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In autoimmune diseases, a disturbance of the balance between T helper 17 (Th17) and regulatory T cells (Tregs) is often observed.
This disturbed balance is also the case in rheumatoid arthritis (RA). Genetic predisposition to RA confers the presence of several
polymorphisms mainly regulating activation of T lymphocytes. However, the presence of susceptibility factors is neither necessary
nor sufficient to explain the disease development, emphasizing the importance of environmental factors. Multiple studies have
shown that commensal gutmicrobiota is of great influence on immunehomeostasis and can trigger the development of autoimmune
diseases by favoring induction of Th17 cells over Tregs. However the mechanism by which intestinal microbiota influences the
Th cell balance is not completely understood. Here we review the current evidence supporting the involvement of commensal
intestinal microbiota in rheumatoid arthritis, along with a potential role of Toll-like receptors (TLRs) in modulating the relevant
Th cell responses to trigger autoimmunity. A better understanding of TLR triggering by intestinal microbiota and subsequent T cell
activation might offer new perspectives for manipulating the T cell response in RA patients and may lead to the discovery of new
therapeutic targets or even preventive measures.

1. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune dis-
ease, which is characterized by chronic inflammation and
progressive cartilage and bone destruction in multiple joints.
A world-wide prevalence of about 1% ranks RA among the
most-common autoimmune disorders [1]. Current therapy
of RA is based on a choice, or often a combination, of
nonsteroidal anti-inflammatory drugs (NSAIDs), disease-
modifying antirheumatic drugs (DMARDs), glucocorticoids,
and recently the so-called Biologicals targeting specific
cytokines or certain immune cells.

The etiopathology of RA is complex, because cells of the
innate and adaptive immune system as well as joint resident
cells such as fibroblasts and chondrocytes contribute to the
development and progression of RA [2]. The production of
proinflammatory cytokines such as tumor necrosis factor
(TNF) 𝛼 and interleukin (IL)-1 and activation of lymphocytes
are considered to play important roles in RA pathogenesis

[3, 4]. A specific subset of T cells, known as T helper 17 (Th17)
cells, is considered to be a major pathogenic mediator in RA
[3, 5, 6].

Although the exact etiology remains unclear to date,
RA is generally considered a multifactorial disease in which
both genetic and environmental factors play a role [7].
Epidemiological studies have revealed that the largest genetic
risk factors for RA are certain alleles of the HLA-DR gene
[8]. In addition, polymorphisms in protein tyrosine phos-
phatase N22 (PTPN22), peptidyl arginine deiminase type IV
(PADI4), signal transducer and activator of transcription 4
(STAT4), and TNF receptor-associated factor 1/complement
C5 (TRAF1/C5) were found associated with RA [8]. However,
the presence of susceptibility factors is neither necessary nor
sufficient to explain the disease development, underlining a
critical role for environmental factors.

Meta-analysis has shown that smoking is one of the
environmental factors associated with RA pathogenesis [9].
In addition to smoking, periodontal pathogens such as
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Figure 1: Exposure to deranged intestinal microbiota or a disregulated immune response to microbiota drives rheumatoid arthritis by
promotingTh17 and deranging Treg cells.

Porphyromonas gingivalis and the induced periodontal dis-
ease have been implicated in the etiology of RA [10, 11].
Besides infectious bacteria, commensal bacteria have been
implicated in the pathogenesis of RA [12]. In addition, there
is strong evidence that Toll-like receptors (TLRs), which
recognize microbial products, contribute to RA progression
[13–15].

Most of the polymorphisms associated with RA are
involved in regulating T cell activation [16]. The genetically
altered T cells are potentially autoreactive, that is, they may
react to self-antigens in the joint and cause autoimmunity;
nevertheless, the “naı̈ve” T cells (called Th0) first need
to become activated and acquire a pathogenic phenotype
in order to be harmful. Exposure to (deranged) intestinal
microbiota may be a critical factor. The aim of this review is
to discuss the role of intestinal bacteria in the development of
RA in the context of T cell modulation and the possible role
that TLRs play in this process (Figure 1).

2. Th17 Cells and Rheumatoid Arthritis

Th17 cells protect against bacterial and fungal infections;
however they also promote the development of autoimmune
diseases such as multiple sclerosis, inflammatory bowel dis-
ease, psoriasis, and RA [17–22]. Regulatory T cells (Tregs)
downregulate inflammation and serve to prevent tissue
damage and autoimmunity. The balance between Th17 cells
and Tregs is strictly regulated, and imbalance is thought to
promote autoimmunity [23]. In RA, increased percentages of
Th17 cells have been found in peripheral blood mononuclear
cells (PBMCs) of patients [22]. These Th17 cells were shown
to be potent inducers of matrix metalloproteinases and
proinflammatory cytokines upon interaction with synovial
fibroblast, thereby contributing to joint damage [22].

Other studies found increased levels of Th17 cells and
decreased levels of Tregs in peripheral blood of patients with
active RA [24, 25]. Furthermore, RA patients have Tregs with
decreased suppressive activity [26]. Transforming growth
factor (TGF) 𝛽 is a key factor involved in maintaining the
Th17/Treg cell balance: TGF𝛽 in combinationwith IL-6 or IL-
21 promotes Th17 differentiation, but when TGF𝛽 is present
in combination with IL-2, it will induce differentiation of
Tregs [27, 28]. Inhibition of IL-6 function was shown to
correct the Th17/Treg cell imbalance in RA patients [24].

Targeting the Th17 pathway in autoimmune diseases such as
RA is very promising [29]. However, factors promotingTh17
differentiation are poorly understood. Since specific intestinal
microbiota greatly promotesTh17 differentiation in intestinal
mucosa, exposure to (deranged) intestinal microbiotamay be
a critical factor in autoimmune arthritis.

3. Intestinal Microbiota and Regulation of
the Immune Response

Large numbers of commensal microorganisms inhabit the
gastrointestinal tract of mammals. It has been shown that
this commensal microbiota is essential for a proper devel-
opment of the immune system, as GF mice possess an
underdevelopedmucosal immune system [30]. GFmice have
decreased numbers of lamina propria CD4+ cells, hypoplastic
Peyer’s patches, and greatly reduced immunoglobulinA (IgA)
producing plasma cells [30, 31]. In addition, also spleen and
lymph nodes are underdeveloped in GFmice, as they contain
poorly formed B and T cell zones [30]. Introduction of
Bacteroides fragilis into GF mice has been shown to induce
correct development of the immune system [32].

Ivanov et al. showed that the introduction of SFB in GF
mice resulted in an increase of Th17 cells in the intestinal
lamina propria [33]. In the murine gut, the presence of
SFB has been shown to promote the development of Th17-
mediated autoimmune diseases such as experimental autoim-
mune encephalomyelitis (EAE), colitis, and arthritis [34–
36]. Colonization of mice with B. fragilis, a human com-
mensal, induces Tregs and prevents development of 2,4,6-
trinitrobenzene sulfonic acid- (TNBS-) induced colitis [37].
In addition, oral treatment of mice with polysaccharide A
(PSA), a molecule expressed by B. fragilis, induced IL-10 pro-
ducing Tregs and protected against EAE [38]. Another study
showed that colonization of mice with microbiota belonging
to the Clostridium species also resulted in the induction of
Tregs [39]. In addition, colonization of young mice with
mix of Clostridium species resulted in resistance to dextran
sodium sulfate- (DSS-) induced colitis [39]. These studies
suggest that intestinal microbiota plays an important role in
maintaining the balance between pro- and anti-inflammatory
T cells, thereby preserving intestinal homeostasis.

A recent study elegantly demonstrated the specific label-
ing and tracking of intestinal leukocytes [40]. It was shown
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that intestinal leukocytes migrate to and from the intestine at
steady state [40]. In addition, the migration of intestinalTh17
cells in arthritic K/BxN mice was studied and showed that
gut derivedTh17 cells end up in the spleen [40]. The fraction
of gut-derivedTh17 cells present in the spleen correlated with
serum level of pathogenic auto antibodies [40].This is the first
study which shows that gut-derivedTh17 cells can contribute
to autoimmune arthritis [40].

Taken together, it is conceivable that a disturbed balance
in the composition of microbiota, the so-called dysbio-
sis, could result in disruption of intestinal and systemic
immune homeostasis. A link between intestinal microbiota
and autoimmune deficiencies such as RA seems therefore
plausible [41].

4. Rheumatoid Arthritis and Microbiota

Treatment with tetracycline antibiotics, in particularminocy-
cline, was shown to significantly reduce disease activity in
seropositive RA patients with disease duration of <1 year
[42]. Moreover, the commonly used DMARD sulfasalazine
is known to have both anti-inflammatory and antimicrobial
properties [43]. Using a small set of oligonucleotide probes
detecting broad groups of bacteria, intestinal microbiota of
RA patients was found different from that of fibromyalgia
(FM) patients [44]. The authors did not include healthy
control subjects in the study; however a group of patients
with FM, having a comparable age and sex distribution
and receiving similar treatment with NSAIDS drugs, were
included as controls. This study showed that RA patients
had significantly less bifidobacteria species, bacteria of
the Bacteroides-Porphyromonas-Prevotella group, Bacteroides
fragilis subgroup, and the Eubacterium rectal-Clostridium
coccoides group, when compared to FM patients [44].

A recent study using 454 pyrosequencing of 16S rRNA
of intestinal microbiota in stool samples found a strong
correlation between the presence of Prevotella copri with
disease in new-onset untreated RA patients [45]. Abundance
of P. copri in this study was inversely correlated with the
presence of HLA-DRB-1 risk alleles, suggesting requirement
of intestinal microbial signals in the absence of genetic
predisposition factors for one to develop the disease. Another
study demonstrated that fecal microbiota of RA patients
contained significantlymoreLactobacilli compared to healthy
controls [46]. Altogether, the efficacy of oral antibiotic
treatment and recent findings on disturbed composition of
intestinal microbiota in early RA supports the involvement
of microbiota in the development of RA.

5. Experimental Evidence on the Role of
Commensal Microbiota in Arthritis

Thecritical role of commensalmicrobiota in the development
of arthritis has been shown in at least three spontaneous
autoimmune models of arthritis. These studies showed that
spontaneous disease in mice with T cell-activating genetic
modifications is greatly diminished under germ-free (GF)
or specified pathogen-free (SPF) conditions [13, 36, 47].

Another study showed that oral treatment with enrofloxacin,
a broad-spectrum antibiotic, exacerbates collagen induced
arthritis (CIA) in mice by influencing production of a
number of proinflammatory cytokines such as IL-6 and IL-17
[48].

IL-1 receptor antagonist (IL-1Ra) deficient mice spon-
taneously develop autoimmune arthritis due to excessive
IL-1 signaling [49]. Development of autoimmune arthritis
in this mouse model is dependent on microbial flora, as
arthritis was strongly attenuated in GF IL-1Ra−/− mice [13].
Colonization with Lactobacillus bifidus resulted in arthritis
with incidence and severity scores comparable to those
observed in conventionally housed mice [13]. The GF status
IL-1Ra−/− mice resulted in a notable decrease in IL-17 and IL-
1𝛽 production by splenocytes upon CD3 as well as TLR2 and
TLR4 stimulation, suggesting abolishment ofTh17 differenti-
ation [13].

SKG mice have a mutation in the gene encoding an SH2
domain of ZAP-70, a signal transduction molecule in T cells.
The aberrant ZAP-70 is thought to change the thresholds
of T cells to thymic selection, which results in the positive
selection of otherwise negatively selected autoimmunity T
cells [50]. SKG mice develop chronic autoimmune arthritis
under conventional conditions; however in strictly controlled
SPF environment arthritis failed to develop [47]. Arthritis
in SKG mice was shown to be accompanied with high sera
levels of IL-6, known to be important in Th17 induction.
However, in sera from SKGmice kept in SPF conditions IL-6
was undetectable [47].

T cells of K/BxN mice express a transgenic T cell
receptor which recognizes a self-peptide derive from glucose-
6-phosphate isomerase (GPI). These autoreactive T cells
stimulateGPI-specific B cells to produce high amounts ofGPI
autoantibodies. Th17 cells seem to be driving arthritis in this
model, as neutralization of IL-17 blocked the development
in SPF-housed K/BxN mice [36]. Intriguingly, GF K/BxN
mice have an almost complete deficiency ofTh17 cells and are
protected from severe arthritis [36].Moreover, oral treatment
of K/BxN mice with vancomycin or ampicillin inhibited the
development of arthritis, while in neomycin-treated mice
disease was aggravated [36]. Introduction of segmented
filamentous bacteria (SFB), a gut-residing bacteria, in GF
K/BxN mice resulted in an increase of Th17 cells in the
lamina propria and in onset of arthritis [36]. These results
suggest that certain intestinal microbiota is able to trigger an
imbalance in the T cell response which leads to the devel-
opment of autoimmune arthritis in a genetically predisposed
host.

6. TLR-Mediated Interactions between
Bacterial Antigens and the Immune System

Although the mechanism by which commensal intestinal
microbiota triggers the development of autoimmune dis-
eases remains poorly understood to date, TLRs are most
likely involved. TLRs recognize microbe-associated molecu-
lar patterns (MAMPs), which are shared by many microor-
ganisms [51]. Each TLR recognizes certain MAMPs; for
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Figure 2: Toll-like receptor (TLR) activation on antigen presenting
cells (APCs) enhances the antigenic signal to T cells. TLR activation
induces the upregulation of MHC II (1), costimulatory molecules
such as CD80, CD86, and CD40 (2), and release of cytokines (3).

instance, TLR2, TLR4, TLR5, and TLR9 recognize peptido-
glycans, lipopolysaccharides (LPS), flagellin, and unmethy-
lated CpG motifs in bacterial DNA, respectively [52]. TLRs
are expressed by a number of immune cells, including
dendritic cells (DCs), macrophages, neutrophils, T cells, and
B cells, but TLRs have also been found on resident cells, such
as epithelial and endothelial cells [53].

Antigen presenting cells (APCs) such as DCs and
macrophages are known to express TLRs, and activation of
TLRs induces the upregulation of MHC class II molecules
and thereby may substantially influence the strength of the
antigenic signal to T cells in the “immunological synapse”
[54] (Figure 2). Furthermore, activation of TLRs induces
upregulation of costimulatory molecules such as CD80,
CD86, and CD40, which provide the second signal for
T cell activation (Figure 2). The third signal for T cell
activation and differentiation, the cytokine environment, is
dramatically affected by the type and the extent of TLR
activation (Figure 2). For instance, activation of TLR4 and
TLR9 is thought to skew T cell differentiation toward the
Th1 phenotype through induction of IL-12 production by
DCs, whereas TLR2 activation might induce a Th2-biased
immune response through production of IL-10 and IL-13
[55–61]. TLR4-induced IL-23 contributes to the expansion
and survival of Th17 cells [62]. In addition, conditioned
medium fromTLR4-stimulatedDCs or PBMCs inducesTh17
differentiation and IL-17 production, a process potentiated by
TGF𝛽 [63].

In addition to the type of TLR activation, the extent of
TLR triggering also seems to determine the type of immune
response generated. For instance, it was demonstrated that a
high dose of LPS triggers a Th1 response via TLR4 while a
low LPS dose results in a Th2 response to an inhaled antigen
[64]. Besides APC-mediated T cell activation, some TLRs
such as TLR2, 5, and 7/8 are functionally expressed on T cells
and directly cause T cell activation and proliferation upon
stimulation [65–67]. Others (TLR3 and TLR9) can enhance
survival of activated CD4+ T cells [68].

Also joint resident cells are known to functionally express
TLRs. RA synovial fibroblasts (RASF) for instance are known
to express TLR2, TLR3, TLR4, and TLR9 [69]. Stimulation of
RASF with TLR2, TLR3, and TLR4 antigens (peptidoglycans,
polyinosinic:polycytidylic acid, and LPS, resp.) results in high
production of inflammatory cytokines, MMPs, and vascular
endothelial growth factor and results in exacerbation of the
Th1 andTh17 response [69].

A study with TLR deficient IL-1Ra−/− mice demonstrated
that TLRs play distinct roles in the regulation of the T cell
balance. In this study it was shown that Th17 differentiation
is reduced in TLR4 deficient IL-1Ra−/− mice, while TLR2−/−
deficiency results in a shift inT cell balance fromTh2andTreg
towardsTh1 cells [13]. In addition, it was shown that IL-1Ra−/−
TLR2−/− mice develop a more severe arthritis compared to
IL-1Ra−/− TLR2+/+ mice [13]. In contrast, TLR4 deficiency in
IL-1Ra−/− mice resulted in protection against severe arthritis
[13]. This study shows that sensing of microbiota by TLRs
plays a critical role in maintaining T cell balance and arthritis
development.

7. Intestinal TLR Triggering

Commensal bacteria normally do not cross the epithelial
barrier. A specific population of CX3CR1 expressing cells
in lamina propria has been shown to sample the lumen
and interact with commensal bacteria in the lumen [70].
Although, these cells were first identified as DCs, recent
studies demonstrated that CX3CR1 expressing cells in the
gut are more similar to macrophages than DCs [71, 72].
This is based on the observation that CX3CR1 expressing in
the intestinal lamina propria are nonmigratory and cannot
prime näıve T cells [71, 72]. However, another study identified
CD103− CD11b+ DCs which also express CX3CR1; these cells
lacked macrophage markers such as F4/80 or CD64 [73].
CX3CR1 expressing cells were thought to be nonmigratory;
however a recent study showed that these cells do migrate
to mesenteric lymph nodes after antibiotic-induced dysbiosis
and in the absence of MyD88 [74]. Despite this finding, it
is believed that the CD11b+ CD103+ classical DC subset is
mainly responsible for presentation of bacterial antigen to
näıve CD4+ T cells and Th17 differentiation in the intestinal
lamina propria [74–76]. Stimulation of CD11b+ CD103+ cells
with flagellin, a TLR5 ligand, resulted in the expression of
high amounts of IL-23 [76]. A recent study identified a subset
of CCR2-expressing CD103− CD11b+ DCs, in lamina propria
which were able to drive IL-17 production in vitro [77].These
DCs produced IL-12 and IL-23p40, and production of these
cytokines increased in response to TLR4 stimulation with
LPS. These DCs were found in murine as well as human
lamina propria [77].

A recent study showed that luminal bacteria stimulate the
recruitment of CD103+ DCs to the epithelium, where these
DCs can also sample the lumen [78]. Recruitment of the DC
to the epitheliumwas shown to be depending on chemokines
and TLR signaling [78]. Another study showed that TLR5 is
highly expressed in DCs in the intestinal mucosa, but not
in splenic DCs [79]. This same study showed that TLR5−/−
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mice had increased Treg levels in the intestinal lamina
propria, which suggests that TLR5 plays a role in regulating
the intestinal Th17/Treg cell balance [79]. Another study
demonstrated that TLR5 is expressed by CD11chi CD11bhi
DCs in lamina propria of mice [80]. These intestinal DCs
induce the differentiation ofTh1 andTh17 cells in response to
flagellin [80]. In addition, TLR9 deficientmice were shown to
have more Tregs and reduced Th1 and Th17 cell levels in the
intestine [81].

Besides DCs also intestinal epithelial cells (IECs) in the
gut are known to express TLRs. TLR 1, 2, 3, 4, 5, and 9 are
known to be expressed by IECs in human small intestine,
and TLR1-9 have been shown to be present on IEC in the
colon [82]. In the mouse TLR1, 2, 3, 4, 5, 9, and 11 have been
detected in the small intestine, and in the colon TLR2, 3, 4,
and 9 were shown to be present [82]. The expression of TLRs
in the gut seems to be regulated by commensal bacteria, as it
was shown that the expression of TLR2, 3, 4, and 5 was higher
in colonic epithelial cells of specific pathogen-freemice when
compared to GF mice [83]. An in vitro study showed that
TLR4 and basolateral TLR9 stimulation on IECs drives an
inflammatory response [84]. However, apical TLR9 activa-
tion resulted in the production and secretion of galectin-
9, which was shown to support the development of Tregs
[85].

TLR signaling on IEC is also important inmaintaining the
epithelial barrier; for instance, TLR2 activation on epithelial
cells protects against barrier disruption by upregulating the
expression of zonula occludens, while TLR4 signaling results
in increased intestinal permeability through upregulation of
membrane protein kinase C activity [86, 87]. Translocation
of bacteria across the membrane will result in an inflam-
matory response in the intestinal lamina propria. It has
been hypothesized that intestinal barrier function, in partic-
ular the intercellular tight junctions modulated by zonulin
among others, may be impaired in autoimmune disease
[88, 89]. However, it is not yet clear whether this is indeed
the case in individuals with autoimmune diseases such as
RA.

As mentioned before a shift in the Th17/Treg cell balance
is considered to be an important aspect of autoimmunity.
The studies discussed here indicate an important role of
intestinal TLR triggering in shaping the T helper cell subsets.
This makes microbial recognition in the intestine interesting
in the context of autoimmune diseases such as RA. The
studies quoted here are mainly in mice. The role of intestinal
TLR triggering in shaping the T cell response in humans
remains mainly unclear and warrants thorough future
investigation.

8. Specific Bacteria Shape the Intestinal
Immune Response

Round et al. showed that polysaccharide A (PSA) of B. fragilis
activated TLR2 directly on Tregs, which resulted in activation
of these Tregs [90]. However, B. fragilis lacking PSA induces
a Th17 response, which suggests that PSA induces an anti-
inflammatory response through activation of TLR2 [90].

In addition, it was shown that PSA of B. fragilis prevents
TNBS-induced colitis by inducing IL-10 producing Tregs.
However, PSA induced protection was absent in TLR2−/−
mice indicating that TLR2 signaling is required for PSA-
induced protection [37]. Another study showed thatB. fragilis
is able to release PSA in outer membrane vesicles which are
sensed by DCs through TLR2 resulting in induction of Tregs
and IL-10 production [91].

A recent study showed that presentation of SFB antigens
by MHCII+ CD11c+ intestinal DCs is required for mucosal
Th17 cell differentiation [92]. In MHCII deficient mice, no
SFB-induced Th17 differentiation was observed; however
recovery of MHCII expression on only CD11c+ cells was
able to rescue Th17 induction [92]. In mice lacking periph-
eral lymph nodes and gut-associated lymphoid tissue, SFB
induced Th17 priming was unaffected, suggesting that SFB-
induced T cell priming takes place in the lamina propria
[92]. It is likely that the presence of SFB also triggers
TLR signaling. SFB encode four types of flagellin, three
of which are recognized by TLR5 [93]. In the mouse gut
TLR5 is expressed by CD11chi CD11bhi DCs in lamina
propria which induce the differentiation of Th1 and Th17
cells in response to flagellin [80]. This suggests that SFB
skew T cell differentiation via TLR5 triggering. Involve-
ment of TLRs in bacteria-induced mucosal T cell responses
and the subsequent systemic autoimmunity seems therefore
plausible.

9. Conclusion

Results of multiple studies show that commensal intestinal
microbiota affect the Th17/Treg cell balance in the lamina
propria and that intestinal Th17 cells can promote experi-
mental arthritis [33, 36, 37, 39]. In addition, studies with
experimental models of arthritis suggest that recognition of
intestinal microbiota is required for the onset of autoimmune
arthritis [13, 36, 47]. It is likely that TLRs mediate the
effects of intestinal microbiota on Th cell differentiation
in lamina propria. Multiple studies have shown that TLR
activation plays an important role in shaping the intestinal
T cell subsets [80, 84, 85, 90]. In addition, the study with
IL-1Ra/TLR2 and IL-1Ra/TLR4 double gene deficient mice
points toward an important role of these TLRs in T cell
mediated autoimmune arthritis [13]. It remained unclear how
microbiota-inducedTh17 cells exactly contribute to systemic
autoimmunity in RA. Cross-reactivity of bacteria-specific
Th17 cells to endogenous (joint-derived) antigens is a possible
mechanism. Another possibility is that microbiota induced
T cells promote the differentiation of self-reactive Th17
cells by changing the cytokine environment. Migration of
intestinalTh17 cells to the joint and subsequent production of
proinflammatory mediators is another possible mechanism.
A better understanding of these yet unexplored areas and the
involvement of TLR triggering by intestinal microbiota in the
gut in systemic autoimmunity might offer new perspectives
for manipulating the T cell response in RA patients and
may lead to the discovery of new therapeutic targets or even
preventive measures.
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