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Abstract
Quantitative trait locus (QTL) mapping often yields associations with dissimilar loci/genes as a consequence of diverse fac-
tors. One trait for which very limited agreement between mapping studies has been observed is resistance to white mold in 
soybean. To explore whether different approaches applied to a single data set could lead to more consistent results, haplotype-
trait association and epistasis interaction effects were explored as a complement to a more conventional marker-trait analysis. 
At least 10 genomic regions were significantly associated with Sclerotinia sclerotiorum resistance in soybean, which have 
not been previously reported. At a significance level of α = 0.05, haplotype-trait association showed that the most prominent 
signal originated from a haplotype with 4-SNP (single nucleotide polymorphism) on chromosome 17, and single SNP-trait 
analysis located a nucleotide polymorphism at position rs34387780 on chromosome 3. All of the peak-SNPs (p-value < 0.05) 
of each chromosome also appeared in their respective haplotypes. Samples with extreme phenotypes were singled-out for 
association studies, 25–30% from each end of the phenotypic spectrum appeared in the present investigation to be the most 
appropriate sample size. Some key genes were identified by epistasis interaction analysis. By combining information on 
the nearest positional genes indicated that most loci have not been previously reported. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggest potential candidate genes underlying callose 
deposition in the cell wall and mitogen-activated protein kinase (MAPK) signaling pathway-plant, as well as plant-pathogen 
interaction pathway, were activated. Integration of multi-method genome-wide association study (GWAS) revealed novel 
genomic regions and promising candidate genes in novel regions, which include Glyma.01g048500, Glyma.03g129100, 
Glyma.17g072200, and the Dishevelled (Dvl) family of proteins on chromosomes 1, 3, 17, and 20, respectively.
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Background

White mold (WM) in soybean is a global soybean disease 
that emerged in the mid-80 s and spread across countries 
such as the USA, Canada, Argentina, Turkey, Japan, and 
India (Hoffnan et al. 1998; Ploper 1999). Particularly in 
North American and Canadian cropping areas, WM has 
become one of the major factors affecting soybean produc-
tion. The disease is caused by infection with Sclerotinia 
sclerotiorum (Lib.) de Bary. In 1986, the incidence of this 
pathogen in Canadian legume production reached 25% 
(Tu 1986). In recent years, WM has continued to spread, 
causing an increased harm and serious threats to soybean 
yield (Koenning and Wrather 2010; Peltier et al. 2012). 
Taken together, the selecting resistant soybean cultivars is 
the most economical and effective way to control the dis-
ease. Although no soybean line that is completely resistant 
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to Sclerotinia has been identified to date, some are known to 
exhibit partial resistance, a property shown to be a quantita-
tively inherited trait conferred by multiple genes (Kim et al. 
1999; Li et al. 2010; Song et al. 2017). However, the fact 
that quantitative traits are highly sensitive to environmental 
factors impedes the accurate selection of target traits under 
field conditions, thus making it difficult to identify resist-
ant germplasm resources. Therefore, the use of molecular 
markers to selectively develop disease-resistant cultivars is 
essential.

Since the first localization of QTL for Sclerotinia resist-
ance of soybean by Kim and Diers within the progeny of a 
biparental cross in 2000 (Kim and Diers 2000), many addi-
tional studies have attempted to map loci conferring Scle-
rotinia resistance (Arahana et al. 2001; Li et al. 2010; Guo 
et al. 2008; Hanet al. 2008; Vuong et al. 2008; Huynh et al. 
2010). In the last decade, with the development of next-gen-
eration sequencing technologies, genome-wide association 
studies (GWAS) using SNPs have become the most widely 
used approach to map traits of interest. Subsequent to the 
progress made by GWAS in human disease research, this 
approach has been used in the detection of candidate genes 
for disease resistance.

Currently, the use of molecular markers for selectively 
cultivating Sclerotinia-resistant soybean has not yet been 
implemented in practice. Treating the leaves, roots, and 
stems with oxalic acid and subsequently evaluating the 
degree of wilting and the level of soluble pigment still 
represent the main method for selecting soybean cultivars 
with Sclerotinia resistance (Li et al. 2016). In 2010, Li et al. 
(2011) used SSR markers to discover QTL conferring solu-
ble pigment (SP) content variations that are related to WM 
resistance and identified linkage groups D1a + q (Gm01), 
B1 (Gm11), and A2 (Gm08). In a more recent GWAS for 
WM resistance-associated SP content, 25,179 SNPs from 
330 soybean genotypes allowed the detection of a prominent 
signal on chromosome 13, followed by signals on Gm06, 
Gm10, and Gm11; 4 candidate genes related to WM disease 
response and the biosynthetic pathways of anthocyanin were 
located in the vicinity (< 60 kb) of significant SNPs (Zhao 
et al. 2015). In 2014, Bastien et al. (2014) used 7864 SNPs 
of 130 Canadian soybean genotypes by TASSEL3.0 soft-
ware to elucidate QTL (in order of significance) on Gm15, 
Gm01, Gm20, and Gm19. In 2015, Iquira et al. (2015) used 
8297 SNPs from 101 samples and located QTL (in order 
of significance) on Gm03, Gm08, and Gm20. Because of 
differences in soybean type, sample size, phenotype meas-
urement method, marker type and density, and analytical 
algorithm method, QTL for WM resistance show large vari-
ations across studies.

One weakness of working with individual markers/SNPs 
is that these are not inherited independently; rather, these 
have a propensity to be inherited in clusters of physically 

close loci, thus resulting in linkage disequilibrium (LD). 
Markers that are in high LD within a particular set of mate-
rials form haplotypes. The diversity of haplotypes in a 
genomic region is not limited to the two alleles typically 
seen for a single SNP locus. As a consequence, haplotypes 
may more accurately capture the underlying allelic diversity 
at loci controlling a trait of interest. When used in associa-
tion tests, haplotypes may therefore better capture the asso-
ciation to the studied trait (Song et al. 2017).

At the same time, most complex traits are determined by 
the interactions between multiple genes. This is especially 
true for the phenotypes controlling disease susceptibility, for 
which associations based on single loci are usually not suf-
ficient to explain or simulate complex traits. Although these 
alleles are associated with the disease, most of them merely 
have small effects when considered individually. Gene–gene 
interactions are often considered to be the cause of the unex-
plained genetic variations in complex phenotypes, and these 
interactions are sometimes overlooked in GWAS (Kanishka 
et al. 2011).

In addition, a challenge in characterizing a complex dis-
ease such as WM is the accurate assessment of the degree of 
resistance. One possible way to facilitate the identification 
of reliable QTL is to divide the population into two groups 
expressing extreme phenotypes and discarding those with 
intermediate phenotypes (Anderson et al., 2010). The use of 
extreme samples taken from 10 to 35% on either side of the 
phenotypic distribution curve has previously been reported 
to be effective for the purpose of identifying associated QTL 
(Zhang et al. 2011).

To further investigate the QTL conferring partial resist-
ance to WM in soybean, In this study, we employ 20,691 
SNPs to reanalysis a previously published dataset that used 
7864 SNPs analysis (Bastien et al. 2014), and performed 
haplotype-trait association analyses, as well as epistatic 
interaction analysis using both the full genotype set (n = 126) 
and only extreme phenotypes (n = 76), which comparing sin-
gle SNP-trait association tests only by Bastien et al. The 
detected QTL were compared with the results of other stud-
ies, and candidate genes were identified by GO enrichment 
and KEGG pathway enrichment analyses.

Materials and methods

Soybean lines

A panel of 126 soybean lines originate from the article “ 
genome wide association mapping of sclerotinia sclerotio-
rum resistance in soybean with a genotyping-by-sequenc-
ing approach” (Bastien et al. 2014), in which representa-
tive of the diversity present in a private breeding program 
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(Semences Prograin Inc.) in Eastern Canada (see list in Sup-
plementary Table S1).

Phenotype data

Phenotype data (the stem lesion length) were provided by 
Bastien(Bastien et al. 2012).

Genotype data

Single-end sequencing was performed on three lanes of an 
Illumina HiSeq2000 (at the McGill University-Génome 
Québec Innovation Center in Montreal, QC, Canada). Data 
quality control is essential to GWAS. In the present inves-
tigation, the r2 value for linkage disequilibrium, the LOD, 
and the confidence interval were set to 0.8, 3, and 95%, 
respectively. HWE (Hardy–Weinberg equilibrium) was not 
considered. A total of 20,691 SNPs passed the MAF (minor 
allele frequency) lower limit of 5%; for association, α = 0.05 
was used as the cut-off significance, which corresponded to a 
non-adjusted p-value of 2.42 ×  10−6 (0.05/20,691). The 126 
samples provided a total of 2,607,066 loci, among which 
213,559 (8.192%) were heterozygous.

Population structure

STRU CTU RE 2.3.4 (http:// taylo r0. biolo gy. ucla. edu/ struc 
tureH arves teroy base. org/ tools. php) for population structure 
analysis with the MCMC algorithm and NJ algorithm was 
used to perform clustering analysis, and phylogenetic recon-
struction was conducted using MEGA5.05 (http:// www. 
megas oftwa re. net/). SPSS was used for principal component 
analysis (https:// www. ibm. com/ analy tics/ us/ en/ techn ology/ 
spss/). The Bayesian clustering algorithm implemented in 
STRU CTU RE 2.3.4 was used to simulate population genetic 
structure. According to the Q value distribution of each pop-
ulation, it is considered that the sample has a single blood 
relationship when the Q value of a sample in a population 
is greater than or equal to 0.6, and it is considered that the 
sample has mixed sources when Q value is less than 0.6. To 
obtain an estimate of the most probable number of popula-
tion (K), K values from 1 to 10 were simulated with 20 itera-
tions for each K, using 10,000 burn-in periods followed by 
10,000 Markov Chain Monte Carlo iterations. Delta K was 
plotted against K values and the best number of clusters was 
determined following the method proposed by Evanno et al. 
(2005), and population structure diagram was obtained by 
the Structure Harvester platform (Earl and Vonholdt 2012).

Association analysis

For complete phenotype set, single SNP-trait association 
tests, with additive effects only and additive effects plus 

dominant effects of GLM (general linear model) or MLM 
(mixed linear model) model, were run in TASSEL v.5.0 
(http:// www. maize genet ics. net/ tassel) in max(T) permuta-
tion mode using a permutation test with 10,0000 times, and 
for haplotype analysis using PLINKv1.07 (http:// www. softp 
edia. com/ get/ Scien ce- CAD/ PLINK. shtml), the command 
line “–blocks” was used to assign SNPs to their respective 
haplotypes. Then, analysis for haplotype-trait association 
was performed, and haplotype-trait association analysis only 
for additive effects.

The frequency distribution of the genotypic segregation 
in the two groups (high-value group and low-value group, 
namely extreme phenotypes that were distributed at both 
ends of 126 phenotypic spectrum, it can be seen as reduced 
data set, we treat it as a quality character, assuming a disease 
phenotype as 1 = unaffected, 2 = affected, 0 = miss) will thus 
deviate from the Mendelian law. Using a chi-square test to 
assess this deviation for either or both groups, it was then 
possible to infer whether the marker is linked to the QTL. 
In the analysis with extreme phenotypes as implemented 
in HAPLOVIEW4.2 (http:// www. broad insti tute. org/ haplo 
view), because sample size was reduced without a decrease 
in the number of markers used, an increase in the number 
of false positives resulted from higher inflation; p-values 
were thus adjusted through a 10,000-time permutation test 
approach. With the 95% CI of D’ value bound between 0.70 
and 0.98 for adjacent SNPs to infer haplotype blocks, then 
carry out haplotype-phenotype association tests of extreme 
phenotype set.

SNP × SNP epistatic interaction analysis

PLINK v1.07 has different modes for specifying which 
SNPs are tested. To increase the power of epistasis detection, 
three analytical methods were used: (1) all SNP-by-all SNP 
two-locus epistasis test between all of the 205,284,045 SNP 
pairs; (2) SNP-by-SNP epistasis test between only significant 
SNPs pre-filtered by genome-wide association analyses; and 
(3) SNP-by-all epistasis test between significant SNPs and 
all SNPs. CYTOSCAPE v3.7.1 was used to visualize the 
interaction network.

Results

LD decay and haplotype construction

To compare the results of QTL mapping analyses conducted 
either using individual SNP markers or haplotypes, we first 
needed to assemble a catalogue of haplotypes for our asso-
ciation panel comprising 126 soybean lines. Genotyping-
by-sequencing was used to obtain SNP data for this panel 
of soybean lines and these were then used to construct 
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haplotypes based on the observed LD. At r2 > 0.2, 84,255 
pairs of SNPs were found to be in LD. Among the 84,255 
marker pairs in LD, an average r2 of 0.73 was observed; 
46,322 pairs (55.0%) had r2 ≥0.8, and 7841 pairs (9.3%) 
showed an r2 value of 1. The distribution of LD along each 
chromosome was uneven. The average physical distance 
between pairs of loci decreased as their LD increased. 
Pairs with r2 < 0.8 were 154.1 kb apart, pairs with r2 ≥ 0.8 
were 139.7 kb apart, and pairs with r2 = 1 were separated 
by 99.6 kb. The 20 chromosomes yielded a total of 2,858 
predicted haplotypes (Fig. 1), with chromosome 18 possess-
ing the most haplotypes (229) and chromosome 11 possess-
ing the least (57). The largest haplotype was composed of 
36 SNPs, whereas the smallest haplotype comprised only 
2 SNPs, and a haplotype consists of 5 SNPs on average. 
The average length of the haplotype is 64.4 kb; the longest 

haplotype spanned 200.0 kb, whereas the shortest encom-
passed only 2 bp. The distribution of SNPs along each chro-
mosome was uneven, where chromosome 18 contained the 
largest number of markers (1596), whereas chromosome 11 
included the fewest (488).

Population structure analysis

Population genetic structure was performed based on the 
Bayesian method. Delta K reached a maximum value at 
K = 2, suggesting that the 126 soybean lines were divided 
into two subgroups (consisting of 58 and 68 samples) 
(Fig. 2).

In addition, the contribution rates of the first three PC 
(principal component) were 6.24%, 5.44%, and 5.16%, 

Fig. 1  Distribution of SNP/haplotype: (a) Number of SNP on each chromosome. (b) Number of haplotype on each chromosome

Fig. 2  Population structure diagram of the 126 soybean lines. Note: Red: group I; Green: group II. Vertical lines on the X-axis refer to each vari-
ety. The proportion of each color represents probability rate with which a given genotype belongs to each group

4 Journal of Applied Genetics (2022) 63:1–14
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respectively, and the 126 lines cannot be clearly grouped 
by PC method, while the 126 soybean genotypes into two 
groups using NJ (neighbor joining). However, the genetic 
distance between these two groups was not significant, 
indicating that the samples have a low level of genetic 
stratification.

Genome‑wide association study approaches

The results showed that the resistance to Sclerotinia infec-
tion among the 126 soybean lines was significantly different, 
in which varied from 28.6 to 192.4 mm, with the traits of 
continuous distribution and quantitative inheritance.

Complete phenotype set association analysis

Single SNP‑trait association analysis

Six different modes were tested: (1) GLM; (2) GLM (PC); 
(3) GLM (Q); (4) MLM (K); (5) MLM (PCA: principal com-
ponent analysis + K); and (6) MLM (Q + K). In this study, 
the number of principal components is selected according 
to Q-Q Plot (quantile–quantile plots) (Figure S1), and Q-Q 
Plot revealed that the model using the first 79 PCs, which 
altogether captured 85% of the population structure, pro-
duced results that correlated most closely with the expected 
p-values (TableS2, S3). Thus, the first 79 PCs were used to 
capture population structure in the association analyses. To 
demonstrate the reliability of our results, significance level 
was evaluated by Bonferroni correction and permutation 
tests with 10,0000 permutations. The strongest signal came 
from the SNP at position rs34387780 on chromosome 3 by 
GLM, followed by those from markers on chromosomes 20, 
1, 4, and 17 (Table 1).

The loci showing the most significant association signals 
included one SNP located at position rs34387780 on chro-
mosome 3 and five other markers in close vicinity (Fig. 3).

Haplotype‑trait association analysis

For haplotype-trait association analysis, one signal from 
chromosome 17 represented the most significant associa-
tion and accounted for 17.56% of the phenotypic variations. 
Less significant haplotypes were also found on chromosome 
1 (Table 2).

Extreme phenotypes set association analysis

Single SNP‑trait association analysis

The present investigation attempted using extreme pheno-
type groups for association analysis. We utilized 10%, 20%, 
and 30% of the 126 soybean lines as cut-off thresholds for 
defining membership to the two extreme sample groups. 
Results from association analyses showed that all signifi-
cant signals detected using both the 10%- and 20%-extreme 
groups were represented in those identified using the 
30%-extreme groups; hence, only the latter was used for 
further analyses. The strongest association was found on 
chromosome 1, followed by those on chromosomes 20, 10, 
17, 13, and 4 (Table S4).

Haplotype‑trait association analysis

The strongest association was identified for a haplotype 
formed by 12 SNPs on chromosome 1; haplotypes on chro-
mosomes 13, 4, 10, 20, and 17 were also detected as having 
significant association to soybean lesion length (Table S5).

Table 1  Single SNP-trait association of 126 lines using additive effects and additive effects + dominant effects (P-value < 0.05)

GLM (general linear model)

Additive effects only Additive effects + dominant effects

Chromosome Position P-value (per-
mutation)

P-value (Bonfer-
roni-adjusted)

Chromosome Position P-value (per-
mutation)

P-value 
(Bonferroni-
adjusted)

3 34,387,780 0.00816 0.01788 20 42,100,739 0.0132 0.0329
3 34,387,823 0.0086 0.01788 20 42,091,969 0.01418 0.0356
3 34,387,841 0.00816 0.01788 20 42,118,002 0.02327 0.059
20 42,091,969 0.01211 0.02673 18 55,469,724 0.03058
1 5,589,867 0.0124 0.02752 1 5,589,867 0.03392
20 42,118,002 0.01641 0.03613 3 34,387,780 0.04016
3 34,395,745 0.01695 0.0376 3 34,387,823 0.04016
3 34,387,945 0.0243 3 34,387,841 0.04016
20 42,100,739 0.03358 3
20 42,122,908 0.03878 3
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The analyses using extreme phenotype groups (both sin-
gle SNP-trait and haplotype-trait) revealed that the peak-
SNPs in the single SNP-trait analysis also appeared in their 
respective haplotypes. Because the method using extreme 
groups suffered from a diminished number of soybean 
genotypes, the analysis using haplotypes had proven to be 
advantageous by reducing the degree of freedom; hence, the 
adjusted p-value threshold for the haplotype-based analy-
sis was lowered to α = 0.01 for subsequent candidate gene 
selection.

The results of QTL mapping for S. sclerotiorum resist-
ance in soybean using the abovementioned methods are 
shown in Fig. 4.

SNP × SNP epistatic interaction analysis

With methods (2) and (3), the use of different p-value thresh-
olds for declaring significant association and for defining 
significant SNP groups yielded different results. With a 
single-SNP cut-off p-value of 1 ×  10−4, neither method 
(2) nor method (3) produced significant epistatic interac-
tions. Thus, we used the ALL × ALL epistasis mode by 
PLINK v1.07 and performed a total of 205,284,045 valid 
SNP × SNP tests. A total of 220 SNPs were involved in the 

interaction network (cutoff p-value < 0.07) (Table S5), with 
112 SNPs in the first three subnetworks. Multiple inter-
actions were found between Gm01 and Gm15 and within 
Gm06 (Fig. 5). In the first sub-network, there were 9, 17, 
and 24 proteins interacting with SNP Chr1-rs54719664, 
Chr1-rs54799844, and Chr1-rs4719984 based on shortest 
path search, respectively, of which high-node genes in the 
network may regulate other genes or be regulated by other 
genes. Among these, Chr1-rs54719664 is closely linked to 
the Glma.01g216800 and Glma.01g216900 gene, which 
were annotated as cytochrome P450, family 87, subfamily A, 
and polypeptide 2. Chr1-rs54799844, a SNP locus within the 
Glma.01g217900 gene, was annotated as transcription initia-
tion factor TFIIE, beta subunit. Chr1-rs4719984 is closely 
linked to Glma.01g043300 and Glma.01g043400 genes, 
which were annotated as WRKY DNA-binding protein 72 
and cystathionine beta-synthase (CBS) protein, respectively.

For further analysis, the asymptotic p-values produced by 
the all SNP-by-all SNP interaction analysis that were smaller 
than 1 ×  10−8 were considered (Table 3).

Fig. 3  Manhattan plot of the association between single SNP-Trait. 
Note: P-values for the association of each single nucleotide polymor-
phism with phenotype are shown on the y-axis. The SNPs are plot-

ted on the x-axis according to their chromosomal location. Blue line: 
α = 0.05; red line: α = 0.01 (additive effects only)

Table 2  Haplotype-trait analysis 
of 126 lines (p-value < 0.05)

Chromosome Position of haplotype Haplotype (1 = A, 
2 = C, 3 = G, 4 = T)

R2 P-value 
(Bonferroni-
adjusted)

17 5,575,883|5,647,814|5,648,648|5,734,897 3114 0.1756 0.021
1 5,589,867|5,700,523|5,724,122|5,724,140 1223 0.1648 0.049
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Gene assignment and functional annotations

We integrated the results of the commonly detected loci/
regions, including genes by epistasis interaction analysis 
(P <  10−7) and the candidate genes potentially involved in 
the defense mechanism of soybean to Sclerotinia infection 
(Table 4).

These can be classified into genes encoding signal 
transduction molecules, transcriptional regulators, disease 
resistance proteins, and proteins of unknown functions. 
These positional candidate genes were further prioritized 
using GO enrichment analysis by the SoyBase Analysis 
Tools (http:// soyba se. org/ tools. php) (Fig. 6) and KEGG 
web platform (https:// www. genome. jp/ kegg/ tool/ map_ 

pathw ay2. html) (Fig. 7), including 241 genes in GO anno-
tation, which resulted in different significantly enriched 
GO terms and KEGG pathways relevant to S. sclerotiorum-
related mechanisms. Among the enriched GO terms and 
pathways were callose deposition in cell wall-related such 
as “GO:0,052,543”; signal transduction-related such as 
“GO:0,009,737 ~ response to abscisic acid stimulus” and 
“GO:0,005,245 ~ voltage-gated calcium channel activity”; 
biosynthetic process-related such as “GO:0,006,537 ~ glu-
tamate synthase” and “GO:0,009,833 ~ Cellulose synthase 
family protein”; and response to stress-

related such as GO:0,004,735 ~ pyrroline-5-carboxylate 
reductase.”

Fig. 4  Prioritizing candidate genes. Note: Triangle represents the position of haplotype, red font indicates QTL is within a gene, and green font 
indicates that the QTL is outside a gene
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Discussion

The phenotypic data identification is very important in 
genome-wide association studies, because the determina-
tion of the phenotypic data of 126 soybean lines used in 
this study had previously been performed in a greenhouse 
to ensure equal selective pressure, environmental variability 
that affects phenotypic variation can be ignored, and that 
ensure the reliability of phenotypic value, those disease 
resistance lines such as Karlo RR, PRO 275, and Toma, 
PS73, Nattosan, and Supra as susceptible ones; however, 
Williams 82 was in the middle phenotypic value on stem 
lesion lengths in response to Sclerotinia infection.

Quantitative traits are controlled by many genes that par-
ticipate in multiple signaling pathways. QTL analysis based 
on genome-wide essentially consists of a statistical measure 
that is based on probabilistic criteria and identifies a set of 
genomic segments that may influence a given quantitative 
trait. In theory, the reliability of the analysis is thus posi-
tively correlated with both sample size and the number of 
polymorphic loci. The associated regions revealed herein 
are more abundant and different from those identified in 
previous investigations. Although we analyzed the same 
soybean samples used by Bastien et al. (2014), differences 

in analytical method and marker density have marked reper-
cussions on the outcome of GWAS. In terms of marker den-
sity, the mean inter-SNP distance was 43.3 kb in the present 
study, whereas Bastien et al. reported 238.4 kb. Hence, this 
5.5-fold increase in marker density leads to the discovery 
of association loci/regions that have not been previously 
identified by Bastien et  al. Among the 4 QTL detected 
by Bastien et al. [Gm15:13,651,235 (V1.0)–13,666,875 
(V2.0), Gm01:29,185,984 (V1.0)–27,657,519 (V2.0), 
Gm20:39,698,515 (V1.0)–40,820,870 (V2.0), and 
Gm19:50,557,054 (V1.0) – 50,677,474 (V2.0)], only the 
SNPs on chromosomes 15 and 1 appeared in the QTL map-
ping results of this study, but these showed low association 
to WM (Gm15: Punadjusted-value = 0.06; Gm1: Punadjusted-
value = 0.5189). The other two SNPs (on chromosomes 20 
and 19), similar to the four QTL identified by Iquira et al. 
(2015), were not included in the results of this study. The 
present study used stem lesion length after inoculation with 
S. sclerotiorum as phenotype, whereas Li et al. (2016) and 
Zhao et al. (2015) based their association analysis on solu-
ble pigment content in soybean stems because sample type, 
sample size, method of obtaining phenotype, marker density, 
and analytical method were dissimilar, and different QTL 
maps were also generated.

Fig. 5  The top three epistasis interaction subnetworks
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Furthermore, previous studies have only analyzed the 
association between single-locus and trait, whereas the 
present study also investigated the genome-wide distribu-
tion of haplotypes in soybean and their association with 
lesion length due to Sclerotinia infection. All of the peak-
SNPs appeared in the corresponding haplotypes; the 6 
SNPs from positions rs34387780 to rs34395745 formed 
a haplotype on chromosome 3. Because some of these 
SNPs are heterozygous in some materials, we observed 
slight differences in the p-values obtained using single-
SNP and the corresponding haplotype. Some studies were 
conducted for genomic regions spanning 100–300  kb 
around single association loci (Zhao et al. 2015), effec-
tively introducing the concept of haplotypes. However, 
the association of haplotype-trait may increase the detec-
tion rate of true disease-related QTL because haplotypes 
encompass the genetic information of multiple SNPs. It 
can be seen from the genes identified through the haplo-
type-based association that the disease-related genes tend 
to form a gene cluster, which acts synergistically in dis-
ease response. In addition, the analysis of the haplotype-
phenotype association improves our understanding of this 
disease response pathway, in which haplotypes are likely 
to work as functional units. In addition, by being able to 
reduce the degree of freedom, haplotypes yielded better 
statistical and analytical effects than single-SNPs.

The strongest epistasis interaction was observed 
between the  vacuolar- type  H (  +)-ATPase  C 
(V-H + -ATPase C) gene on chromosome 6 and the 
S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein (SAM-Mtases) gene on chromosome 
18. The V-H + -ATPase C subunit is the most sensitive 
subunit in the plant’s response to stress. During periods 
of stress, the number of C subunits and their mRNA lev-
els drastically and rapidly increase (Xu et al. 2011). The 
S-adenosyl-L-methionine–dependent methyltransferases 
superfamily protein (SAM-Mtases) gene has direct effects 
on the synthesis of many secondary metabolites, such 
as lignin and flavonoids, and it plays an important role 
in plant physiological processes involved in hormonal 
growth and insecticidal, antibacterial, and disease resist-
ance behaviors. Furthermore, arginine decarboxylase, on 
chromosome 6, is a key enzyme in polyamine biosynthesis. 
The epistatic interaction between the two genes on chro-
mosomes 6 and 18, coupled with the polyamine oxidase 
gene identified on chromosome 13, suggests that the poly-
amine biosynthetic pathway participates in the resistance 
of soybean to Sclerotinia infection (Scandiani et al. 2015).

Molybdenum is one of the essential trace elements 
in plants; its physiological functions of molybdenum in 
plants are mainly achieved through molybdenum-contain-
ing enzymes. Studies in wheat indicate that molybdenum 
is associated with abiotic stress and activity of resistant Ta
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enzymes (Al-Issawia et al. 2016). The interaction analysis on 
chromosomes 7 and 8 suggests that molybdenum cofactors, 
which can be combined with many molybdenum enzymes 
that induce physiological and anti-stress functions, play 
a role in the infection of soybean by Sclerotinia through 
 Ca2+-signal transduction.

Cytochrome P450 is involved in plant responses to abi-
otic and biological stressors (Jarsch and Ott 2011; An et al. 
2017). Remorin is a family of N-terminal proline-rich mem-
brane proteins; in particular, the proline content of group 
1b remorin protein in dicotyledonous plants is twice that of 
group 1a remorin in other organisms (Raffaele et al. 2007). 
Additionally, the identification of pyrroline-5-carboxylate 

reductase (P5CR), the enzyme that catalyzes the final step 
of proline synthesis through single-SNP association analysis, 
is also corroborated by the fact that remorin is a proline-rich 
protein. The interaction between plant remorin protein and 
bacteria has already been investigated (Lefebvre et al. 2010; 
Tóth et al. 2012). Using maize as a model, Jamann et al. 
(2016) were the first to confirm that an interaction exists 
between remorin and fungus. Previous studies have shown 
that members of the copine family may play a role in  Ca2 + 
signaling; thus, given the interaction detected between the 
genes on chromosomes 1 and 15, these genes may be impli-
cated in the response of soybean to Sclerotinia infection.

Table 4  Prioritizing candidate genes(P < 1 ×  10−7)

Chr Position of haplotype Candidate gene Annotation

3 34,371,310/34371316/34371324/34385919/34387780
/34387823/34387841/34387945/34387962/3439574
5/34395833/34407540/34446090/34453159

1.Glyma.03g128300
2.Glyma.03g128900
3.Glyma.03g129100
4.Glyma.03g129200
5.Glyma.03g129300
6.Glyma.03g129600
7.Glyma.03g129700
8.Glyma.03g130100

1. Glutamate synthase
2. Lycopene cyclase/lycopene β-cyclase
3. Pyrroline-5- carboxylate (P5C) reductase
4. Cytochrome P450, family 86, subfamily A, poly-

peptide 1
5. S-adenosyl-L-methionine-dependent methyltrans-

ferases superfamily protein
6. Glutaredoxin family protein
7. Cystathionine beta-lyase (CBL)
8. Calcium-dependent phosphotriesterase superfamily 

protein
17 (01)
17 (02)

5,575,883/5647814/5648648/5734897
31,585,092–31,585,542

1. Glyma.17g071700
2. Glyma.17g071900
3. Glyma.17g072200
4. Glyma.17g072400
5. Glyma.17g072700
6. Glyma.17g073300
7. Glyma.17g199400

1. Leucine-rich receptor-like protein kinase family 
protein

2. Calcium-binding EF-hand family protein
3. Cellulose synthase family protein
4. Heat shock protein 70B
5. Nucleic acid binding
6. Signal recognition particle receptor alpha subunit 

family protein
7. Glutathione S-transferase THETA 2

20 42,068,110/42080972/42091969/42100739/42100805
/42118002/42122908

1. Glyma.20g182300
2. Glyma.20g182400

1. DVL family protein
2. Ras-related small GTP-binding family protein

1 (01)
1 (02)

5,589,867/5700523/5724122/5724140
6,337,006–6,625,502

1. Glyma.01g048500
2. Glyma.01g048800/

Glyma.01g048900
3. Glyma.01g049000
4. Glyma.01g052300
5. Glyma.01g052500
6. Glyma.01g052900
7. Glyma.01g053100

1. Galactosyltransferase1
2. Glucose-methanol-choline (GMC) oxidoreductase 

family protein
3. Glutathione S-transferase THETA 3
4. Levansucrase
5. GDP-fucose protein O-fucosyltransferase
6. Early-responsive to dehydration stress protein
7. Argonaute family protein

4 6,353,086/6353873 1. Glyma.04g075500
2. Glyma.04g075900
3. Glyma.04g076200

1. Plant calmodulin-binding protein-related
2. Peptidyl-tRNA hydrolase II (PTH2) family protein
3. WRKY DNA-binding protein 11

13 (01)
13 (02)

21,831,889
37,847,000/37886116|37,951,427|37,979,893|38,024,

854|38,027,686

1. Glyma.13g102000
2. Glyma.13g102200
3. Glyma.13g104100
4. Glyma.13g104300
5. Glyma.13g276800
6. Glyma.13g277100
7. Glyma.13g278800

1. WRKY DNA-binding protein 11
2. Protein kinase superfamily protein
3. Polyamine oxidase 5
4. Protein kinase superfamily protein
5. Protein kinase superfamily protein
6. Cytochrome P450, family 72, subfamily A, poly-

peptide 15
7. Leucine-rich repeat (LRR) family protein

10 2,870,409–2,873,948 Glyma.10g032900 WRKY DNA-binding protein 21
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Therefore, it is very important to perform interaction 
analysis between SNP pairs. With epistatic interaction analy-
sis, some genes that respond to plant abiotic stress and par-
ticipate in anti-stress defense responses were uncovered. A 
relatively large body of evidence supports the involvement 
of P450 expression in host–pathogen interactions (Motallebi 
et al. 2015). None of the identified single-SNP association 
loci appeared in loci that were detected by epistatic inter-
action analysis; this is probably because only two-locus 
epistasis test models of association were used, whereas the 
complex phenotype of Sclerotinia resistance results from the 
interaction of multiple loci.

Enrichment analysis indicated that calcium-binding pro-
tein, leucine-rich repeat receptor-like protein kinase, pro-
tein kinase superfamily protein, small GTP-binding protein, 
transcription factors (WRKY, zinc finger protein, heat shock 
transcription factor), and glycosyltransferases (levansucrase 
and GDP-fucose protein O-fucosyltransferase) are involved 
in plant signal transduction. Cellulase synthase, glutamate 
synthase, P5CR, lycopene β-cyclase, polyamine oxidase, 
SAM-Mtases, glucose methylcholine oxidoreductase fam-
ily protein, glutathione-S-transferase, cytochrome P450, 
NBS-LRR disease resistance protein, and Argonaute fam-
ily protein probably participate in the disease resistance 

Fig. 6  The results of GO func-
tional enrichment analysis

Fig. 7  The results of KEGG 
pathways enrichment analysis
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mechanisms of soybean to Sclerotinia infection. Among 
these, calcium-binding protein, SAM-Mtases, cytochrome 
P450, WRKY, glutathione-S-transferase, leucine-rich repeat 
receptor-like protein kinase, glycosyltransferase, and protein 
kinase superfamily protein were detected multiple times in 
the association analysis. The  Ca2 + signaling pathway is a 
very important transduction pathway that plays an impor-
tant regulatory role in soybean’s resistance to S. sclerotio-
rum (Zhou et al. 2013); this is corroborated by the repeated 
detection of CaM and CDPK. The effect of SAM-Mtases on 
disease resistance may be mediated by the synthesis of plant 
lignin and their participation in the regulation of flavonoid 
metabolism; the SAM-Mtases gene is hence expected to be 
one of the important candidate genes for plant disease resist-
ance. P450s have been isolated from host–pathogen interac-
tions, some of which are as toxins and some as stress signals 
that activate anti-disease responses. WRKY transcription 
factors form a large family of plant transcription factors. 
Studies have shown that WRKY proteins are a key compo-
nent of plant stress response. In plants, the WRKY transcrip-
tion factor is most abundant in soybean. WRKY belongs to 
a broad class of transcriptional regulators, plays an impor-
tant role in a variety of signal transduction pathways, and 
has been reported in various studies on plant responses to 
adverse conditions (Wen et al. 2017). The expression of 
WRKY6, WRKY8, and WRKY11 was significantly upregu-
lated in Arabidopsis after inoculation with S. sclerotiorum; 
the WRKY gene may thus achieve its anti-Sclerotinia control 
function by activating multiple pathways (Zhao 2012.). The 
role of the  Ca2+ signaling pathway and the WRKY11 gene in 
the plant’s anti-Sclerotinia property has been demonstrated 
(Wang 2015). Glutathione S-transferase (GST) on chromo-
somes 17 and 1 may be extensively involved in the lipid 
peroxide decomposition during oxidative-stress caused by 
soybean’s response to Sclerotinia infection (Ferreira et al. 
2010). Through modification of plant hormones and hyper-
sensitivity responses, glycosyltransferase can antagonize 
essential pathogenic factors to maximize disease resistance 
(Meng et al. 2013). Consequently, the three glycosyltrans-
ferases on chromosome 1, galactosyltransferase, levansu-
crase, and GDP-fucose protein O-fucosyltransferase may 
affect the resistance of soybean to Sclerotinia by various 
glycosylation reactions.

Plants do not have a strong immune system; thus, their 
own defense mechanism is hence particularly important, 
with the cell wall is the first barrier of plant against patho-
gen infection Studies have confirmed that epidermal and 
cortical cells of resistant varieties make use of cytoplasmic 
disintegration and enhanced cell walls to delay pathogen 
impregnation and to increase pathogenic resistance (Valera 
2014); this is consistent with the results of GO analysis in 
this study. During pathogenesis, Sclerotinia induces cel-
lulose fiber degradation to soluble disaccharide through 

secretion of cellolase, and then degradation of cellobiose to 
glucose by β-glucosidase. Experiments show that the patho-
genicity of the S. sclerotiorum strain in rape is positively 
correlated with its cellulase activity (Mao et al. 2011). At 
least 8 of the genes identified on chromosome 3 are associ-
ated with disease resistance such as Glyma.03g128300 ~ glu-
tamate synthase, Glyma.03g128900 ~ lycopene β-cyclase, 
and Glyma.03g129100 ~ pyrroline-5-carboxylate reductase, 
which are associated to disease resistance and resistance 
to oxidative stress (Antoniou et al. 2017; Kim et al. 2012; 
Khedr et al. 2003). We have verified that polymorphisms in 
the P5CR gene of Brassica napus are associated with resist-
ance to S. sclerotiorum (Zhou et al. 2020).

It is well known that the R gene is the first class of disease 
resistance-conferring genes isolated from plants and that the 
leucine-rich repeat is the conserved domain of the R gene. 
The effects of Ras small GTPase signaling in plant disease 
resistance have been reported. In addition, the Dvl protein is a 
key protein of the classical Wnt/β-catenin signaling pathway. 
Not only does it mediate Wnt signal transduction from the cell 
membrane to intracellular domain, but also it participates in 
the downstream intra-nuclear formation of transcription com-
plexes. The β-catenin signal constitutes part of an important 
signaling pathway that is related to the interaction between ani-
mals and diseases. It also upregulates the expression of GDP-
fucose protein O-fucosyltransferase (FUT) (He et al. 2017; 
Wang et al. 2013). In this study, whether the identified Dvl 
and FUT proteins are involved in the response of soybean to 
Sclerotinia requires further confirmation because the associa-
tion of Wnt signaling pathways to plant responses to pathogens 
has not been reported to date.

Conclusion

It is necessary to perform haplotype association, epistatic 
interactive analysis, and post-GWAS to better understand the 
mechanism of induced disease resistance in plants. There is 
also a need to confirm the results using multiple models and 
to select QTL that have been repeatedly identified. Analysis 
of genes linked to the obtained association loci suggests that 
signals for plant anti-stress and anti-disease processes exhibit 
a high degree of relatedness and influence soybean’s response 
to Sclerotinia infection by a complex mechanism. The present 
comparative analysis was based on the use of a higher quantity 
of markers and a variety of analytical methods. S. sclerotiorum 
resistance is influenced by many genes that are involved in 
multiple processes, including the response to candidate genes 
participating in the signaling pathway of soybean’s response 
to S. sclerotiorum infection, and conferring resistance to WM 
was discovered. A total of 10 genomic regions in 7 chromo-
somes were detected, of which 5 tagSNPs were identified 
these were the peak SNPs at positions rs5589867, rs34387780, 
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rs5734897, rs42091969, and rs37847000 on chromosomes 1, 
3, 17, 20, and 13, respectively. Because the resistance of soy-
bean to Sclerotinia belongs to quantitative trait inheritance, 
and thus meta-analysis may be appropriate to provide a deeper 
and more integrated knowledge of QTL and soybean signal 
transduction during WM infection.
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