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ABSTRACT Soil-dwelling fungal species possess the versatile metabolic capability to
degrade complex organic compounds that are toxic to humans, yet the mechanisms
they employ remain largely unknown. Benzo[a]pyrene (BaP) is a pervasive carcino-
genic contaminant, posing a significant concern for human health. Here, we report
that several Aspergillus species are capable of degrading BaP. Exposing Aspergillus ni-
dulans cells to BaP results in transcriptomic and metabolic changes associated with
cellular growth and energy generation, implying that the fungus utilizes BaP as a
growth substrate. Importantly, we identify and characterize the conserved bapA
gene encoding a cytochrome P450 monooxygenase that is necessary for the meta-
bolic utilization of BaP in Aspergillus. We further demonstrate that the fungal NF-�B-
type velvet regulators VeA and VelB are required for proper expression of bapA in re-
sponse to nutrient limitation and BaP degradation in A. nidulans. Our study
illuminates fundamental knowledge of fungal BaP metabolism and provides novel
insights into enhancing bioremediation potential.

IMPORTANCE We are increasingly exposed to environmental pollutants, including
the carcinogen benzo[a]pyrene (BaP), which has prompted extensive research into
human metabolism of toxicants. However, little is known about metabolic mecha-
nisms employed by fungi that are able to use some toxic pollutants as the sub-
strates for growth, leaving innocuous by-products. This study systemically demon-
strates that a common soil-dwelling fungus is able to use benzo[a]pyrene as food,
which results in expression and metabolic changes associated with growth and en-
ergy generation. Importantly, this study reveals key components of the metabolic
utilization of BaP, notably a cytochrome P450 monooxygenase and the fungal NF-
�B-type transcriptional regulators. Our study advances fundamental knowledge of
fungal BaP metabolism and provides novel insight into designing and implementing
enhanced bioremediation strategies.

KEYWORDS Aspergillus, benzo[a]pyrene, catabolic enzyme system, cytochrome P450
monooxygenase, polycyclic aromatic hydrocarbons, velvet regulators, bioremediation,
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Polycyclic aromatic hydrocarbons (PAHs) are major soil pollutants that are formed by
the partial combustion of organic matter and the five-ring PAH benzo[a]pyrene

(BaP) poses a significant risk to human health (1). The increased use of hydrocarbons for

Citation Ostrem Loss EM, Lee M-K, Wu M-Y,
Martien J, Chen W, Amador-Noguez D, Jefcoate
C, Remucal C, Jung S, Kim S-C, Yu J-H. 2019.
Cytochrome P450 monooxygenase-mediated
metabolic utilization of benzo[a]pyrene by
Aspergillus species. mBio 10:e00558-19. https://
doi.org/10.1128/mBio.00558-19.

Editor Reinhard Fischer, Karlsruhe Institute of
Technology (KIT)

Copyright © 2019 Ostrem Loss et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Jae-Hyuk Yu,
jyu1@wisc.edu.

* Present address: Ming-Yueh Wu, Ginkgo
Bioworks, Boston, Massachusetts, USA.

Received 4 March 2019
Accepted 18 April 2019
Published 28 May 2019

RESEARCH ARTICLE
Molecular Biology and Physiology

crossm

May/June 2019 Volume 10 Issue 3 e00558-19 ® mbio.asm.org 1

https://orcid.org/0000-0002-6530-8407
https://doi.org/10.1128/mBio.00558-19
https://doi.org/10.1128/mBio.00558-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:jyu1@wisc.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00558-19&domain=pdf&date_stamp=2019-5-28
https://mbio.asm.org


energy during the past century has consequently increased the deposition of BaP,
making it an abundant pollutant found in the environment (2).

Organisms have various ways of metabolizing BaP, depending on their ecological
niche (Fig. 1). Saprophytic bacteria create BaP ring cleavage products, leading to usable
nontoxic fragments (3). Humans are equipped with cytochrome P450 monooxygenases
(CYPs) to transform and excrete BaP, but this process results in the creation of reactive
intermediates, which cause adduct formation and oxidative stress in cells (4, 5). This
makes BaP an especially harmful compound, resulting in cancer and immune dysregu-
lation (2). In addition, its chemical properties make BaP stable in the environment and
resistant to abiotic degradation (1).

Fungi are one of nature’s most resourceful organisms, accounting for up to 75% of
the soil microbial biomass (6). Aspergillus, the most common genus of soil-dwelling
fungi, frequently prevails in contaminated sites and can metabolize certain PAHs (7).
Aspergillus species harbor abundant and diverse enzymatic systems, which allow them
to metabolically utilize complex organic molecules that are highly toxic to animals (8,
9). However, specific genes involved in metabolic utilization of BaP in fungi remain to
be revealed.

Part of the metabolic armory harbored by Aspergillus species is over 100 CYPs
encoded in the genome (10). These enzymes participate in a variety of physiological
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FIG 1 Schematic presentation of BaP transformation in mammals, fungi, and bacteria. Bacteria and fungi are both
able to mineralize BaP; however, the initial enzymatic transformation steps differ drastically in that bacteria utilize
dioxygenase enzymes, whereas fungi utilize extracellular peroxidase enzymes (46). Mammalian and intracellular
fungal pathways overlap in their utilization of CYP enzymes yielding similar metabolites; however, far less is known
about the specific CYPs and metabolites produced by fungi. The CYPs Pc-PAH1 and Pc-PAH3 in P. chrysosporium,
which have the ability to convert BaP to 3-hydroxybenzo[a]pyrene when expressed in P. pastoris, are shown.
Mammals utilize other enzymes in partnership with CYPs, such as epoxide hydrolases (EH) and aldo-keto
reductases (AKR), but because the limited studies on fungal CYPs were done using heterologous expression, it is
unknown whether other enzymes are involved in BaP metabolism and what the final metabolic products are.
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activities that allow the fungi to adapt to new ecological niches. Soil is a hostile and
competitive environment, so these CYPs play a role in the synthesis and degradation of
various toxic compounds. Aspergillus nidulans contains 119 predicted CYPs, for which
the functions of 13 have been determined experimentally, and 32 are positioned near
key secondary metabolite synthases, suggesting their potential biosynthetic role (11).
Therefore, a large number of CYPs have no known or predicted function.

The white rot fungus Phanerochaete chrysosporium has an outstanding capability for
degrading and/or mineralizing high-molecular-weight PAHs and contains an extraor-
dinarily large repertoire (over 150) of CYPs in its genome (12). An excellent study by
Syed and colleagues identified and characterized six CYPs in P. chrysosporium (Pc-PAH1
to Pc-PAH6) capable of oxidizing different PAHs (13). These CYPs were inducible by
naphthalene, phenanthrene, pyrene, and BaP. Expression of each of the six Pc-PAH
CYPs in the yeast Pichia pastoris in conjunction with the homologous P450 oxidoreduc-
tase led to identification of Pc-PAH1 and Pc-PAH3 as CYPs with the ability to oxidize BaP
to 3-hydroxybenzo[a]pyrene (13) (Fig. 1). This was the first report to identify a set of
specific fungal CYPs having catalytic activity toward BaP. However, the functions of
these CYPs have not been studied in vivo due to the limited ability of genetic
manipulation in this organism, and hence further metabolism and the resulting prod-
ucts remain a mystery. Likewise, many reports about BaP-degrading fungal species
isolated from contaminated sites lack systematic study due to limited genetic tools (7).

As Aspergillus species fill a similar saprophytic niche and have diverse metabolic
capabilities, we hypothesize that they can metabolize BaP using a specific CYP-
mediated pathway. We show that many, if not all, Aspergillus species can degrade BaP
and uncover key aspects of cellular degradation of BaP by A. nidulans, using compre-
hensive genetic, genomic, and biochemical approaches. Importantly, we identify a gene
(bapA [AN1884]) predicted to encode CYP617D1 and show that bapA is necessary for
degradation of BaP in vivo in two Aspergillus species. These critical findings further allow
us to investigate the velvet regulators associated with BaP metabolic degradation. Our
study illuminates fundamental knowledge of fungal BaP metabolism and provides
novel insight into designing and implementing enhanced bioremediation strategies.

RESULTS
Aspergillus species can degrade BaP effectively. To test our initial hypothesis that

Aspergillus species are able to degrade BaP, we employed A. nidulans, A. flavus, A.
oryzae, and A. fumigatus. These fungal species are distantly related to each other,
covering a broad range of Aspergillus (14). In all four species, the amount of BaP
recovered from 7-day-old cultures was significantly lower in the living cells than that of
dead cells (Fig. 2A), indicating that BaP was degraded or transformed in all species
tested. The chromatogram showed no additional fluorescent peaks, suggesting that the
degraded products were water soluble and/or not fluorescent at the same wavelengths
as BaP (see Fig. S1 in the supplemental material). A. nidulans and A. oryzae were able
to remove 92% � 4.9% and 95% � 3.5% of the added 200 �M BaP, respectively. As A.
nidulans is a well-studied genetic model, we used it to further uncover the genetic and
biochemical mechanisms of BaP degradation. Thin-layer chromatography (TLC) analy-
ses of residual BaP in different concentrations of glucose in minimal medium (MM) have
revealed that MM with 0.1% glucose led to the most effective degradation of BaP by A.
nidulans (Fig. 2B).

BaP increases fungal cell viability. To test whether A. nidulans uses BaP as a
substrate for growth, we measured changes in cell viability. The alamarBlue assay
showed that cells exposed to BaP had significantly higher viability than the dimethyl
sulfoxide (DMSO) controls, including time points after the addition of fresh medium to
supply cells with the additional nutrients for the continuous proliferation (Fig. 2C). As
found in TLC data, the prolonged viability of the cells with BaP was observable with the
presence of a small amount of glucose in the medium (0.1%), whereas BaP addition
alone was able to increase the cell viability at 2 days postexposure (Fig. 2C). This
suggests that BaP can be used as a carbon source, and such effects can be enhanced
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with the supplementation of a small amount of glucose, which may provide additional
resources for energy and enzyme production.

BaP leads to upregulation of cell growth-associated genes. To further test the
hypothesis that the fungus uses BaP as a growth substrate, we investigated the
genome-wide expression responses of A. nidulans to BaP via transcriptome sequencing
(RNA-seq). Transcript levels were measured in BaP-treated cells relative to controls
(DMSO) at 6, 24, and 48 h postexposure by KEGG analysis (Fig. 2D). The number of
differentially expressed genes (DEGs) was low at 6 h (703 DEGs); this increased to 1,503
and 1,529 DEGs at 24 and 48 h, respectively (Fig. 2E). KEGG pathway analysis indicated
that, as time progresses with BaP exposure, genes associated with cell growth, such as
ribosome biogenesis, biosynthesis of amino acids, nucleotide metabolism, biosynthesis
of unsaturated fatty acids, N-glycan biosynthesis (cell wall), and glycerophospholipid
(membrane), were upregulated (Fig. 2E). Conversely, genes categorized into the path-
ways indicative of cell starvation and stress, including amino acid degradation, au-
tophagy, aflatoxin (sterigmatocystin) biosynthesis, and starch metabolism, were down-
regulated in BaP-treated cells (Fig. 2E). These results indicate that BaP-treated cells are
actively growing compared to controls and that the fungus is able to use BaP to sustain
growth.

The transcriptomic response to carbon starvation in A. nidulans shows upregulation
of genes involved in programmed cell death, macroautophagy, cell wall component
degradation, asexual reproduction, and secondary metabolite production (15). Down-
regulation of genes involved in glycolysis and oxidative phosphorylation, cell wall
component synthesis, and nitrogen and lipid anabolic pathways was also seen in the
starving cells (15). We carried out an integrated analysis of the differentially expressed
genes by BaP treatment with the carbon starvation stress response and found that the
BaP-treated cells showed upregulation of the following genes: (i) citA, gsdA, acuE, acuD,
and cycA, involved in the tricarboxylic acid (TCA) cycle, replenishment of TCA cycle
intermediates, and oxidative phosphorylation; (ii) AN11161, involved in phospholipid
biosynthesis; (iii) AN10779, involved in �-1,6-glucan biosynthesis; and (iv) several genes
involved in amino acid biosynthesis pathways (Fig. 2F). BaP-treated cells show down-
regulation of aflR and other sterigmatocystin biosynthesis genes, abaA, involved in
conidiation, and agnC, nagA, chiC, and AN4825, involved in cell wall component
hydrolase enzymes (Fig. 2F). Taken together, the data demonstrate that BaP enables the
cells to grow more actively than control cells and provide some evidence that BaP is
metabolized and shuttled into carbon utilization pathways.

Finally, in an attempt to address whether BaP metabolism causes oxidative stress
and/or DNA damage responses in A. nidulans as in mammalian cells, we compared our
RNA-seq data with those representing responses to cells treated with other known
oxidizing compounds. Some redox-balancing genes were upregulated in BaP-treated
cells, including catA and sodB (Fig. 2F). Expression of some DNA repair genes was also
induced by BaP, including AN0604 and AN0097 (Fig. 2F). These results suggest that BaP
may cause DNA damage in A. nidulans as in mammalian cells, although it is shown that
fungi have additional capacity to prevent extensive DNA damage (16).

Identification of CYP necessary for metabolic utilization of BaP. Initial oxidation
of BaP in mammalian cells is mediated by a CYP, adding a single molecular oxygen,
leading to the formation of BaP epoxide intermediates, which can be further converted
into hydroxylated products (4, 17–19).

With the hypothesis that A. nidulans employs a CYP to degrade BaP, we first
examined our RNA-seq data to search for the CYP genes upregulated by BaP treatment
and found that no specific CYPs were clearly induced by BaP. We then used the CYPs
of P. chrysosporium, Pc-PAH1 and Pc-PAH3, which when expressed in the yeast cells,
converted BaP to 3-hydroxybenzo[a]pyrene (13), to search for closely related CYPs in
the A. nidulans genome. Despite the 723 million years of divergence between the two
fungi (20), several CYPs similar to Pc-PAH1and Pc-PAH3 were identified (Fig. 3A; see
Table S1 in the supplemental material). Among these, mRNA levels of AN1884 in
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glucose-limited medium and kinetics of BaP degradation were closely aligned, indicat-
ing that this CYP may be associated with metabolism of BaP (Fig. 3B; Fig. S2B).

To test its function in BaP metabolism in vivo, we generated independent deletion
(Δ) strains of AN1884 in A. nidulans and found that all three independent null mutant
strains lost the ability to degrade BaP, with no distinct growth and developmental
phenotypic changes (Fig. S3). Reintroducing an AN1884 coding region into null mutant
strains restored the BaP degradation ability to that of the wild type (WT) (Fig. 3C),
supporting the hypothesis that AN1884 is responsible for the breakdown of BaP, so it
was named bapA (benzo[a]pyrene metabolism locus A). Measuring the cell viability of
the WT, the ΔbapA mutant cells, and complemented (C=bapA) cells treated with BaP
relative to those treated with DMSO revealed that the ΔbapA mutant cells were not
only less viable than WT and C=bapA cells treated with BaP, but less viable than ΔbapA
mutant cells treated with DMSO (Fig. 3D). This indicates BaP may be toxic to cells
unable to metabolize it. To our knowledge, this is the first report providing evidence of
in vivo function of a CYP in cellular degradation of BaP.

We attempted to identify the BaP metabolite(s) formed by BapA. We isolated
microsome-containing fractions from the WT, ΔbapA, and C=bapA, cells and incubated
them with BaP. The WT and C=bapA, but not ΔbapA, chromatograms showed a small
fluorescent peak with a shorter retention time than BaP (Fig. S4A). The retention time
of this unknown metabolite was compared to those of known BaP metabolites and
matched that of benzo[a]pyrene-3,6-dione (Fig. S4A). However, the fluorescence spec-
tra revealed that sample peaks do not show the same fluorescing as benzo[a]pyrene-
3,6-dione (Fig. S4B). No other known metabolite standards matched the retention time
of this peak (Fig. S4C). Although we were not able to reveal the exact identity of the
product formed within the microsome fraction of cells expressing BapA, we were able
to rule out many BaP metabolites formed by other organisms. This may indicate that
BapA is involved in forming a unique metabolite not previously reported in other
organisms.

The availability of the ΔbapA mutant allows us to further investigate the down-
stream metabolomic outcomes of BaP. Since BaP treatment caused upregulation of
genes associated with amino acid biosynthesis, which is an easily measured endpoint
for carbon utilization, we quantified free amino acids in WT and ΔbapA cells treated
with BaP relative to the control (DMSO). In agreement with alamarBlue data, only
BaP-treated WT cells showed significant accumulation of glutamate, aspartate, glu-
tamine, lysine, and the intermediate amino acid ornithine (Fig. 3E). The ΔbapA cells
showed significant accumulation of alanine and �-ketoglutarate in control (DMSO)
compared to BaP treatment (Fig. 3E). This provides additional evidence that loss of BaP
metabolism causes lack of cell growth upon exposure to BaP and alludes to toxicity
caused by the lack of BaP-degrading ability. While insignificant due to large deviations
among samples, accumulation of several primary metabolites involved in energy
metabolism, such as citrate and malate, and nucleotides involved DNA/RNA synthesis
or signaling, such as cyclic AMP (cAMP), appeared to be affected by BaP (Fig. 3E).

BapA is widely distributed in ascomycota and is functionally conserved in A.
flavus. The structural analysis showed that the four widely recognized consensus
regions (a to d) (Fig. 4A) contributing to the core function of P450s (10) are highly
conserved in the CYP617 family. Interestingly, the conserved motif a (AGHETT) of the
CYP617 family is very specific and is highly similar to those of archaea and bacteria (10).

We performed a phylogenic analysis to determine how widely distributed BapA is in
fungi. We found 64 CYP617 family members in the fungal kingdom, covering dothideo-
mycetes, eurotiomycetes, leotiomycetes, and sordariomycetes, with the number rang-
ing from one to several per species (see Fig. S5 and Table S3 in the supplemental
material). CYP617 members are limited to ascomycetes. The BapA subfamily CYP617D1
was mostly distributed in the genus Aspergillus (Fig. 4B), suggesting a conserved role
within the genus.

To examine a potential conservation of its function, we identified a likely orthologue
of BapA in A. flavus (AFLA_036020) and generated three individual null mutant strains.
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All ΔAFLA_036020 strains lost the ability to degrade BaP, corroborating the conserved
and essential role of BapA in degradation of BaP in Aspergillus species (Fig. 4C) under
glucose-limiting conditions.

Requirement of fungal NF-�B-type regulators in BaP degradation. Identification
of bapA allowed us to further investigate its upstream regulatory components. The
velvet proteins are a family of global transcription factors (TFs) involved in diverse
aspects of fungal biology (21). They contain a DNA binding domain structurally similar
to that of the human TF complex nuclear factor kappaB (NF-�B) (22) p50, which governs
cell survival upon exposure to BaP (23–26).

Due to this structural similarity and diverse regulatory functions between human
NF-�B and the fungal velvet complex, we hypothesized that velvet proteins might play
a role in BaP degradation. To address this hypothesis, we first tested mRNA levels of
bapA in each velvet deletion mutant (ΔveA, ΔvelB, ΔvelC, and ΔvosA) and found that the
two regulators VeA and VelB were necessary for proper expression of bapA (Fig. 5A).
Interestingly, the other two regulators, VosA and VelC, seem to play a repressive role at
10 h post-glucose starvation and an activating role at later time points (Fig. 5A). To

FIG 4 The BapA CYP signature motifs, distribution of BapA in Aspergillus species, and the role of BapA in BaP degradation in A. flavus. (A) Conserved domains
of the CYP617 family proteins queried from FungiDB (42) showing greater than 40% identity against the A. nidulans BapA protein (listed in Fig. S5). (B)
Phylogenetic tree of the CYP617D members in Aspergillus having greater than 55% identity against the A. nidulans BapA protein. These proteins can be classified
into the same subfamily, CYP617D, based on the rules of the International P450 Nomenclature Committee. For the expanded information, see Fig. S5 and
Table S3. (C) Residual BaP in WT and the ΔbapA mutant of A. flavus. All experiments were performed in triplicate, and three independent ΔbapA strains were
tested. **, P � 0.008.
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verify that expression of bapA translates into BaP degradation, we tested the degra-
dation ability of each deletion mutant and found that the ΔveA and ΔvelB mutants were
unable to degrade BaP. On the contrary, the ΔvosA and ΔvelC mutants were able to
degrade the same amount of BaP, yet faster than the WT (Fig. 5B). These results indicate
that VeA and VelB play a key role in metabolic utilization of BaP, in part by controlling
proper expression of bapA, whereas VosA and VelC may indirectly play a role in
coordinating the proper timing of BapA expression in response to glucose limitation.

DISCUSSION

BaP is a contaminant of significant concern because of its ubiquity and toxicity. As
a result of its stability, biologically driven degradation remains the predominant form
of removal from the environment (27). Thus, understanding how saprophytic bacteria
and fungi effectively metabolize BaP is critical for the effective removal of BaP.

This is the first comprehensive study showing that Aspergillus species can effectively
degrade BaP, resulting in cell survival and growth during carbon starvation (Fig. 6A). We
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were unable to identify specific BaP intermediates in this study, so it is unclear which
pathways are involved in further metabolism of BaP. The CYP-mediated metabolism of
BaP in human cells has been well characterized, so we attempted to use BaP metabolite
standards to identify the potential metabolite peak using high-performance liquid

A

B

Glutamate

Glutamine

Arginine

Proline

HIstidine

gdhA proA

ornDAN3829

Ornithine
Malate

citA

acuE

acuD

G6P

Cysteine

Serine
Glycine

AN10745

AN3058

AN1198

AN3829

Alanine

Leucine

Valine

leu2B

swoM

tpiA

AN8720

TCA cycle Glycolysis

Amino Acid Biosynthesis

Pentose Phosphate Pathway

Nucleotides

gsdA

AN7588

phk

pppA

AN1965

AN10060

AN10124

Glycerate

Citrate

Accumulation or up-regulation in BaP

Accumulation in DMSO

No significant accumulation

α-Ketoglutarate

Aspartate

Threonine

Methionine

Asparagine

Isoleucine

Lysine

lysD

mecB

AN4401

bapA

Glc Glc

Glc
Glc

Glucose Decrease

NUCLEUS

VeA
VelB

BapA

BaP

MITOCHONDRIA

Energy 
Generation

Amino acid biosynthesis
Ribosome biogenesis
Cell growth

Macroautophagy
Secondary metabolism
Asexual reproduction

VelB
VelB

Fu
rt

he
r 

D
eg

ra
da

tio
n

VeA

Transformation

FIG 6 Models for BaP metabolic utilization in A. nidulans. (A) BaP confers changes in energy generation pathways
indicated by colored blocks. Upregulated DEGs are shown in yellow. Amino acids and other compounds found in
greater quantity as a result of BaP treatment in WT but not ΔbapA strains are shown in yellow and white boxes,
where yellow indicates statistical significance (P � 0.05). Blue boxes represent cellular components that signifi-
cantly decrease as a result of BaP treatment in WT but not in ΔbapA strains (P � 0.05). (B) Proposed genetic pathway
for the metabolic utilization of BaP in A. nidulans. Limited glucose and the VeA-VelB complex are associated with
increased expression of bapA.

Ostrem Loss et al. ®

May/June 2019 Volume 10 Issue 3 e00558-19 mbio.asm.org 10

https://mbio.asm.org


chromatography (HPLC). None of the standards we tried matched the retention time or
absorbance spectrum of the peak. Additionally, CYP metabolism of BaP in mammalian
cells causes mutagenic and cytotoxic effects (28), whereas we observed an increase in
viability of A. nidulans cells exposed to BaP. Together this leads us to conclude that BaP
metabolism in Aspergillus sp. involves the unique CYP BapA, and further degradation of
BaP may occur via metabolic pathways not found in mammalian cells. Further study is
needed to understand the full metabolic pathway(s) of BaP degradation.

Our study does, however, identify a necessary CYP617D1 enzyme that not only
provides information that can help effectively implement bioremediation strategies,
but also gives us a unique insight into evolution of the fungal CYPs and their
biocatalytic activity. We propose a model in which VeA and VelB activate expression of
bapA in response to nutrient limitation and BapA oxidizes BaP (Fig. 6B). We hypothesize
that oxidized BaP is further enzymatically fragmented, and the carbon is shuttled into
energy-generating pathways, which in turn represses further expression of bapA
(Fig. 6B).

Filamentous fungi harbor many more CYPs relative to their genome size than
animals and bacteria, yet the functions of many remain unknown. The diversity of CYPs
in fungi could be due to their need to metabolize many different carbon sources found
in soils, including large cyclic compounds like lignin and plant polymers. It is also
feasible that fungi, like animals, may need detoxification systems reliant on CYP activity
to avoid toxic compounds produced by competing microbes and plants. Our results
demonstrate that the regulation of bapA is governed by response to carbon starvation,
rather than exposure to the toxicant BaP.

The A. nidulans, A. flavus, and A. fumigatus genomes each contain over 100 encoded
CYPs, with 90, 93, and 57 family types, respectively, yet only 45 types are shared (10).
Despite this diversity, BapA (CYP617D1) is found in all three distantly related Aspergillus
and Penicillium species, and in A. nidulans and A. flavus it plays the same functional role
of degrading BaP. Because CYPs demonstrate substrate promiscuity, it is likely that
BapA oxidizes other compounds, such as other PAHs and/or large planar endogenous
compounds. The deletion of bapA showed no obvious growth and developmental
changes, suggesting that BapA does not likely play a major housekeeping role.

Regulation of bapA also demonstrates a novel understanding of how Aspergillus
species respond to organic contaminants like BaP. Humans and fungi have evolved
different strategies to deal with exposure to xenobiotics, yet both employ CYPs.
Humans do not invest energy into utilizing carbon sources more complex than various
sugars and a few of their polymers, so CYP transformation of BaP yields more polar
metabolites that can then be excreted. Regulation of encoded BaP-metabolizing CYPs
is predominantly governed by the aryl hydrocarbon receptor (29), yet BaP and its
metabolites also activate NF-�B (23–25). NF-�B is a protein heterodimer consisting of
p50 and RelA, which upon activation by many types of cellular stress, from microbial
and viral proteins to ionizing radiation, promotes cell survival (26). Filamentous fungi,
on the other hand, act more as ecological scavengers and are capable of utilizing large
carbon-containing compounds, such as plant cell wall polymers. These fungi have
evolved with the global regulators called the velvet proteins with a DNA binding
domain structurally similar to that of NF-�B p50 (22). The velvet regulators in Aspergillus
species govern environmental sensing, orchestration of cell growth, reproduction,
stress response, spore viability, and biosynthesis of various secondary metabolites,
which similarly helps the fungal cells to survive environmental stressors (21, 30).

In this study, we have shown that CYP-mediated degradation of BaP requires
functions of the velvet family proteins VeA and VelB. These regulatory proteins control
expression of bapA in response to stress resulting from carbon insufficiency, as opposed
to exposure to xenobiotics. As this CYP is functionally conserved across distantly related
fungi, it may play the same role in many ascomycete fungi. Further investigation of
substrates metabolized by BapA would reveal its activity on other environmental
contaminants as well as give insight into a possible endogenous function.
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MATERIALS AND METHODS
Strains, media, and culture conditions. The Aspergillus strains used in this study are listed in

Table 1. Initially, 106 spores/ml were added to 400 ml minimal medium (MM) (31) with 1% glucose in
2-liter flasks and incubated for 18 h at 220 rpm at 37°C. The mycelial aggregates were then collected on
sterile Miracloth (Sigma-Aldrich), rinsed, and transferred to 100 ml MM with 0.1% glucose in 250-ml
Erlenmeyer flasks. Control dead cells were autoclaved on a liquid cycle at 121°C for 20 min to account for
any nonmetabolic sources of loss of BaP. A 100 mM stock solution of BaP (Sigma-Aldrich) in dimethyl
sulfoxide (DMSO) was added to the cultures to a final concentration of 200 �M; the same volume of
DMSO was added to controls. All flasks were further incubated at 220 rpm at 37°C for the designated
time. Escherichia coli DH5� cells were grown in Luria-Bertani medium with ampicillin (100 �g/ml) for
plasmid amplification.

Extraction and HPLC analysis. Extraction of BaP was optimized to recover all BaP adhered to and
taken up by cells, but not biotransformed. Individual fungal cell cultures were extracted using 100 ml 1:1
hexane-ethyl acetate with pyrene (Sigma-Aldrich [final concentration, 200 �M]) as an internal standard
to correct for extraction efficiency. The entire mixture was sonicated using a Sonic dismembrator model
100 (Fisher Scientific) with a 1/2-in. probe on full power for 6 min to ensure disintegration of hyphal
pellets. Solvent (1 ml) was removed and centrifuged to remove particulate matter and diluted 100-fold
in 1:1 solvent A (30 mM acetate buffer at pH 4.7, 10% acetonitrile)-solvent B (acetonitrile). BaP and pyrene
were quantified by high-performance liquid chromatography (HPLC) using an Agilent 1260 system
equipped with a 3- by 50-mm Poroshell 120 EC-C18 2.7-�m column (Fig. S1). A linear gradient that
ramped from 55% B to 90% B over 10 min at a flow rate of 0.75 ml/min was used, followed by
fluorescence detection (FLD [�excitation � 248 nm and �emission � 465 nm]). All standard curves were linear,
and the detection limits were �0.1 �M for pyrene and BaP.

TLC analysis of residual BaP. To further verify the degradation of BaP by A. nidulans at different
glucose concentrations (Fig. 2B), we also carried out TLC analyses 10 times and obtained a high degree
of reproducibility. BaP extraction was performed by adding 0.5% (vol/vol) 6 N HCl (to stop all metabolic
activity) to the fungal cultures (100 ml). The mycelium was collected through Miracloth and squeezed to
maximize collection of the supernatant, which was transferred to a fresh 250-ml flask and mixed with
100 ml of ethyl acetate (1:1 ratio). Both liquids were then transferred to a new 250-ml separatory funnel.
After shaking vigorously for 2 min, the organic phase was transferred in a new flask. Fresh solvent was
added to the separatory funnel, and shaking and collecting were repeated two additional times. The
resulting solvent was allowed to evaporate in the fume hood, and each dried sample was resuspended
with ethyl acetate (1 ml) for TLC analysis. Ten microliters of each sample was applied to a TLC silica plate,
including a fluorescence indicator (Kiesel gel 60, 0.25 mm thick; Merck). Authentic BaP standard was
loaded as a control. The TLC plate was then developed with toluene-acetone-hexane (1:1:1 [vol/vol/vol]),
where the Rf value of BaP was 0.9. The TLC plate was exposed to UV at A320 for 30 s, and images were
captured using a Canon EOS camera. To quantify the residual BaP shown in Fig. S3B, the density of each
BaP spot on TLC was determined using ImageJ (NIH): the relative amount of BaP in live cells to the dead
cell control (�100%) is presented.

alamarBlue reduction assay. Cell viability was determined by percentage of alamarBlue (Bio-Rad)
reduction as described previously (32), with the following exceptions. Cells were prepared as described
for BaP degradation with solvent (DMSO) only as a control, and 0.45 ml of cells was added to 0.45 ml fresh
MM with 0.1% glucose and 100 �l alamarBlue and incubated for 2 h at 37°C.

RNA preparation and qRT-PCR. Fungal cells from submerged cultures were collected at designated
time points, squeeze-dried, flash frozen in liquid N2, and stored at �80°C until subjected to RNA
preparation. Total RNA isolation was done using TRIzol as described previously (33). cDNA was prepared
using an avian myeloblastosis virus (AMV) reverse transcriptase kit (NewEngland Biolabs) with oligo(dT).
Reverse transcriptase quantitative PCR (RT-qPCR) was performed with iTaq universal SYBR green super-
mix (Bio-Rad) on a Bio-Rad CFX96 real-time PCR detection system. mRNA was normalized using threshold
cycle (2�ΔΔCT) method (34). Levels of bapA mRNA were determined using 2�ΔΔCT, in which bapA

TABLE 1 Aspergillus strains used in this study

Strain Genotype Source or referencea

A. nidulans FGSC4 WT, veA� FGSC
A. flavus NRRL 3357 WT FGSC
A. flavus 3357.5 pyrG� 47
A. fumigatus AF293 WT 48
A. oryzae M2040 WT KACC
A. nidulans RJMP1.59 pyrG89 pyroA4 veA� 49
A. nidulans TMK6 pyrG89 pyroA4 ΔAnibapA::AfupyrG� veA� This study
A. flavus TEO1 ΔAflbapA::AfupyrG� pyrG� This study
A. nidulans TEO2 pyrG89 pyroA::bapA(p)::bapA::FLAG3	::pyroAb ΔbapA::AfupyrG� veA� This study
A. nidulans THS15 pyrG89 pyroA4 ΔvosA::AfupyrG� veA� 44
A. nidulans THS16 pyrG89 pyroA4 ΔvelB::AfupyrG� veA� 44
A. nidulans THS11 pyrG89 pyroA4 ΔvelC::AfupyrG� veA� 50
A. nidulans THS17 pyrG89 pyroA4 
veA::AfupyrG� veA� 44
aFGSC, Fungal Genetic Stock Center; KACC, Korean Agricultural Culture Collection.
bThe 3/4 pyroA marker causes targeted integration at the pyroA locus.
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expression (CT) was found relative to the reference gene actA (�-actin) (ΔCT) and then relative to time
point 0 (ΔΔCT). Time point 0 indicates exponential growth (18 h postgermination) in regular MM (1%
glucose), and each time point represents hours after the switch to MM with 0.1% glucose. Each
experiment was performed using technical triplicates for RT-qPCR accuracy, and three biological tripli-
cates were used for each time point. The oligonucleotides used are listed in Table S1. Total RNA was
extracted and submitted to ProteinCT Biotechnologies (Madison, WI) for library preparation and RNA
sequencing.

RNA sequencing. RNA sequencing was done as described previously (35). The library was con-
structed and purified and sequenced (SE100bp) using the Illumina HiSeq2500, and over 20 million
high-quality reads per sample were achieved.

Data QC and analysis. Verification of the quality of reads (quality control [QC]), alignments, gene
annotation, and differential expression analysis were performed as described previously (35).

Functional enrichment analysis (KEGG). The KEGG pathway database was used to search against
A. nidulans KEGG pathway maps in order to identify A. nidulans metabolic pathways with the differentially
expressed genes (DEGs) after exposure to BaP on 20 February 2018 (36).

Metabolomics of amino acid and primary metabolites. Fungal cells prepared as described for BaP
degradation with the DMSO control were subject to extraction of cellular components as described
previously (37), with the following exceptions. Hyphal mats were filtered and squeeze-dried, noting the
mass after removing liquid, 1 day after transfer to BaP-containing medium. Tissue was flash frozen in
liquid N2 and stored at �80°C. Two milliliters of extraction solvent (37) was added, and samples were
sonicated using a 1/4-in. probe for 3 min and centrifuged to remove cell debris. Additional sample prep
and analysis were performed as described previously (37).

Protein alignment. CYP sequences similar to those of Pc-PAH1 and Pc-PAH3 in Aspergillus sp. were
identified using blastp (38). Protein sequences were found using NCBI, and protein alignment was
calculated using Clustal Omega at EMBL-EBI output ClustalW with character counts (39). A phylogenetic
tree was created using Jalview nearest neighbor joining (40).

Analysis of BapA families. BapA (AN1884) was assigned to CYP617D1 (11) and analyzed according
to the rules of the International P450 Nomenclature Committee (41). BapA protein sequence was used
to query FungiDB (42). CYP617 members were aligned, and the phylogenetic tree was constructed as
previously described (43).

Generation of �bapA and complemented strains. Double-joint PCR was used to generate the
deletion constructs of A. nidulans bapA (AN1884) and A. flavus bapA (AFLA_036020) (33). Briefly, the
deletion construct containing the A. fumigatus pyrG marker with 5= and 3= flanking regions of bapA was
introduced into the recipient strain RMJP1.59 (A. nidulans) or NRRL 3357.5 (A. flavus). Three independent
ΔbapA strains each in A. nidulans (TMK6-1, -35, and -47) and A. flavus (TEO1 2, 8, and 9) were confirmed
and analyzed. To generate complemented strains of the ΔbapA mutant in A. nidulans, a bapA� gene
region, including its upstream 2-kb region, was introduced to pHS13 (44) and introduced into E. coli
DH5� for transformation. Upon sequence verification of the insert, the purified plasmid was introduced
into the recipient ΔbapA A. nidulans strain (TMK6). Three independent complemented strains (C=bapA 12,
16, and 17) were verified and analyzed.

Microsome isolation and BaP metabolic activity. Cells were prepared as described without BaP
treatment to capture peak bapA mRNA levels (Fig. S2A and B). After 1 day of incubation, cells were
filtered, washed, squeeze-dried, and flash frozen in liquid N2. Frozen tissue was ground to a fine powder
in liquid N2 with the addition of glass beads in a mortar and pestle. The powder was resuspended in
30 ml homogenization buffer (0.1 M KPO4 at pH 7.25, 0.1 M KCl, 10 mM EDTA at pH 8, 0.25 mM
phenylmethylsulfonyl fluoride [PMSF], 0.1 mM dithiothreitol [DTT]) and kept in ice. A sonication probe
(1/8 in.) was used on full power for 30 s to homogenize cells and form microsomal structures. Large
debris was filtered using Miracloth, and the supernatant was centrifuged for 20 min at 20,000 	 g. The
supernatant was then transferred and centrifuged for 60 min at 105,000 	 g. The resulting supernatant
was discarded, and the pellets were resuspended in 200 �l dilution buffer (0.25 M KPO4 at pH 7.25, 20%
[vol/vol] glycerol, 10 mM EDTA at pH 8.0, 0.25 mM PMSF, 0.1 mM DTT), flash frozen in liquid N2, and
stored at �80°C for a maximum of 1 week. The protein concentration was determined with the
Coomassie protein assay (Thermo Fisher). BaP metabolism was measured by incubating 2 mg/ml
microsomal protein, 1 �M BaP, and 1 �M NADPH in up to 1 ml 50 mM phosphate buffer at pH 7.5 at 37°C
for 1 h. As a control, protein was denatured by boiling for 20 min prior to incubation. Metabolites were
extracted by adding 2 ml of 2:1 acetone-ethyl acetate and vortexing for 2 min. Solvent was removed and
centrifuged at 13,000 	 g for 10 min and dried under N2. Samples were resuspended in 50 �l 1:1 HPLC
solvent A-solvent B and analyzed by HPLC.

Statistics. Statistical significance was determined using Student’s t test with a two-tailed distribution
and two-sample unequal variance.

Data availability. All RNA-seq data files are available from the NCBI Gene Expression Omnibus
database (45) under accession no. GSE116804.
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