug-of-war’ model. We observed the

highest percentage of ceRNA predicted in HNSC with

57.84% of all possible pairs followed by UCEC

(53.01%) and OV (51.20%). Figure 3 gives the distri-

bution of the percentage of ceRNA predicted in indi-

vidual cancer types. From this, we can infer that

mRNA-related ceRNA activity is highest in HNSC
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among all cancers, whereas lowest ceRNA activity is

in KICH (42.84%). Interestingly, we noticed that our

method can predict ceRNA that are already reported

and validated in cancers (Table S2), which indicate the

reliability of our method for predicting ceRNA of any

GOI in any other cancers. Table 2 lists some of these

pairs that can be justified in their sequestration

strength. We have discussed some of these cases below

in detail.

3.2. Case studies

3.2.1. The ceRNA networks of PTEN

PTEN has been the subject of investigation by many

researchers (Ioffe et al., 2012; Poliseno et al., 2010;

Song et al., 2012; Sumazin et al., 2011; Yu et al., 2014)

due to its tumour suppressing abilities across almost all

known cancers that regulate the PI3K/AKT signalling

pathway. The ceRNA network involving PTEN has

been recorded in some cancers and speculated for

others. The expression of PTEN is reported to be regu-

lated by its pseudogene ceRNA, PTENP1 via their

shared miRNA at the post-transcriptional level. Influ-

enced by these, we used our model to find possible

cases of the ceRNA crosstalks between PTEN and

PTENP1 across 32 cancers (Table 1). We noticed that

SoCeR is not only dependent on the number of com-

mon miRNA but also on the binding site features of

the shared miRNA which are evident in the cancer

types such as CHOL and KICH. Both the cancers have

the same number of common miRNA shared between

PTEN and PTENP1, yet CHOL endorses PTENP1 as

a stronger ceRNA candidate of PTEN than KICH.

Another befitting comparison that supported the above

argument is the case of CHOL and READ. We

observed that the absolute score for PTEN and

PTENP1 is lesser in READ as compared to CHOL

although a higher number of miRNA are shared in the

former. Further, PTEN-PTENP1 pair was found to be

Table 1. The ceRNA propensity of PTEN & PTENP1 predicted in 31 cancer types.

Cancer type Correlation coefficient P-Value

No. of Common

miRNA SoCeR (PTEN-PTENP1)

SoCeR

(PTENP1-PTEN)

ACC 0.847 0 121 �0.67369 0.78630

BLCA 0.858 7.70E-293 130 �0.50920 0.72302

BRCA 0.933 5.46E-207 127 �0.67049 0.88367

CESC 0.872 0 130 �0.54521 0.83129

CHOL 0.862 0 117 �0.55465 0.73192

COAD 0.944 0 125 �0.40175 0.77568

DLBC 0.834 8.50E-30 121 �0.50075 0.65581

ESCA 0.717 7.80E-137 129 �0.45532 0.89090

HNSC 0.942 0 131 �0.47273 0.68261

KICH 0.8 0 117 �0.81225 0.81477

KIRC 0.96 0 122 �0.65480 0.89554

KIRP 0.81 0 125 �0.66183 0.90289

LGG 0.713 0 129 �0.28003 0.94196

LIHC 0.815 0 129 �0.46025 0.60944

LUAD 0.921 0 125 �0.54618 0.70292

LUSC 0.956 0 124 �0.52097 0.72832

MESO 0.877 0 123 �0.77569 0.74926

OV 0.841 0 128 �0.37445 0.95353

PAAD 0.85 0 123 �0.59451 0.68933

PCPG 0.781 0 125 �0.81538 0.90834

PRAD 0.807 0 128 �0.28020 0.82334

READ 0.943 0 118 �0.35608 0.73590

SARC 0.862 0 128 �0.52238 0.79559

SKCM 0.925 0 132 �0.63347 0.83782

STAD 0.83 0 127 �0.35283 0.88958

TGCT 0.722 5.33E-128 130 �0.51230 0.76446

THCA 0.772 2.04E-286 134 �0.53311 0.77455

THYM 0.932 0 128 �0.55396 0.91472

UCEC 0.963 0 128 �0.60520 0.78189

UCS 0.702 0 126 �0.72531 0.78462

UVM 0.941 0 122 �0.46564 0.64366
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strongly positively correlated in all cancers except acute

myeloid leukaemia (LAML) where the correlation was

found to be negative. Table S2 lists out the experimen-

tally validated cases of PTEN interactions that have

been predicted by our method.

PTEN and CNOT6L predicted as a ceRNA pair by

our method gives a negative score. This can be

explained by the observations of Tay et al. (2011)

which stated that a change in CNOT6L changes the

expression levels of PTEN significantly, while a change

in the expression levels of PTEN brings about signifi-

cantly lesser change in CNOT6L. Thus, it can be con-

cluded that CNOT6L sequesters majority of the

common pool of miRNA as indicated by our score.

Further, our model has predicted several other mRNA

that may function as PTEN ceRNA and regulate

PTEN expression in some of the cancers, which have

already been reported experimentally elsewhere (Kar-

reth et al., 2011; Poliseno et al., 2010; Qu et al., 2015;

Tay et al., 2011; Yu et al., 2015). One such case is

repression of PTEN by the oncomir miR-130b in oeso-

phageal squamous cell carcinoma, which increases the

proliferation and migration abilities of the tumour

cells (Yu et al., 2015). SoCeR provides a negative

score for the interaction of PTEN (GOI) and PTENP1

in this cancer mediated through miR-130b.

Fig. 3. The percentage of total ceRNA pairs (out of all possible pairs) predicted by our method in individual cancer types.

Table 2. The list of already reported and validated ceRNA predicted by our method.

Cancer ceRNA pair miRNA Correlation P-Value SoCeR References

PRAD PTEN-PTENP1 hsa-miR-19b, hsa-miR-20a 0.807 0 �0.28020 (He et al., 2015)

COAD PTEN-CNOT6L hsa-miR-17, hsa-miR-19a, hsa-miR-19b,

hsa-miR-20a, hsa-miR-20b, hsa-miR-106b

0.702 0 �0.01492 (Qu et al., 2015)

COAD PTEN-VAPA hsa-miR-20a, hsa-miR-26b 0.545 0 0.02606 (Qu et al., 2015)

PRAD PTEN-CNOT6L hsa-miR-19a, hsa-miR-19b, hsa-miR-20a 0.412 0 �0.00507 (Tay et al., 2011)

LIHC VCAN-CD34 hsa-miR-431 0.416 0 0.05405 (Fang et al., 2013)

SKCM PTEN-ZEB2 hsa-miR-92a, hsa-miR-200b, hsa-miR-25 0.19 0 �0.09792 (Karreth et al., 2011)

ESCA PTEN-PTENP1 hsa-miR-130b 0.717 7.80E-137 �0.45532 (Yu et al., 2015)

ESCA PHLPP2-IFT88 hsa-miR-224 0.538 0 �0.02266 (He et al., 2015)

ESCA PHLPP2-ZNF91 hsa-miR-224 0.526 0 0.01319 (He et al., 2015)
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In summary, the widespread occurrence of PTEN-

PTENP1 ceRNA network in almost all cancers (Table 1)

predicted in our study indicated a common regulatory

activity of the tumour suppression pathway. Moreover,

this case study authenticated our tug-of-war model by

predicting already validated cases of the PTEN-centred

ceRNA in cancers. Table S3 report the scores of all possi-

ble ceRNA of PTEN in breast cancer. Table S4 reports

the shared list of miRNA along with their scores for the

PTEN-PTENP1 interaction in breast cancer.

3.2.2. miRNA sponging by TSGs

While a cell in its normal condition is a quintessential

blend of genes, the tumour-afflicted cell is the result of

dysregulation of tumour suppressors among other rea-

sons. SoCeR gives a measure of the miRNA-sponging

ability (MSA) of a gene. A negative score would repre-

sent a higher MSA of the GOI or query gene. Similarly,

a cumulative negative SoCeR would symbolize an over-

all downregulation of a gene in cancer on account of

sequestering more miRNA than its counterparts. We

selected three well-known TSGs: PTEN, TP53 and RB1

to infer the fate of their tumour suppressing activities in

all 32 cancers. We obtained a negative score for these

TSGs, propelling us to hypothesize that miRNA spong-

ing involving TSGs could be a possible event promoting

the formation of cancer cells. It is evident from Table 3

that PTEN, TP53 and RB1 are important TSGs active

across all cancers as speculated.

3.2.3. Putative PTEN ceRNA regulate PTEN in human

melanoma cells

Expression levels of PTEN can be modulated through

miRNA by putative PTEN ceRNA (Karreth et al.,

2011). The study by Karreth et al., 2011 selected nine

well-known PTEN ceRNA and silenced them in two

Table 3. The cumulative, mean and standard deviation (std) of the SoCeR of three well-known TSGs: PTEN, TP53 and RB1 in 32 cancer

types.

Cancer PTEN (mean) [std] TP53 (mean) [std] RB1 (mean) [std]

ACC �838.77 (�0.091) [0.138] �776.97 (�0.089) [0.151] �872.57 (�0.093) [0.172]

BLCA �1022.17 (�0.113) [0.150] �883.14 (�0.101) [0.176] �691.08 (�0.075) [0.172]

BRCA �1045.34 (�0.106) [0.166] �1557.58 (�0.132) [0.194] �1963.48 (�0.193) [0.188]

CESC �1186.79 (�0.118) [0.142] �1113.33 (�0.115) [0.201] �1278.69 (�0.132) [0.176]

CHOL �975.56 (�0.092) [0.151] �892.87 (�0.103) [0.205] �919.29 (�0.091) [0.201]

COAD �1134.33 (�0.105) [0.171] �711.20 (�0.095) [0.156] �1756.53 (�0.164) [0.169]

DLBC �1312.99 (�0.140) [0.161] �1113.58 (�0.133) [0.234] �1370.16 (�0.137) [0.172]

ESCA �862.23 (0.089) [0.135] �1033.71 (�0.103) [0.183] �976.30 (�0.112) [0.169]

HNSC �955.08 (�0.095) [0.145] �1757.28 (�0.125) [0.191] �1793.16 (�0.193) [0.201]

KICH �685.38 (�0.078) [0.165] �864.40 (�0.089) [0.165] �811.64 (�0.088) [0.201]

KIRC �797.63 (�0.070) [0.150] �1641.21 (�0.121) [0.183] �2001.63 (�0.191) [0.213]

KIRP �973.08 (�0.090) [0.200] �788.89 (�0.086) [0.203] �1284.95 (�0.129) [0.241]

LAML �1338.54 (�0.166) [0.184] �1207.01 (�0.117) [0.153] �780.82 (�0.094) [0.164]

LGG �1016.99 (�0.118) [0.234] �994.71 (�0.114) [0.156] �901.15 (�0.097) [0.181]

LIHC �930.57 (�0.113) [0.153] �1127.02 (�0.104) [0.163] �899.09 (�0.080) [0.179]

LUAD �906.70 (�0.083) [0.161] �1173.81 (�0.120) [0.186] �1362.52 (�0.158) [0.184]

LUSC �905.92 (�0.098) [0.163] �1413.73 (�0.132) [0.183] �1885.41 (�0.179) [0.184]

MESO �1108.92 (�0.127) [0.169] �876.76 (�0.094) [0.185] �1038.54 (�0.106) [0.178]

OV �1035.39 (�0.106) [0.163] �1520.83 (�0.137) [0.183] �771.76 (�0.068) [0.195]

PAAD �1358.64 (�0.126) [0.153] �760.73 (�0.082) [0.167] �1076.41 (�0.104) [0.178]

PCPG �899.26 (�0.102) [0.158] �880.78 (�0.091) [0.154] �953.47 (�0.090) [0.194]

PRAD �952.23 (�0.096) [0.166] �783.22 (�0.111) [0.189] �711.18 (�0.075) [0.211]

READ �1096.93 (�0.094) [0.165] �1156.39 (�0.125) [0.187] �1631.73 (�0.145) [0.163]

SARC �891.89 (�0.096) [0.149] �1069.33 (�0.108) [0.167] �518.40 (�0.061) [0.181]

SKCM �1268.73 (�0.131) [0.162] �1001.21 (�0.111) [0.159] �1375.65 (�0.138) [0.176]

STAD �1013.40 (�0.095) [0.150] �828.68 (�0.099) [0.165] �857.04 (�0.085) [0.169]

TGCT �983.33 (�0.103) [0.140] �1121.44 (�0.115) [0.170] �405.37 (�0.039) [0.150]

THCA �1100.37 (�0.119) [0.170] �970.63 (�0.098) [0.151] �893.63 (�0.103) [0.181]

THYM �1116.61 (�0.133) [0.153] �825.62 (�0.113) [0.151] �1187.69 (�0.119) [0.187]

UCEC �1025.59 (�0.083) [0.145] �1976.21 (�0.163) [0.194] �1981.18 (�0.165) [0.184]

UCS �974.15 (�0.109) [0.163] �946.54 (�0.115) [0.180] �1032.58 (�0.092) [0.175]

UVM �1757.38 (�0.161) [0.192] �598.21 (�0.093) [0.139] �1452.45 (�0.127) [0.226]
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different melanoma cell lines which resulted in attenua-

tion of PTEN expression. We considered these nine

candidates and pitted them individually against PTEN

through our model. SoCeR of most of these pairs were

found to be positive, revealing the ceRNA candidates

have higher sequestering capability compared to PTEN

(Table S2). This substantiates our model to be capable

of predicting reported cases of ceRNA.

3.2.4. VCAN-CD34/FN1 ceRNA promoting oncogenesis

VCAN was investigated by Fang et al. (2013) to

explore its role in HCC. It was found to promote the

proliferation, survival, migration and invasion of the

cells by modulating the activities of miR-133a, miR-

199a*, miR-144 and miR-431 which were sequestered

by mRNA such as CD34 and FN1. Our method

predicted VCAN-CD34 and VCAN-FN1 to be

co-expressed and thus initially assumed as potential

ceRNA pairs. Further, we noticed a positive SoCeR

for both of these pairs with VCAN as the GOI, which

indicated VCAN to be a stronger miRNA sponge

compared to its partners. This observation supported

the findings by Fang et al. about VCAN freeing CD34

and FN1 for protein translation through ceRNA

mechanism by miR-431 sponging and promoting

HCC. The other reported miRNA were absent in the

mediation of the interactions in question as our

method is dependent on data generated by other pre-

dictive tools such as mirSVR. Table S5 and S6 contain

the scores of the shared pool of miRNA between

VCAN-CD34 and VCAN-FN1, respectively.

3.2.5. EPOR and ERBB2 cooperatively regulate

malignancy

Transfection of miR-125b by Ferracin et al. (2013)

confirmed EPOR and ERBB2 crosstalk with each

other through ceRNA mechanism. miR-125b is a well-

known tumour suppressor miRNA which has reduced

expression in metastatic breast cancer. Ferracin et al.

showed ERBB2 to act as a decoy of miR-125b and

induce the expression of EPOR by reducing the

amount of free cellular miR-125b. Our method also

predicted ERBB2 to be the major miRNA sponge with

a low positive score in breast cancer besides nine other

cancers, for several miRNA but not miR-125b. Fer-

racin et al. realized the inability of ERBB2 alone to

explain the sustenance of the malignant behaviour of

breast cancer cells which was solved by including

EPOR into the pool as ceRNA crosstalks. Thus, to

maintain the malignancy, both the transcripts are func-

tioning cooperatively. This brings out the true essence

of our score as the low magnitude of SoCeR suggests

a dependent behaviour of the ceRNA in regulating the

cell state.

3.3. Comparison of predictions and threshold of

SoCeR

The primary objective of our model is to predict the

ceRNA propensity of the genes among the positively

correlated pairs in a system. Moreover, it can also be

used to predict ceRNA. Due to the unavailability of

the negative class (putative non-ceRNA), we could not

perform the receiver operating characteristic analysis

to calculate sensitivity and specificity of our method.

Alternatively, we computed the number of true posi-

tives (TP) and false negatives (FN) of our predictions.

The validated sets of 34 ceRNA reported in three can-

cers (breast, prostate and brain) reported in the litera-

ture (Poliseno et al., 2010; Sardina et al., 2017;

Sumazin et al., 2011; Tay et al., 2011) were used for

comparison by calculating TP and FN. Of these, our

method correctly predicted 27 pairs, while CERNIA,

the most recent method which has been reported to

Fig. 4. Pie charts showing the distribution of true positives and false negatives in the predictions of SoCeR and CERNIA.
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outperform previous methods predicted 28 pairs

(Fig. 4). This indicates our method is equally competi-

tive with other methods. However, availability of more

number of validated ceRNA in different cancers in

future will reinforce this comparison. We have shown

the statistics on the classes of genes in the predicted

ceRNA pairs in Fig. S2 for five cancers.

In order to define a range of SoCeR that could be

used as a threshold to find significant ceRNA pairs,

we considered the validated ceRNA predicted by our

model as well as CERNIA and assessed their SoCeRs.

We recommend the minimum and maximum of the

absolute values of SoCeR of these validated ceRNAs

as the threshold. Therefore, we recommend the pairs

whose absolute SoCeRs lie in the range of [0.00403,

0.88367]. The number of predicted pairs are cut down

by a third when these cut-offs are enforced. Table S7

gives the percentages of the predicted pairs that fall in

the suggested range.

4. Conclusions

In the current study, we devised a miRNA-sponging

model for predictions of ceRNA of a GOI in 32 cancer

types to complement the resources available for

ceRNA, which is still in its nascent stage of research.

This model is motivated by the lack of algorithms or

tools for predicting which of the transcripts with shared

miRNA will be the most potential ceRNA by defining

SoCeR scores that range between �1 and 1. To the

best of our knowledge, our model is the only model

that is specialized to envisage potential of each tran-

script sharing the same set of miRNA/MREs to behave

as ceRNA based on sequence, thermodynamic and

conservation features of miRNA-target duplexes as

well as cancer-specific co-expression patterns of genes

and expression levels of shared miRNA. This method

revealed the sponging ability of each of the transcripts

expressed in a particular cancer type whose expression

levels are obtained from RNA-Seq data available at

TCGA. Further, our method includes targets of both

conserved and nonconserved human miRNA predicted

from Ago interaction sites of CLIP-Seq studies inte-

grated into mirSVR of miRanda which enhances the

reliability of our predictions by reducing the false

miRNA targets in our miRNA-target duplex data sets.

The method can be used for effective retrieval of

ceRNA of GOI in specific cancer as well as in multiple

cancers which will enable the researchers to compare

ceRNA candidates of GOI in selected cancers and vali-

date whether similar or dissimilar ceRNA regulatory

mechanisms exist in these cancers. This will help to

decipher common oncogenic processes operated by the

same set of ceRNA in multiple cancers and will thus

offer new opportunities to manipulate these common

ceRNA networks through miRNA competition for

their therapy, perhaps by adopting one strategy.

Our method demonstrated some limitations because

of which some of the ceRNA reported previously by

other labs were not detected by our method. Some of

these are due to the dependency of our method on

data retrieved from other resources such as TCGA

and mirSVR. For example, our method failed to pre-

dict FOXO1-CDH1 as ceRNA reported earlier by

Yang et al. (Yang et al., 2014). While investigating the

reason for this miss, we surprisingly found their

expressions to be negatively correlated. This is possibly

due to anomalies in the expression data of these genes

obtained from TCGA, which have prevented our

method to predict these genes as a potential ceRNA

pair. Moreover, we missed some miRNA in our pre-

diction for few ceRNA pairs which are due to the

absence of these miRNA in CLIP-verified targets

available at mirSVR or TCGA.

As discussed previously, the ceRNA, although in its

infancy, has the potential to regulate several biological

processes, both in normal and cancer cells, and hence

provides a new perspective to understand oncogenic

processes. Thus, understanding the regulatory mecha-

nisms and functions exhibited by them is very essential.

Our method will help the researchers to gain an in-

depth insight into the myriad roles of ceRNA language

in diverse cancer types and devise strategies for miRNA

loss-of-function studies as a therapeutic measure.
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