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Detection of dietetically absorbed 
maize-derived microRNAs in pigs
Yi Luo1, Pengjun Wang1, Xun Wang1, Yuhao Wang1, Zhiping Mu1,2, Qingzhi Li1,3, Yuhua Fu1,4, 
Juan Xiao1, Guojun Li1, Yao Ma1, Yiren Gu5, Long Jin1, Jideng Ma1, Qianzi Tang1, Anan Jiang1, 
Xuewei Li1 & Mingzhou Li1

MicroRNAs are a class of small RNAs that are important in post-transcriptional gene regulation in 
animals and plants. These single-stranded molecules are widely distributed in organisms and influence 
fundamental biological processes. Interestingly, recent studies have reported that diet-derived plant 
miRNAs could regulate mammalian gene expression, and these studies have broadened our view of 
cross-kingdom communication. In the present study, we evaluated miRNA levels in cooked maize-
containing chow diets, and found that plant miRNAs were resistant to the harsh cooking conditions to 
a certain extent. After feeding fresh maize to pigs (7 days), maize-derived miRNAs could be detected 
in porcine tissues and serum, and the authenticity of these plant miRNAs was confirmed by using 
oxidization reactions. Furthermore, in vivo and in vitro experiments demonstrated that dietary maize 
miRNAs could cross the gastrointestinal tract and enter the porcine bloodstream. In the porcine cells, 
we found that plant miRNAs are very likely to specifically target their endogenous porcine mRNAs and 
influence gene expression in a fashion similar to that of mammalian miRNAs. Our results indicate that 
maize-derived miRNAs can cross the gastrointestinal tract and present in pigs, and these exogenous 
miRNAs have the potential to regulate mammalian gene expression.

MicroRNAs (miRNAs) are a class of small (18–24 nt) non-coding RNAs that play a critical role in regulating 
gene expression in animals and plants by binding to target gene transcripts to inhibit their translation or degrade 
them1, 2. These single-stranded molecules are evolutionarily conserved among many species, and influence fun-
damental biological processes including cell proliferation, differentiation, apoptosis, immune responses, and 
metabolism1, 3–7. miRNAs are widely distributed in mammalian tissues, and their aberrant expression has been 
associated with numerous diseases6, 8, 9. Recently, it has been widely reported that miRNAs can be packed into 
exosomes (microvesicles) to resist harsh conditions (e.g., RNase and extreme pH) and transferred into neighbor-
ing or distant cells to regulate cell function10, 11. Stable miRNAs can be detected in nearly all bodily fluids, includ-
ing serum, milk, saliva and urine12–15. Circulating miRNAs are now emerging as a new group of messengers and 
effectors in intercellular communication, and some of the unique expression patterns of miRNAs reflect various 
physiological and pathological conditions16, 17.

miRNAs show a high degree of conservation in their sequences and mechanisms of action among different 
organisms1. Thus, it is possible for miRNAs to mediate cross-kingdom communication. In 2011, Zhang et al. 
first reported that plant-derived miRNAs could cross the mammalian gastrointestinal (GI) tract into the serum, 
and demonstrated that plant miR-168a could bind to the mRNA of low-density lipoprotein receptor adapter 
protein 1 (LDLRAP1), inhibit the expression of this protein in the liver and decrease the removal of low-density 
lipoprotein18. Although there is controversy about cross-kingdom regulation by plant miRNAs19–23, subsequent 
studies strongly support the view that exogenous plant miRNAs, as inter-species mediators, are involved in 
cross-kingdom regulation24–30. For example, honeysuckle-derived miR2911 inhibited influenza A viruses24, oral 
administration of three mammalian miRNAs that were 2′-O-methylated like plant miRNAs reduced the intestinal 
tumor burden26 and plant miR-159 inhibited breast cancer growth across kingdoms25.
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Pig (Sus scrofa), an important livestock species, is emerging as an attractive biomedical model due to it having 
metabolic features, cardiovascular systems and proportional organ sizes similar to those of human31–33. In the 
modern pig industry, commercial pigs are supplied with starch-rich concentrates mainly consisting of maize (as 
much as 40% or more)34. In this context, we performed in vivo and in vitro experiments in pigs to clarify whether 
plant-derived miRNAs can be absorbed by mammals and mediate cross-kingdom communication.

Results
Identification of abundant miRNAs in fresh maize and chow diets. We used small RNA-seq to 
reveal the miRNA abundance in fresh maize and observed that the majority of miRNAs with abundant counts 
were represented by a few miRNAs. The miRNA transcriptome of fresh maize consisted of unevenly distributed 
sequence counts, among which the top seven miRNAs with the highest expression levels accounted for 85.53% 
(by reads) of the total reads of all 124 miRNAs (Supplementary Table S1). The abundance of 18 representative 
miRNAs (10 miRNAs from 80,000–4,000 reads; 2 miRNAs from 2,000–1,000 reads; 2 miRNAs from 400–100 
reads; 2 miRNAs from 100–10 reads; 2 miRNAs from 9–1 reads) in fresh maize was analyzed using a qRT-PCR 
approach (Supplementary Table S2), which showed a significant positive correlation with the quantitative analysis 
by small RNA-seq (Pearson’s r = 0.89, P = 7.19 × 10−7), demonstrating the high quality and reliability of our small 
RNA-seq data (Supplementary Fig. S1).

We next sought to evaluate the concentration of maize miRNAs in cooked maize-containing chow diets (typ-
ically steamed, dried and puffed maize). Similar to previous studies on rice and honeysuckle18, 24, the plant miR-
NAs were resistant to the harsh cooking conditions to a certain extent. All 18 maize miRNAs were detected in 
diverse maize-containing chow diets, even after the harsh puffing treatment (i.e. high temperature and pressure, 
and apparent starch dextrinization and protein denaturation)35, 36, although their concentrations were decreased 
to one-thirtieth compared with those in fresh maize (Fig. 1).

Maize miRNAs are present in porcine nonsolid (blood) and solid tissues. To assess the survival of 
exogenous maize miRNAs in pigs, we measured the relative expression levels of 18 maize miRNAs in nonsolid 
(blood) and solid tissues of three adult female pigs, which were given fresh maize feed and water ad libitum for 
7 days, by qRT-PCR. As shown in Fig. 2A and Supplementary Fig. S2A, 16 of the 18 selected maize miRNAs 
were detected in serum and solid tissues, and exhibited relatively low abundance in pancreatic and longissimus 
dorsi muscle tissues (Fig. 2A). The terminal nucleotide of plant miRNAs has a 2′-O-methyl modification to resist 
periodate oxidation, but mammalian miRNAs with free 2′ and 3′ hydroxyls are sensitive to periodate37. Hence, 
oxidization of the nucleotides by periodate can determine whether the plant miRNAs identified in pig were gen-
uine plant miRNAs. We thus treated the total small RNAs isolated from serum and solid tissues with sodium 
periodate (an oxidizing agent). Consequently, while the endogenous porcine miRNAs (ssc-miR-16, ssc-miR-24 
and ssc-miR-25) were completely degraded (Fig. 2B and Supplementary Fig. S2B,C), the maize-derived miRNAs 
(zma-miR164a-5p, zma-miR167e-5p, zma-miR168a-5p, zma-miR319a-3p and zma-miR408a-3p) exhibited sim-
ilar abundance to synthetic miRNA with 2′-O-methylated 3′ ends, implying resistance to periodate oxidation, and 
thus were bona fide plant miRNAs (Fig. 2C–G).

Assessing the absorption of exogenous miRNA in the intestine using an ex vivo everted gut 
sac. We next sought to assess the absorption of exogenous miRNA in the small intestine using the everted 
gut sac method (Fig. 3A and Supplementary Fig. S3) because it is an important prerequisite for the hypothesis 
that diet-derived plant miRNAs are taken up by the GI epithelial cells and enter the circulation18, 38. We observed 
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Figure 1. Identification of abundant miRNAs in fresh maize and chow diets. The average plant miRNA 
concentrations in cooked maize-containing chow diets, including fresh, steamed, dried and puffed maize, were 
evaluated by q-PCR (n = 3).
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Figure 2. Maize miRNAs are present in porcine nonsolid (blood) and solid tissues. (A) The relative expression 
levels (miRNA/18S, 5S, U6) of 18 plant miRNAs in 12 porcine tissues were detected by qRT-PCR (n = 3). Data 
were normalized to the levels of porcine 18S, 5S and U6, and then plotted relative to the highest levels in the 
tissues. (B–G) Equal amounts of synthetic plant and porcine small RNAs (with or without 2′-O-methylated 
3′ ends) and total small RNAs isolated from fresh maize, porcine serum and tissues were treated with/without 
sodium periodate. After the reactions, the endogenous (B) and plant (C–G) miRNA levels were detected by 
qRT-PCR assay. The pigs were fed with fresh maize for 7 days. Data were normalized to the miRNA levels of 
unoxidized samples (n = 3).
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detectably increased concentrations of miRNAs derived from fresh maize juice and synthetic miRNAs with 
2′-O-methyl modification in the internal liquid of the intestine (Fig. 3B–G), which suggested that the exogenous 
plant miRNAs in food could cross the intestinal barrier, although an in vivo test was required to further explore 
the mechanism by which these exogenous miRNAs subsequently enter the blood and solid tissues.

Dietetically absorbed maize miRNAs may be packaged into exosomes and present in the cir-
culation. Our findings proved that the exogenous plant miRNAs in food could cross the intestinal barrier 
in vitro. Therefore, we sought to investigate the absorption of plant miRNAs in vivo and assessed the levels of 
maize-derived miRNAs in the serum of pigs fed fresh maize. As shown in Fig. 4A–E, the levels of all five tested 
maize miRNAs (zma-miR164a-5p, zma-miR166a-3p, zma-miR167e-5p, zma-miR168a-5p and zma-miR319a-3p) 
gradually increased after one meal of fresh maize, reaching peak values at 6 or 12 hours within the first 24 hours. 
Following 7 days of access to fresh maize feed ad libitum, the maize miRNAs maintained a stable detectable level 
in the serum (Fig. 4A–E). We next assessed whether these plant miRNAs were located in exosomes in porcine 
serum by performing ultracentrifugation. All five tested maize miRNAs detected in the serum were primarily 
present in serum exosomes (~58.2% of the concentration in the serum) (Fig. 4F). Direct PCR-Sanger sequencing 

Figure 3. Assessing the absorption of exogenous miRNA in the intestine using an ex vivo everted gut sac. (A) 
The everted gut sac method was used to evaluate the absorption of plant miRNAs in the small intestine. An 
everted porcine gut sac was ligated and placed in synthetic miRNA or fresh maize juice solution, the medium 
was gassed by bubbling at 37 °C with 95% O2 and 5% CO2, and the liquid in the internal capsule was collected at 
different times. (B–G) The levels of plant miRNAs in the collected fluid of the internal capsule after the gut sac 
had been placed in fresh maize juice (B–D) or synthetic miRNA (E–G) solution. After 0, 0.5, 1 and 2 h, zma-
miR164a-5p (B, E) (n = 12), zma-miR167e-5p (C, F) (n = 9) and zma-miR168a-5p (D, G) (n = 9) levels were 
evaluated by qRT-PCR. Statistical significance was determined by Student’s t-test (*P < 0.05).
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confirmed the specificity of our qRT-PCR measurements (Supplementary Table S3)39. This result supported the 
hypothesis that ingested plant miRNAs are taken up by the GI tract and subsequently packaged into exosomes, so 
as to escape nucleases in cellular compartments and in the bloodstream18, 25.

Possible cross-kingdom regulation of target porcine mRNAs by maize miRNAs. To confirm ear-
lier findings that exogenous plant miRNAs in food can specifically bind target mammalian mRNAs and influence 
biological processes18, 24, 25, we first performed an in silico analysis of the porcine target genes for zma-miR164a-5p, 
which exhibited a relatively high level in porcine blood and tissues. We predicted 50 potential target porcine 
mRNAs for zma-miR164a-5p that had a low minimum free energy value (mfe< −25 kcal·mol−1) and for which 
the seed region was highly matched (Supplementary Table S4). Next, the MirTrap System, an RNA-induced 
silencing complex trap method40, 41, was used to isolate specific miRNA target genes in a porcine kidney cell 
line (PK15). As shown in Fig. 5A–O, of 15 potential zma-miR164a-5p targets analyzed by qRT-PCR, transcripts 
for 73.33% (11 of 15) were significantly increased, and 53.33% (8 of 15) showed greater than 2-fold enrichment 
versus the control, which was regarded as a positive result41. In addition, we performed a dual-luciferase assay to 
demonstrate the relationships between zma-miR164a-5p and three of its potential target genes (CSPG4, OTX1 
and PLAGL2) (Fig. 5P). In the three target gene binding sites, zma-miR164a-5p significantly reduced the lucif-
erase activity for wild-type target genes, whereas mutant-type target genes were not affected by transfection with 

Figure 4. Dietetically absorbed maize miRNAs may be packaged into exosomes and present in the circulation. 
(A–E) The levels of zma-miR164a-5p (A), zma-miR166a-3p (B), zma-miR167e-5p (C), zma-miR168a-5p (D) 
and zma-miR319a-3p (E) in porcine serum following one feeding with 1 kg of fresh maize (n = 6); after 24 h, the 
pigs were fed a fresh maize diet for 7 days. The miRNA levels were evaluated by qRT-PCR, and porcine serum 
was collected after overnight fasting as a control (0 h). (F) The levels of plant miRNAs detected by qRT-PCR 
in exosomes isolated from porcine serum by ultracentrifugation (n = 3). Data were normalized to the miRNA 
levels of serum containing exosomes.
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zma-miR164a-5p (Fig. 5Q). These results suggested that dietetically absorbed maize miRNAs are very likely to 
specifically target endogenous porcine mRNAs and influence gene expression in a fashion similar to mammalian 
miRNAs.

Discussion
In the past few years, studies in mammals of circulating miRNAs originating from other species have broadened 
our view of cross-kingdom gene regulation42, 43, but the findings are still controversial because of potential con-
tamination, undetectable abundance and irreproducible results20, 22, 23. In the present study, in vivo and in vitro 
experiments were performed using diverse and strict methods. After consumption of a fresh maize diet, we found 
that most maize-derived miRNAs (16 of 18 selected miRNAs) could be detected in porcine tissues, and the plant 
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bases are indicated by black vertical lines and mispairing is indicated by two dots. (Q) Luciferase activity in the 
porcine kidney cell line (PK15) co-transfected with zma-miR164a-5p or negative control oligos and the reporter 
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miRNA concentration in porcine serum was enhanced after feeding on fresh maize. These results are consistent 
with most previous studies describing that diet-derived plant miRNAs can be detected in other organisms24–30, 39.

Many factors including different physiological and pathological conditions could affect the digestion and 
absorption of food in the GI tract28, 44, 45. Yang et al. reported that particular diets and/or alterations in intestinal 
permeability could improve the capacity to absorb small RNAs from the diet28. The everted gut sac model is an 
efficient tool for maintaining normal physiological function of the intestines to study in vitro drug absorption 
and interaction, intestinal metabolism, and the roles of transporters and enzymes46, 47. The present experiment 
using an ex vivo everted gut sac supported the assertion that exogenous plant miRNAs can pass through the GI 
tract. In addition, we further confirmed the authenticity of these plant miRNAs in pigs and the specificity of our 
qRT-PCR measurements for them by performing a periodate oxidation assay and direct PCR-Sanger sequencing. 
Taken together, all of our evidence indicated that exogenous plant miRNAs can cross the GI tract and are present 
in mammals.

Recently, it has been reported that exogenous plant miRNAs can target mammalian mRNAs to regulate the 
expression of target genes and influence related biological processes18, 24, 25. In view of our evidence that die-
tary plant miRNAs can enter porcine blood and tissues through food intake, a variety of mRNAs might be tar-
geted and affected by exogenous dietary plant miRNAs in different organisms. Interestingly, evidence from the 
miR-TRAP approach showed that zma-miR164a-5p could exert the same function as endogenous miRNAs in 
porcine cells and target some of its predicted target genes in the Argonaute/RISC complex. Furthermore, the 
luciferase reporter assays further confirmed that plant miRNAs could bind to their potential target genes’ binding 
sites and influence gene expression.

Despite evidence from in vitro studies indicating that exogenous plant miRNAs have the potential to regulate 
host gene expression, further work is needed to determine the levels that they need to reach to exert their effects 
in other organisms39. The current study showed that is invalidation when miRNA expression under a threshold 
concentration (<100 copies per cell)48. Zhou et al. reported that a high concentration (>100 copies per cell) of 
exogenous honeysuckle miR2911 in mouse could inhibit H1N1 to suppress viral infection24; nonetheless, most 
exogenous diet-derived miRNAs may be not reached the threshold concentration in host organisms20, 21, 30, 39. 
However, dietary customs are the long-term process for most organisms, such as herbivores or vegetarians, whose 
staple foods, such as grains, herbs, fruit and vegetables, are all rich in plant miRNAs21, 24, 49. Chin et al. reported 
that long-term oral miR159 ingestion suppressed breast tumor growth25, while Sizolwenkosi et al. reported that 
long-term oral administration of three mammalian miRNAs that were 2′-O-methylated like plant miRNAs 
reduced mouse intestinal tumor burden in vivo26. Although these two studies did not clearly indicate the concen-
trations of these exogenous miRNAs in the mouse body, the long-term effect of dietary miRNAs needs to be con-
sidered in further analysis. Considering the potential effect diet-derived miRNAs might have on cross-kingdom 
communication, more definitive evidence on the mechanisms of absorption and action of exogenous plant miR-
NAs needs to be provided in future studies, and exciting avenues of plant miRNA-associated physiological and 
pathological effects could be demonstrated in the future.

Materials and Methods
Ethics statement. All research involving animals was conducted according to the guidelines established by 
the Regulations for the Administration of Affairs Concerning Experimental Animals (Ministry of Science and 
Technology, China; revised in June 2004) and approved by the Institutional Animal Care and Use Committee of 
the College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, China, under permit 
No. DKY-S20143117.

Small RNA sequencing. Total RNA was extracted from fresh maize using Trizol Reagent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s instructions, and small RNAs were purified from PAGE 
gels. Illumina sequencing of small RNA samples was performed by BGI (Shenzhen, China). After removing the 
adaptor sequences from the raw data, the clean reads were compared to known mature maize miRNAs from the 
miRBase database (http://www.mirbase.org/index.shtml) to identify maize miRNAs.

Maize processing. Fresh maize was bought from a Chinese farmers’ market. It was boiled in water at 100 °C 
for 20 minutes to obtain steamed maize; meanwhile, fresh maize was treated at 140 °C for 3 hours and 65 °C for 
36 hours to obtain dried maize. Puffed maize (HAHNE, Germany) was bought from a Chinese supermarket. All 
different products of maize were treated with Trizol Reagent (Invitrogen) and isolated small RNA was evaluated 
by qRT-PCR.

Animals and diets. Jinhua female pigs were sacrificed after consuming a fresh maize diet for 7 days. Pigs 
were stunned by electronarcosis; then, porcine blood and tissues were collected immediately after sacrifice, and 
serum was obtained by centrifugation at 1000 rpm for 15 minutes. In a separate experiment, female pigs were fed 
one meal with fresh maize (1 kg/pig) after fasting overnight. After a fixed time interval (i.e. 0, 1, 3, 6, 12, 18 and 
24 h), serum was collected from a vein in the forearm, from which total RNA was extracted. After 24 hours, pigs 
were provided with a fresh maize diet ad libitum, and serum was collected at 1, 3 and 7 days. Pigs were sacrificed 
after the last serum collection, after which tissues were collected immediately. All tissues and body fluid samples 
were frozen in liquid nitrogen and stored at −80 °C until analysis.

Cells, reagents and oligos. The porcine kidney cell line (PK15) was obtained from the Type Culture 
Collection of the Chinese Academy of Sciences (Shanghai, China) and cultured in Dulbecco’s modified Eagle’s 
medium (DMEM; Gibco, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum (FBS; Gibco) and 
maintained at 37 °C in a humidified atmosphere containing 5% CO2. Synthetic miRNA molecules (with or with-
out a 2′-O-methyl-modified terminal nucleotide) were purchased from RiboBio (Guangzhou, China). Stem-loop 
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qRT-PCR primers were obtained from RiboBio and the other primers were purchased from BGI (Supplementary 
Tables S5 and S6).

Exosomes purification from serum. Exosomes were isolated from porcine serum by differential cen-
trifugation according to previous studies with slight modifications50. Porcine blood was centrifuged at 1000 rpm 
for 15 minutes in a tabletop centrifuge at 4 °C. The supernatants were collected, diluted with sterile PBS at a 1:1 
ratio, and then centrifuged at 1,200 g for 20 minutes, followed by 10,000 g for 30 minutes in a centrifuge at 4 °C 
to remove cellular debris. The supernatants were then filtered using a 0.22-µm filter (Millipore Corp., Bedford, 
MA, USA) and centrifuged at 110,000 g for 2 h at 4 °C in an LE-80 ultracentrifuge (Beckman Coulter, Palo Alto, 
CA, USA), to pellet the exosomes. The supernatant was removed and the pellet was resuspended in PBS (100 µl).

RNA extraction and qRT-PCR. Total RNA from the serum, exosomes, cells, or tissues was obtained using 
Trizol Reagent or Trizol LS Reagent (Invitrogen) according to the manufacturer’s instructions, and each sam-
ple was eluted in 30 μl of RNase-free water (Takara, Dalian, China). All reverse transcription of miRNA from 
maize and Jinhua sow samples was performed using the One Step PrimeScript®miRNA cDNA Synthesis Kit 
(Takara) according to manufacturer’s instructions, and qPCR was performed using SsoAdvanced™ SYBR® 
Green Supermix (Bio-Rad). Stem-loop qRT-PCR was used to evaluate the miRNA level using the Bulge-LoopTM 
miRNA qRT-PCR Starter Kit (RiboBio) according to manufacturer’s instructions, and the reverse transcription 
and qPCR primers were also synthesized by RiboBio. Meanwhile, mRNA was reverse-transcribed to cDNA using 
PrimeScript® 1st Strand cDNA Synthesis Kit (Takara) and qPCR was performed using SYBR® Premix Ex Taq 
KitTM II (Takara) and Bio-Rad CFX96TM Real-Time PCR Systems (Bio-Rad, Hercules, CA, USA). All reactions 
were performed in triplicate, and the absolute or relative expression levels of the target miRNAs and mRNAs were 
calculated as needed.

Oxidation of small RNAs with periodate. Total RNA of the fresh maize or porcine tissues and serum was 
extracted using Trizol Reagent or Trizol LS Reagent (Invitrogen), and synthetic ssc-miR-16, zma-miR164a-5p, 
zma-miR167e-5p, zma-miR168a-5p, zma-miR319a-3p and zma-miR-408a-3p (with or without 2′-O-methyl) 
were obtained from RiboBio. Next, 10 μl of total RNA or synthetic miRNA was mixed with 10 μl of NaIO4 
(0.25 M) and 80 μl of RNase-free water, and incubated at 0 °C for 40 min in the dark. In the unoxidized group, 
10 μl of RNase-free water was used to instead of 10 μl of NaIO4. Next, the RNA was precipitated, air-dried, dis-
solved in RNase-free water, and then assayed by stem-loop qRT-PCR via the same procedure as described above.

The ex vivo everted gut sac method. The ex vivo everted gut sac method was performed as previously 
described with slight modifications to assess the absorption of exogenous miRNA in the small intestine46, 47. 
Briefly, the small intestine (10 cm) was collected and flushed through several times with saline solution (0.9% 
NaCl) at room temperature. The gut was immediately placed in Tyrode’s solution and the medium was gassed 
by bubbling at 37 °C with 95% O2 and 5% CO2. As shown in Fig. 3A, the gut was everted gently and ligated 
at one end, while the other end was connected to a collection tool. Then, 300 pmol synthetic miRNAs (with a 
2′-O-methyl-modified terminal nucleotide) or 10% fresh maize juice was dissolved in Tyrode’s solution of exter-
nal capsule. After the indicated time points (0, 0.5, 1 and 2 h), the fluid in the internal sac (250 µl) was collected to 
extract total RNA and the miRNA level was evaluated by stem-loop qRT-PCR.

T-A cloning and Sanger sequencing. Total RNA from porcine serum and tissues was obtained using 
Trizol Reagent or Trizol LS Reagent. Small RNA was reverse-transcribed to cDNA and stem-loop PCR was 
performed using Bulge-LoopTM miRNA qRT-PCR Starter Kit (RiboBio); the A-tailing was added using DNA 
A-Tailing Kit (Takara). Next, the products were cloned into the pMD19-T vector (Takara) and around 40 mon-
oclonals were randomly picked for each miRNA. Then, Sanger sequencing with the M13 primer was used to 
determine the sequences of the PCR products.

Mir-Trap System. To capture mRNAs targeted by zma-miR164a-5p, the specific microRNA targets in mam-
malian cells were identified using the Mir-Trap System kit (Clontech, Tokyo, Japan) according to the manufactur-
er’s instructions. Briefly, microRNA was co-transfected into porcine kidney cells (PK15) together with pMirTrap 
Vector using the Xfect™ MicroRNA Transfection Reagent in combination with Xfect Polymer, followed by incu-
bation for 24 h. Then, the transfected cells were lysed using the MirTrap Isolation Kit and the FLAG-tagged 
RISC complex (including target mRNAs) was immunoprecipitated using the anti-DYKDDDDK beads from the 
MirTrap Isolation Kit. The bead-bound target mRNAs were then isolated using the NucleoSpin RNA XS Kit. 
Furthermore, potential target genes of zma-miR164a-5p in pigs were predicted by TargetScan and NCBI Blast, 
and the minimum free energy value (mef) was evaluated by RNAhybrid. The isolated RNA was analyzed by 
qRT-PCR to identify the potential target mRNA of zma-miR164a-5p in porcine cells (Supplementary Table S6).

Dual luciferase reporter assay. Luciferase activity assays involving a dual-luciferase reporter system were 
performed to evaluate the relationship between zma-miR164a-5p and three of its potential target genes (CSPG4, 
OTX1 and PLAGL2). In brief, the potentially targeted mRNAs containing zma-miR164a-5p binding sites (wild 
type or mutant type) were synthesized by Tsingke (China). The sequences were cloned into the SacI and XhoI sites 
of the pmirGLO plasmid (Promega, USA) at the 3′ end of the firefly luciferase reporter gene. Porcine kidney cells 
(PK15) were cultured in 24-well plates and when the cells reached about 70% confluence, recombinant pmirGLO 
vector with wild-type (WT) or mutant (MUT) binding sites was co-transfected with synthetic zma-miR164a-5p 
or negative control oligos into these cells (Lipofectamine 3000; Invitrogen). Cells were collected after 48 hour, and 
their dual-luciferase activity was measured using the Dual-Luciferase Reporter Assay System kit (Promega, USA).

http://S5
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Statistical analysis. Data are presented as mean ± SEM of at least three independent experiments. Statistical 
analyses were performed using Student’s t-tests and the differences were considered significant at P <  0.05.
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