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A B S T R A C T

Zebrafish (Danio rerio) are an integrative vertebrate model ideal for toxicity studies. The zebrafish genome is
sequenced with detailed characterization of all life stages. With their genetic similarity to humans, zebrafish
models are established to study biological processes including development and disease mechanisms for trans-
lation to human health. The zebrafish genome, similar to other eukaryotic organisms, contains microRNAs
(miRNAs) which function along with other epigenetic mechanisms to regulate gene expression. Studies have now
established that exposure to toxins and xenobiotics can change miRNA expression profiles resulting in various
physiological and behavioral alterations. In this review, we cover the intersection of miRNA alterations from
toxin or xenobiotic exposure with a focus on studies using the zebrafish model system to identify miRNA me-
chanisms regulating toxicity. Studies to date have addressed exposures to toxins, particulate matter and nano-
particles, various environmental contaminants including pesticides, ethanol, and pharmaceuticals. Current
limitations of the completed studies and future directions for this research area are discussed.

1. Introduction

Zebrafish (Danio rerio) are an established model for developmental
biology due to their physiology, genetics, and assaying potential.
Embryos develop ex vivo, offering a non-invasive approach to study
developmental events. Transparency of embryos and larvae in early
developmental stages make it easy to visualize internal organs/struc-
tures and embryogenesis is complete in only 3 days (Fig. 1). In the first
few hours after fertilization, rapid cell division occurs in the zygote,
cleavage, blastula, and gastrula periods. Between 24−48 hours post
fertilization (hpf) the brain has 5 lobes, the embryo increases rapidly in
length, the circulatory system forms, and the heart begins to beat. Be-
tween 48–72 hpf, the craniofacial cartilage development allows the
mouth to become distinct and rudimentary gills develop. By 72 hpf,
most of morphogenesis is completed [1]. From 72−120 hpf, zebrafish
are referred to as eleutheroembryos. While in the process of hatching
the embryo is not very active, but the eleutheroembryo stage is noted
with gradual increased activity (swimming, jaw, eye, and fin move-
ment). At 96−120 hpf it is common for behavioral assays for light/
dark, acoustic stimuli, and toxicological responses to be initiated [2].
Behavioral assays, such as the photomotor response can be used to
screen thousands of neuroactive drugs [2–4]. In addition, zebrafish
have a fully sequenced genome with the capability of creating genetic

models using multiple gene editing tools including CRISPR-Cas9 tech-
nology, making them ideal for mechanistic and discovery based studies
on how genes impact physiology and behavior [5,6]. Due to assaying
potential and genetic strengths, zebrafish are a good model for human
translation, because zebrafish have 70 % gene homology which in-
creases to 82 % when considering genes related to human disease [7].
Additionally, there is high conservation of metabolizing enzymes [3,8].

As noted above, the zebrafish model organism can be used in high-
throughput assays for drug discovery and chemical toxicity screening
[3,9–11]. Due to their developmental and biomedical strengths zebra-
fish are increasingly being used to define mechanisms of toxicity
[2,12,13] with recent reviews highlighting the strengths of the zebra-
fish as a model for toxicology [3,14]. Taking advantage of the devel-
opmental and biomedical strengths, the US FDA has used zebrafish
toxicity assays for drug approval [3,15]. Many toxicological studies are
also evaluating chemical effects on a protein, organ, and organismal
level to provide a multi-level approach to understanding how a che-
mical affects health at different life stages and then determining human
translation relevance [16]. Since zebrafish have shorter life periods,
there is also the advantage of looking at the effects of a developmental
exposure throughout the lifespan in the developmental origins of health
and disease (DOHaD) paradigm, and even across generations. These
advantages have made the zebrafish the most common fish model to
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perform multi- and transgenerational studies evaluating epigenetic
mechanisms of toxicity [14].

MicroRNAs, also known as miRNAs, are one of three currently
known epigenetic mechanisms that help regulate gene expression,
alongside methylation and histone modifications, without altering DNA
sequence [17,18]. miRNAs are single strand noncoding RNAs that are
about 22 nucleotides in length that can regulate gene expression during
and after transcription to form proteins [19–21]. miRNAs are highly
concerted in a time and tissue specific manner, and are important for
gene regulation during development [12,22,23]. miRNAs work through
a cascade of molecular mechanisms. miRNAs are transcribed by RNA
polymerase II to generate primary miRNA, which are then cleaved by
RNAse III enzyme in the nucleus. This cleaved molecule, known as the
precursor miRNA is further cleaved by Dicer to form a mature miRNA
[24,25]. To inhibit genes, miRNAs arrange into a multi-protein complex
to form an RNA-induced silencing complex. This complex then binds to
the 3′ UTR ends of the target mRNA of interest to silence the gene
[24,26]. miRNAs are important because they help regulate life cycles in
eukaryotic cells, molecular and metabolic processes, immunity, and
stress response [21]. miRNAs are also important in pathogenesis and
genetic disorders. The presence of miRNAs extracellularly was first
described in 2008 in a lymphoma patient’s plasma [27]. Research with
the zebrafish has also implicated the importance of miRNAs in several
biological and disease pathways including heart formation, function,
and disease; cancer signaling pathways; and reproduction [18,28–31];
[23]; [32]. miRNAs can be altered with disease state or xenobiotic
exposure, secreted extracellularly, and detected in biofluids in humans.
As such, miRNAs have become a popular biomarker to help predict risk
to xenobiotic exposure.

Although many miRNAs are now identified in humans and multiple
animal models including the zebrafish (Fig. 2), mechanisms of how
xenobiotic exposure affects miRNA regulation is unclear, though sev-
eral ideas have been proposed. For example, DNA damage can cause
p53 and miRNA to work together in the nucleus to repair damage [21].

Nucleophilic sites of miRNA precursors can be bound by electrophilic
metabolites, forming adducts, and preventing their ability to be worked
on by Dicer in the cytoplasm. miRNAs can be absorbed by long non-
coding RNAs (lncRNAs), which can then lead to altered translation and
over expression of target genes [21]. In this review, we highlight the
intersection of how toxins and xenobiotic exposure affects miRNAs as
mechanisms of toxicity. Studies for this review were identified using the
search terms: “zebrafish microRNAs, zebrafish miRNA, zebrafish
miRNA toxicity, zebrafish miRNA toxicology, microRNA toxicology, or
miRNA toxicology” on PubMed and Google Scholar. In this review,
miRNAs in zebrafish are referred to as simply “miR-XXX” with human
miRNAs denoted as hsa-miR-XXX.

2. miRNA regulation of toxin response

Mechanisms of miRNA regulation of toxin response is in its infancy
with studies beginning to evaluate mycotoxins and cyanobacteria
(Table 1). Wu and colleagues through a series of publications detailed
the effects of developmental exposures to the mycotoxins citrinin and
ochratoxin, which are contaminants of foods including cereals as well
as animal feeds. In evaluating cardiotoxicity, the authors focused on
two miRNAs that regulate heart development: miR-138 and miR-218a.
Citrinin exposure caused decreased expression of miR-138, which was
associated with low survival and abnormal heart development. Al-
though miR-218a expression decreased, no cardiotoxicity parameters
appeared to be altered with this miRNA [32]. miR-138 expression in
zebrafish regulates gene expression in specific areas of the heart
chamber, while miR-218a regulates heart loop formation; so alterations
in these genes can lead to heart malformations [33]. Developmental
exposure to the mycotoxin ochratoxin resulted in increased expression
of miR-731 and was associated with decreased expression of renal
genes, renal morphological defects, as well as a decrease in expression
of vasculature genes [23,34]. miR-731 is an miRNA that has been
shown to be regulated in conditions such as hypoxia, and regulates cell

Fig. 1. Zebrafish life cycle. Images are of an embryo at 1 h post fertilization (hpf), an eleutheroembryo at 5 days post fertilization (dpf), and adult female (top) and
male (bottom) zebrafish.

Fig. 2. Total number of mature miRNAs currently identified in zebrafish, mouse, and human genomes. Numbers were attained from the latest version of miRbase
release 22.1 (October 2018).
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survival by inducing apoptosis [35]. As such, it was proposed that miR-
731 upregulation could be blocking DNA replication in renal cells,
leading to the declines seen in renal genes in the study.

Cyanobacteria are microorganisms that can produce toxins and can
be found in bodies of water, including drinking water sources [38].
Microcystin-RR (MC-RR) is a commonly found toxin in cyanobacterial
blooms, and is associated with hepatotoxicity [39]. Early develop-
mental exposure to MC-RR in zebrafish embryos caused a dose depen-
dent increased rate of malformations such as tail defects and decreased
vascularization [37]. These health outcomes were linked to changes in
expression of 31 miRNAs (Table 1). miR-126 was decreased with MC-
RR exposure and rescue was shown to partially restore vascularization.
miR-126′s role in vascularization is supported in zebrafish and mice
[40,41]. Additionally, miR-430 was speculated to play a role in de-
velopmental defects, which is supported by rescues of miR-430 in dicer
mutants [42]. The results from this study suggest MC-RR toxicity alters
several miRNAs, involved in development defects and vascularization
[37].

3. miRNA regulation of particulate matter and nanoparticle
toxicity response

Particulate matter (PM) is a mixture of solid particles and liquid
droplets of trace metals and elements that the US EPA classifies by size
[43]. PM composition varies spatially and temporally and their pre-
sence in the air is linked to respiratory issues and cardiovascular disease
[44]. Zebrafish exposed to PM2.5 during development were found to
have up regulation of miRNAs involved in DNA repair, hypertension,
and immunity [28]. In addition, down regulation of miR-7a/b and miR-
19b-3p was observed with the developmental PM2.5 exposure [28].
These miRNAs play a role in cardiomyocyte protection and are im-
portant for inhibiting cardiac fibrogenesis [45]. An additional study
assessed methyl mercury, a component of PM, influences on miRNA
profiles at 48 hpf [29]. Decreases in miR-7147 and miR-26a were ob-
served. Increases in miR-375 and miR-206, which regulate pathways for
cardiac muscle contraction, were also found [29]. Past studies focusing
on PM pollution found differential expression of miRNAs involved in
cardiotoxicity with different exposures in other animal models, further
validating risk of adverse cardiac health outcomes and align with the
findings reported in this zebrafish study (e.g., [45]). These results also
suggest that PM exposure results not only in cardiotoxicity, but has
potential for increased risks for cancer, inflammation, and immunity
(Table 2).

In addition to general PM, miRNA mechanisms of nanoparticle
toxicity are also beginning to be identified using the zebrafish model
system. Nanoparticles are a microscopic unit of a substance that has a
minimum of one dimension less than 100 nm. Nanomaterials are used
in medicine, food storage/packaging, and in cosmetics such as tooth-
pastes and sunscreens. Although some nanoparticles are intended for
consumption, the health risks for nanomaterials not meant for con-
sumption have become an issue of concern [46]. Currently only one

study, which performed an in silico analysis on nanoparticle toxicity,
used the zebrafish model [20]. This study evaluated networks related to
oxidative stress, DNA damage, and inflammation for nanoparticles of
varying chemicals, sizes, shapes, and concentrations. Based on pre-
selected criteria, the analysis found six tissue or biological response-
specific miRNA-mRNA networks using bioinformatic algorithms for
associating miRNA with mRNA (Table 2). Overall, miR-223 was pre-
dicted in all three networks and selected as the key regulator for zeb-
rafish tissue damage induced by nanoparticles. miR-223 was indicated
as being highly conserved, playing roles in immune cell development
including myeloid cells and inflammation regulation. This study iden-
tified that the main mechanism of regulation is between miR-223 and
insulin like growth factor-1 receptor (igf1r) [20,47]. This finding is
important because this receptor is involved in cell growth and tumor
progression [116].

4. miRNA regulation of environmental chemical toxicity response

4.1. miRNA regulation of pesticide toxicity response

Pesticides are chemicals used to control pests, which can range from
animals, plants or fungi. Several studies used the zebrafish to in-
vestigate the role of miRNAs in insecticide toxicity. Fipronil is an in-
secticide that blocks ion channels and triazophos is also an insecticide
that works through acetylcholinesterase inhibition. Both of these che-
micals have been found as co-contaminants in the same environmental
areas. Assessing adult zebrafish exposure for four days, mixtures of
these chemicals found miR-29b and miR-738 to be down regulated after
adjuvant exposure (Wang a et al. 2010). Follow-up studies focusing on
fipronil exposure found dose dependent down regulation of miR-155,
miR-216b, and miR-499, increasing expression of the target gene cy-
tochrome b561 domain containing 2 (cyb561d2), which is important for
electron transfer and cell defense [48,49]. Triazophos exposure resulted
in dose dependent down regulation of miR-217, which the authors
suggest as a potential biomarker for triazophos exposure [50] (Table 3).

Atrazine is an herbicide commonly used in crop fields, and due to
concerns over water contamination, the US EPA has set the potable
water limit at 3 μg/l (ppb). An embryonic atrazine exposure in zebrafish
resulted in a variety of miRNAs with altered expression [52]. hsa-miR-
126−3p, which is implicated in cancer and inflammation [53], was
found to be altered at all exposure concentrations. miR-10, which
regulates hox genes and can lead to morphological malformations [54],
was also reported to have altered expression. Two miRNAs that regulate
angiogenesis, miR-23a and miR-24, were also changed. Furthermore,
miR-124 expression was decreased. This miRNA plays an important role
in neurogenesis [55]. The authors also observed several miRNAs dif-
ferentially regulated that are associated with various types of cancers
[52]. The results from these studies show that a single exposure to
pesticides can alter several miRNAs that affect gene regulation and
responses to chemical stress (Table 3).

Table 1
miRNA regulation of toxins found to contaminate food and water sources.

Toxin Time of exposure miRNAs Health endpoints References

50 μM citrinin 24−72 hpf miR-138 Decreased expression, leading to lower survival, abnormal heart looping, pericardial edema, cardiac
ischemia, miR-138 rescue reduced symptoms and increased survival

[32]

miR-218a Decreased expression but didn’t effect cardiac endpoints assessed
0.5 μM ochratoxin 6−72 hpf miR-731 Increased expression, leading to decreased expression of renal genes and morphological defects [36]
0.5 μM ochratoxin 6−72 hpf miR-731 Increased expression, leading to decreased expression of vasculature genes and cerebral vasculature

loss
[34]

12−48 μM Microcystin-RR 0.75−24 hpf miR-146a Up regulation [37]
miR-190b Down regulation
miR-126-DP Down regulation - Rescue partially restores vascularization
miR-430 Up regulation
miR-126 Up regulation
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4.2. miRNA regulation of other environmental chemicals

A few studies have initiated identification of mechanisms of miRNA
regulation in the toxicity of multiple other environmental chemical
contaminants including the dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), the antimicrobial agent triclosan, the flame retardant hex-
abromocyclododecane (HBCD), the perfluoroalkyl substance per-
fluorooctanesulfonic acid (PFOS), the metal copper, the plasticizers
bisphenol S (BPS) and bisphenol A (BPA), and the polychlorinated bi-
phenyl (PCB) 1254 (Aroclor 1254) (Table 4).

TCDD is a contaminant of chlorophenoxy herbicides and a known
teratogen, but the mechanism of teratogenicity is not completely un-
derstood. To address miRNA dysregulation of TCDD developmental
exposure, zebrafish embryos were exposed for 1 h (30–31 hpf) and
miRNA profiles determined at 36 and 60 hpf using next generation
sequencing (SOLiD) and two different microarray platforms for com-
parison of the technologies [24]. Surprisingly, the platforms identified
dysregulation of different miRNAs, but the two microarray platforms
(Agilent and Exiqon) had better overlap in miRNAs and agreement in
how those shared targets were differentially expressed. Between all
three techniques, only up regulation of miR-27, which is important for
craniofacial cartilage development and vascular development, was
consistent [63,64] and raises questions on the inconsistency among the
platforms.

Triclosan is an antimicrobial agent that the US FDA issued ruling to
remove from over the counter anti-microbial soaps [115]. Develop-
mental triclosan exposure in zebrafish causes neurotoxicity such as
decreased axonal length, and synaptic density and pathways associated
with liver function [65,66]. To understand the role of triclosan ex-
posure on miRNA regulation, zebrafish were exposed during develop-
ment from 4−96 hpf. Four miRNAs with functions related to fatty acid
synthesis and metabolism were up regulated: miR-125b, miR-205, miR-
142a, and miR-203a [56]. In another study, triclosan developmental
exposure from 6−120 hpf was shown to cause up regulation of miR-
137 leading to decreased expression of genes important for neurode-
velopment and metabolism [57]. These findings together suggest that
triclosan elicits changes in fatty acid metabolism with implications for
neurodevelopmental and liver disruption (Table 4).

Hexabromocyclododecane (HBCD) is a flame retardant and is used
in polystyrene building insulation [67]. HBCD is an endocrine dis-
rupting chemical and is currently undergoing risk evaluation by the US
EPA (2019). Exposures to low concentrations of HBCD during devel-
opment is associated with increased heart rates and expression altera-
tions in genes that regulate heart rate [68]. To further determine
miRNA regulation of HBCD cardiotoxicity, zebrafish were exposed to
HBCD during embryogenesis and miRNA expression assessed [23,36].

Altered miRNAs identified in this study were related to cardiac hy-
pertrophy and in regulating cardiac diseases. The authors also asso-
ciated thicker ventricular walls, collagen deposition, and up regulation
of genes associated with the affected miRNA pathways, which agreed
with the cardiotoxicity observed [23].

Perfluorooctane sulfonate (PFOS), a perfluoroalkyl substance that
was phased out by its major producer in 2002, is still present in en-
vironmental sources today due to its persistence. To determine miRNA
dysregulation by PFOS exposure, zebrafish embryos were exposed from
6−24 hpf or 6−120 hpf and a microarray platform used to identify
altered miRNAs [58]. 39 and 81 different miRNAs were identified at 24
or 120 hpf, respectively. miRNAs affected by PFOS exposure were in-
volved in cell signaling/proliferation, adipose metabolism, and hor-
mone secretion pathways. Targeted gene prediction on the most dif-
ferentially regulated genes was completed and found that miR-19-b-c
targets genes involved in neurodevelopment [58]. The results agree
with previous reports that miR-19b acts in a complex to promote neural
survival [69] and with the developmental neurotoxicity that is observed
in mice with PFOS exposure [70].

The heavy metal copper is a common environmental contaminant
that causes developmental toxicity, behavioral hyperactivity in larvae,
and a reduction in memory in adult zebrafish [71,72]. Copper is also
known as an olfactory toxicant. Focusing on the olfactory system, adult
zebrafish were exposed for 24 h to copper and the genome interrogated
using the Affymetrix GeneChip miRNA 2.0 array [59]. Results of this
study revealed that miRNAs were differentially expressed in a dose
dependent manner (Table 4). Based on their findings, the authors pre-
dicted that miR-187 has a role in neurogenesis. miR-187 expression has
been altered in neural progenitor cells of rats inflicted with stroke,
suggesting miR-187 to be important for neural maintenance and disease
states [59,73]. miR-140 was changed in all concentrations and plays a
role in craniofacial bone and cartilage development [74]. Moreover, 9
of the 11 let-7 isoforms in zebrafish were up regulated, which are im-
portant for neurogenesis in the central nervous system. In addition, two
miRNAs, miR-128 and miR-138, which are expressed in the olfactory
bulb, were also differentially expressed. Overall, several miRNAs with
roles in neurogenesis were dysregulated by the copper exposure [59]
(Table 4).

Plastic contamination is a growing environmental concern due to
the volume of plastic debris present in the ocean, waterways, and an-
imals in the environment [75]. Several papers discuss different types of
plastics exposure and altered miRNAs. Lee and colleagues assessed
exposure to the plasticizer, bisphenol S, in young adult male zebrafish
using the Affymetrix GeneChip miRNA 4.0 Array [60]. 14 miRNAs were
differentially expressed by both concentrations utilized in the experi-
ment, and six of these miRNAs target cyp19ab mRNAs [60] (Table 4).

Table 2
miRNA regulation of particulate matter and nanoparticle toxicity response.

Xenobiotic Time of
exposure

miRNAs Health endpoints References

100 μg/ml PM2.5 6−120 hpf let-7b Up regulation - Regulates genes in DNA repair and breast cancer [28]
miR-153 Up regulation - Associated with hypertension in rats
miR-122 Up regulation - Regulates hypoxia based glucose metabolism
miR-24 Up regulation - Roles in immunity and inflammation
let-7i let-7i Down regulation - Role in immunity
miR-7a/b Down regulation - Cardiomyocyte protective
miR-19b-3p Down regulation - Inhibits cardiac fibrogenesis

3 mg/mL Silica nanoparticle, 0.01 mg/
ml MeHg

48 hpf miR-7147, miR-26a Down regulation [29]
miR-26amiR-375,
miR-206

Up regulation(Many miRNAs and genes assessed but the authors focused on these
miRNAs that were part of a pathway for cardiac muscle contraction)

In silico nanoparticles miR-124 Key regulator for Wnt signaling and implicated in DNA double strand damage [20]
miR-144 Key mediator for oxidative stress
miR-19a Important in oncogene regulation and in inflammatory responses
miR-155a Inflammatory response mediator with MAPK and TNF signaling as candidate

pathways
miR-223 Predicted in three networks as a key regulator in tissue damage
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Exposure to a similar plasticizer, bisphenol A, in adult male zebrafish
caused up regulation of 14 miRNAs, down regulation of one miRNA,
and differential expression of 6188 mRNAs in liver [61]. The authors
proposed that 15 miRNAs could modulate 50 % of the altered mRNAs.
The miRNA/mRNA deregulated pathways that were top ranked were
pathways for nonalcoholic fatty liver disease, oxidative phosphoryla-
tion, and metabolic pathways [61]. Together, the results of these two
studies suggest that male zebrafish exposed to bisphenol compounds
results in alterations of miRNA pathways related to reproduction, me-
tabolism, and liver toxicity (Table 4).

Polychlorinated biphenyls (PCBs) are chlorinated hydrocarbons that
were used in various industrial processes until 1979 when they were
banned in the US [76]. A developmental exposure to PCB 180 in rats
was reported to cause sex-specific alterations in cranial size and teeth
size [77]. This is due in part to miR-21′s role in regulating osteoclas-
togenesis and bone metabolism [78]. In agreement with this data, miR-
21 was found to be up regulated in a dose-dependent manner in zeb-
rafish exposed to PCB 1254 and to be associated with calcium loss in the
zebrafish skeleton [62] (Table 4).

5. miRNA regulation of ethanol toxicity

Ethanol exposure studies are important due to severe developmental
effects that are observed in children born to women that consume high
amounts of ethanol while pregnant. Several labs have studied the re-
lationship between ethanol exposure and dysregulation of miRNAs and
have focused on different physiological outcomes (Table 5). Using a
microarray-based approach, Soares et al. [79] identified altered miRNA
profiles following exposure to ethanol from 4−24 hpf. Dose dependent
differential miRNA expression was observed suggesting different cell
responses during development and cell cycle processes (Table 5).
miRNAs up regulated in both concentrations were miR-153a, miR-725,
miR-30d, let-7k, miR-100, miR-738, and miR-732 [79]. Two other
studies evaluating ethanol exposure during gastrulation observed down
regulation of miR-9 and miR-153c, which is proposed to occur via
methylation, leading to microcephaly, cranial abnormalities, and be-
havioral hyperactivity [80,81]. Meanwhile, chronic exposure in adult
zebrafish for 8 weeks resulted in musculoskeletal damage through
down regulation of miR-140−3p [82]. miR-140−3p has been found to
target hey1 and notch1, both of which were up regulated in treated
zebrafish in this study [82]. The authors proposed that miRNAs that are
altered in the Notch pathway induce ethanol-related myopathy, which
was supported by the observed 12 % reduction of muscle fiber in the
ethanol exposed zebrafish [82].

6. miRNA regulation of pharmaceuticals

Pharmaceuticals, such as antidepressants have been ubiquitously
found in aquatic systems, downstream of wastewater treatment plants,
and in drinking water sources [83,84]. Antidepressant and anxiety
medications are prescribed to improve mood and behavior related
disorders, but concerns have been raised over developmental effects

increasing risk for poor motor development in humans and zebrafish
[85,86]. Fluoxetine is a medication synthesized by Eli Lily and is
commonly prescribed for depression and anxiety. Zebrafish exposed
throughout development to fluoxetine were found to have altered
miRNAs in tissues and consistently increased miRNAs in eggs as adults
[31] (Table 6). The authors also note their study is the first paper to link
toxicant exposure to miRNA expression changes related to egg quality
[31]. This finding suggests that a developmental exposure to fluoxetine
can change expression of miRNAs in gametes. In another study, adult
exposure to fluoxetine at environmentally relevant concentrations was
also found to cause similar hepatic miRNA profiles up regulated in
metabolic pathways as animals that are fasting [87].

A developmental toxicity study was performed with another drug,
valproic acid, which is used to treat epilepsy, mood related mental
health issues, and migraines [12]. Alterations in differentially expressed
miRNAs were then linked to the presence of morphological and beha-
vioral alterations. Exposure to valproic acid resulted in 35 differentially
expressed miRNAs, of which seven were confirmed with qPCR
(Table 6). Some of the up regulated miRNAs are involved in cancer and
cell cycling pathways, while the down regulated miRNAs are involved
in MAP kinase signaling, insulin, and axon guidance [12]. This ex-
posure also resulted in altered behavior in the larvae including circular
swimming patterns, twitching, and a reduced startle response. More-
over, morphological abnormalities such as pericardial effusion, de-
creased pigmentation, and spinal curvature were also observed in the
exposed larvae [12].

Another drug prescribed for depression and anxiety, venlafaxine,
was assessed for altering miRNA profiles in adult zebrafish at two dif-
ferent temperatures [88]. This exposure resulted in down regulation of
miR-22b-3p and miR-301a, but no effect of temperature was found.
Both miR-22b and miR-301a are involved in metabolic pathways in-
cluding drug metabolism [88]. In addition, miR-22 is a conserved
miRNA important for proper gonadal function [94,95], which also
agrees with the pathways identified to be altered in this study.

Nam and colleagues evaluated developmental liver toxicity with
exposure to the drugs tamoxifen and acetaminophen [89]. Tamoxifen is
a drug used to treat estrogen receptor-positive breast cancers [96],
while acetaminophen is a drug used to commonly treats aches and
pains. miR-122 was chosen as a potential biomarker for liver injury in
this study. Tamoxifen was reported to reduce liver transparency in
larvae, which was associated with decreased expression of miR-122,
while acetaminophen exposure increased expression of miR-122 [89]. A
separate study also evaluated miRNA expression profiles following an
adult exposure to acetaminophen [97]. A dose dependent increase in
miRNA expression in the liver was reported (Table 6). Liver toxicity due
to acetaminophen and tamoxifen exposure is supported in this study, as
well other studies in zebrafish and mice with differential expression of
genes related to lipid metabolism and hepatotoxicity [98–100]. Several
studies in other animal models have evaluated hepatotoxicity and al-
tered expression of miR-122 after exposure to tamoxifen, acet-
aminophen, or valproic acid. miR-122 has been identified as a highly
conserved and integral regulatory miRNA for genes involved in hepatic

Table 5
miRNA regulation of ethanol exposure.

Xenobiotic Time of exposure miRNAs Health endpoints References

1 or 1.5 % ethanol 4−24 hpf miR-153a, miR-725, miR-30d, miR-let-7k,
miR-100, miR-738, miR-732

Up regulated in both exposures [79]

430 μM ethanol 3.5−7.5 hpf miR-9 Down regulated - Decreased methylation and decreased expression
of fgfr-1 and foxp-2 leading to teratological defects

[80]

Up to 300 mM ethanol 4−24 hpf miR-153c, miR-204 Down regulated - Role in altered locomotion [81]
miR-9 Down regulated – Associated with craniofacial skeletal development

0.5% ethanol 8 weeks in adult
zebrafish

miR-140−3p Down regulated - Targets hey1 and notch1, which are upregulated in
treated animals

[82]

miR-146 Up regulated - Targets Notch signaling to suppress myogenesis
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lipid metabolism, hepatocyte differentiation, and overall liver function,
making it an attractive miRNA biomarker for liver damage [101–104]
as further demonstrated by these studies in the zebrafish (Table 6).

Retinoic Acid (RA) is important for vitamin A synthesis, neurogen-
esis, and vertebrate body planning. RA is tightly regulated by cyp26
enzymes [105–107]. In a developmental exposure in zebrafish larvae,
RA resulted in down regulation of miR-19a, miR-19c, and miR-19d,
which caused posterior curved body defects in larvae through dysre-
gulation of cyp29a1 [90]. Increases in cyp26a1, were also observed in
the tailbud with altered expression localized to the dorsal tail tip [90].

β-diketone antibiotics (DKA) are used in human and veterinarian
practice to treat infectious diseases. A mixture toxicity study of six DKA
drugs: ofloxacin, ciprofloxacin, enrofloxacin, doxycycline, chlorte-
tracycline, and oxytetracycline was completed with exposures spanning
embryonic development until adulthood in zebrafish using miRNA se-
quencing. The expression of miR-96 and miR-184 was found to be al-
tered and at 120 hpf was validated using qPCR, deep sequencing, and in
situ hybridization for expression in brain, gills, otoliths, and later line
neuromast [30] due to their role in regulating various genes in the
nervous system [108]. 20 miRNAs highly present and differentially
altered were clustered and found to associate with cell cycle and ner-
vous system pathways. DKA exposure was also associated with cyst
formation in the adult retina [30]. A follow up study, focused on
changes in miR-96 and miR-184 with a developmental exposure to the
same pharmaceuticals found delayed otolith development with both
miRNAs over or under expressed. The role of miR-96 in hair cell de-
velopment was validated with a knockout and a rescue by adminis-
tering a miR-96 mimic [91]. These findings suggest that DKA exposure
causes changes in several miRNAs and that miR-96 and miR-184 are
key targets leading to malformations of otolith and hair cell sensory
organs. To better understand how chronic developmental exposure ef-
fects the health of exposed zebrafish (F0) and the subsequent genera-
tion (F1), a generational study evaluating developmental DKA toxicity
was performed [92]. In the adult F0 generation, histopathological da-
mage was seen in the ovary tissue, as well as increased expression of
miR-125b and miR-430c. miR-125b is proposed as an indicator for
ovarian cancers [109] and miR-430c has a known role in germ cell
differentiation in zebrafish [110]. These functions align well with the
histopathological damage and changes in miRNA expression observed
in this study. F1 larvae at 7 dpf had high expression of miR-499 and
miR-124 [92]. Expression of miR-124 and miR-499 was increased in
several regions of larvae, including the brain. These miRNAs are re-
ported to regulate CNS development and to serve as a biomarker for
brain injury [111,112], suggesting DKAs may act as a neurotoxicant. A
follow-up study focused on miR-125b and miR-144 with the same DKA
exposures found increased expression of these miRNAs resulting in lipid
retention in the F0 generation and lipid-metabolism-disorder due to
more intense lipid accumulation in the F1 generation [93]. Potential
gene targets identified were lipid metabolism genes ppardb and bcl2a,
which had decreased expression in the brain, liver, and swim bladder in
a dose dependent manner. miR-125′s involvement in lipid metabolism
agrees with results in human cells and mice, though there is some de-
bate on miR144′s role in lipid metabolism [113]. These results suggest
that miR-125b plays a role in disease and pathology progression as well
in metabolism and ovarian health. The collective results from these
studies support DKAs as a developmental and reproductive toxicant in
zebrafish with sex specific health outcomes at the genetic, tissue, and
morphological level. Adverse health outcomes of DKA exposure can
also impact the developmental stages of the subsequent generation
[30,91,92,93,114].

7. Current limitations and future directions

miRNAs are a critical epigenetic mechanism in the modulation of
gene expression in developmental and disease pathways. As a result,
miRNAs are a target of interest in toxicity studies. As discussed in this

review, zebrafish are a good candidate model organism to better un-
derstand toxin and xenobiotic toxicity and are being used to readily
identify molecular, physiological, and behavioral alterations. More re-
cently, researchers are beginning to apply the zebrafish to define
miRNA regulatory mechanisms of toxicity and are grasping a better
understanding of strengths and limitations as publications in this re-
search area continue to grow. Currently, many of the studies using
zebrafish have applied -omic based approaches to identify miRNAs al-
tered by xenobiotic exposures, but as noted above some studies ap-
plying multiple -omic platforms report inconsistent results bringing to
question reproducibility. As such, questions still remain on the accuracy
of using miRNAs as toxicity biomarkers, but these questions are being
addressed as the literature continues to grow on the mechanisms gov-
erning miRNA alterations following xenobiotic exposure. For instance,
as noted above some studies are beginning to further apply mechanistic
approaches in their studies such as performing rescue validation assays
to define miRNA mechanisms of toxicity providing greater confidence.

With the limitations noted above, it is expected that future studies
will also help to elucidate heritability of altered miRNAs. So far,
fluoxetine exposure has been shown to alter miRNAs in the gametes of
exposed females and a developmental exposure to DKAs caused de-
velopmental health outcomes seen in the next generation. Moreover, it
is expected that studies evaluating chemical mixtures and miRNA
dysregulation will expand since most often chemical exposures occur in
a mixture state with multiple chemicals. To date, triazophos/fipronil
mixtures, DKA mixtures, silica nanoparticles, and MeHg mixtures have
been performed with the zebrafish. Overall, as miRNA toxicity studies
continue it is expected that more answers will be revealed when con-
sidering reproducibility and accuracy in defining how miRNAs regulate
toxicity and the zebrafish presents as an excellent complementary
vertebrate model for these studies.
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