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a b s t r a c t 

β-lactam, more specifically carbapenems, are antibiotics used as last resort pharmaceuticals to deal with 

infections. Despite the medical relevance, they are considered contaminants of emerging concern in water 

because of their recalcitrance to conventional systems in the municipal wastewater treatment plants. This 

work aimed to show alternative methods based on the use of high-frequency ultrasound (20 0-10 0 0 kHz) at 

a laboratory scale to degrade meropenem (a representative carbapenem antibiotic) in water. The ability of the 

sonochemical method alone to eliminate meropenem was tested initially. Then, the improvements of degradation 

by the addition of ferrous iron, or Fe (II) plus UVA light (sono-Fenton, or sono-photo-Fenton methods) were 

assessed. Finally, the effect of the best ultrasound-based method on the removal of biological activity of 

meropenem was determined. 

• Three high-frequency ultrasound processes were applied to degrade meropenem in water. 
• Sono-photo-Fenton degraded 67% of imipenem at 60 min of treatment and decreased significantly H 2 O 2 

accumulation. 
• Antimicrobial activity was removed after only 30 min of sono-photo-Fenton action. 
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Method details 

Introduction 

After consumption, antibiotics are excreted/released by the patients into the sewage systems. Then, 

antibiotics enter the municipal wastewater treatment plants, where typical flocculation/sedimentation 

and biological processes are unable to eliminate them. Indeed, antibiotics such as meropenem have 

poor biodegradability and can disturb the wastewater treatment process and the microbial ecology in 

surface water, even promoting the development/proliferation of antibiotic-resistant bacteria [2] . 

Due to the limitation of the conventional processes, antibiotics end up in the natural media

especially in the aquatic environment [ 3 , 4 ]. Hence, effective treatments to control the input of

antibiotics into the aquatic environment are needed. Sonochemical-based processes are alternative 

methods to eliminate organic pollutants in water, involving the action of hydroxyl radical generated 

by acoustic cavitation [1] . In these processes, the interaction of high-frequency (20 0-10 0 0 kHz)

ultrasound waves [represented by “)))”], promotes the vapor water and oxygen molecules cleavage 

Eqs. 1 - (4) . Moreover, hydrogen peroxide is formed ( Eq. 5 ), which is employed as an indicator of

sonochemical activity [1] . 

H 2 O + ))) → 

·H + 

·OH (1) 

O 2 + ))) → 2 ·O (2) 

H 2 O + 

·O → 2 ·OH (3) 

O 2 + 

·H → 

·O + 

·OH (4) 

2 ·OH → H 2 O 2 (5) 

Considering the concerns of antibiotics such as carbapenems and the degrading capability of 

sonochemical processes, this work aimed to evaluate three high-frequency ultrasound techniques 

(sonolysis, sono-Fenton, and sono-photo-Fenton) as alternative treatments to eliminate meropenem 

in aqueous samples. 

Materials, equipment, and analyses 

Meropenem trihydrate was purchased from Matrix Scientific, USA. Ammonium heptamolybdate 

tetrahydrate and sodium acetate trihydrate were obtained from J.T. Baker, Spain. Ammonium chloride, 

monopotassium phosphate, potassium chloride, calcium chloride, sodium chloride, sodium sulfate, and 

urea were purchased from Merck Peruana S.A. Iron sulfate heptahydrate and catalase (20 0 0-50 0 0

units mg −1 ) were acquired from Sigma-Aldrich, USA. Hydroxylamine hydrochloride (Thermo Scientific, 

USA), ortho-phenanthroline (Carlo Erba). Acetonitrile (HPLC grade), citric acid monohydrate; sodium 

hydroxide (Fisher Chemical), and potassium iodide (Fisher Chemical, USA) were used. 

https://doi.org/10.1016/j.jenvman.2020.110224
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Fig. 1. Evolution of H 2 O 2 accumulated from the sonication of distilled water at 578 kHz and 23.8 W. 
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A Meinhardt Ultrasound reactor (containing 300 mL of the antibiotic solution to be treated, at 578

Hz of frequency and 23.8 W of acoustic power) was utilized at a laboratory scale. The temperature of

he reactor was controlled at 19 ± 2 °C) using a Brookfield thermostat. A Philips UVA lamp (F4T5BLB)

ith maximum emission at 365 nm), which was placed on a quartz tube and submerged into the

ltrasonic reactor, was utilized for the sono-photo-Fenton method. The acoustic power inside the

ltrasound reactor was determined calorimetrically [5] . All experiments were performed at least by

uplicate and the average values with their standard deviations were reported. 

The meropenem degradation was followed at 300 nm using an HPLC Agilent 1100 equipped with a

iode array detector (DAD) and a Teknokroma C-18 column (5 μm, i.d. = 4.6 mm, length = 150 mm). A

ixture of acetonitrile/water (25:75 v/v) at 0.4 mL min 

−1 was the mobile phase. The injection volume

as 5 μL and the running time was 6 min. Before the chromatographic analyses, catalase (100 μL) was

dded to the samples to scavenge the residual hydrogen peroxide. 

The accumulation of hydrogen peroxide was measured using the iodometric/spectrophotometric

ethod using potassium iodide and ammonium heptamolybdate as detailed in [6] . 

Antimicrobial activity (AA) against meropenem-sensitive Staphylococcus aureus was evaluated by

nalyzing the inhibition zone in the agar diffusion test following the procedure described in [7] . 

ssessment of radicals generation by the ultrasound reactor 

To verify the production of hydroxyl radical by the ultrasound reactor, the H 2 O 2 accumulation

uring sonication of distilled water at 578 kHz and 23.8 W was determined. Fig. 1 shows that the

onochemical reaction accumulated ∼ 90 μM of hydrogen peroxide after 60 min of sonication, thus

onfirming the capability of such a reactor to produce radicals such as HO 

·, which in the absences of

ollutants fastly evolves to a more stable substance (H 2 O 2 , Eq. 5 ). 



4 K. Celis-Llamoca, E.A. Serna-Galvis and R.A. Torres-Palma et al. / MethodsX 9 (2022) 101835 

Fig. 2. Degradation of meropenem by sonolysis at 578 kHz and 23.8 W. Inset: comparison of H 2 O 2 accumulation in absence 

and presence of the antibiotic. 

 

 

 

 

 

 

 

 

 

 

 

 

Degradation of meropenem by sonolysis 

The sonochemical method (i.e., sonication at 578 kHz and 23.8 W) was applied to meropenem.

The normalized antibiotic concentration progress is shown in Fig. 2 . After 60 min of treatment, ∼
32% of this antibiotic was degraded. Meropenem is not a volatile compound, thus its degradation can

be ascribed to the attack of sonogenerated radicals mainly [1] . In fact, the inset of Fig. 2 compares

the H 2 O 2 accumulated in the absence and presence of meropenem. Clearly, the hydrogen peroxide

accumulation in the pollutant presence was lower than in distilled water alone. This difference

supports the interaction of the pharmaceutical with the sonogenerated HO 

·, which leads to

meropenem degradation. 

Degradation improvement by ferrous iron and UVA light 

Ferrous ions at 5 mg L −1 (coming from ferrous sulfate heptahydrate) were added to the ultrasound

reactor (sono-Fenton method). Also, the effect of simultaneous addition of iron (II) and UVA light

(generating the sono-photo-Fenton method) was tested. Then, the evolutions of meropenem, and H 2 O 2 

were followed for 0, 15, 30, 45, and 60 min Fig. 3 ). It can be noted that, after 1 h of treatment, the

sono-Fenton and sono-photo-Fenton methods degraded ∼ 57 and 67% of meropenem, respectively 

( Fig. 3 A). These degradation improvements regarding the sonolysis procedure (which removed ∼ 32 %

of meropenem) can be related to Fenton ( Eq. 6 ) and photo-Fenton ( Eqs. 6 and (7) reactions that take

advantage of the in situ sonogenerated H 2 O 2 to form extra hydroxyl radicals able to attack meropenem
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Fig. 3. Treatment of meropenem by sono-Fenton and sono-photo-Fenton methods. A. Pollutant degradation. B. H 2 O 2 
concentration. Experimental conditions: ultrasound at 578 kHz, 23.8 W, [Fe 2 + ]: 5 mg L −1 , and UVA light (4W), 300 mL. 
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Fig. 4. Evolution of antimicrobial activity (AA) against S. aureus for meropenem treated by the sono-photo-Fenton method. Red 

circles highlight the inhibition zone. 

 

 

 

 

 

 

 

 

 

 

 

 

[ 1 , 8 ]. This is supported by the low hydrogen peroxide concentration when sono-Fenton and sono-

photo-Fenton were applied to degrade the pollutant (see Figs. 2 and 3 B). 

Fe 2 + + H 2 O 2 → Fe 3 + + HO 

· + OH 

− (6) 

Fe 3 + + H 2 O + UVA → Fe 2 + + HO 

· + HO 

− (7) 

On the other hand, we should mention that the sonochemical-based processes effectively led to the

degradation of the meropenem ( Figs. 2 and 3 ), which contrasts with the conventional methods used

the wastewater treatment systems. For instance, a previous work has shown that meropenem is not

biodegradable and this antibiotic can affect bacteria growth, indicating the typical biological process 

is not able to degrade meropenem [2] . Also, activated carbon is used to remove organic compounds

as pharmaceuticals from water. However, this adsorption process moves the pollutant from aqueous 

media to a solid phase (non-degradation), requiring posterior/extra disposal or treatment of the 

polluted activated carbon to regenerate it [3] . Chlorination is another classical treatment method

for water-containing pharmaceuticals but these pollutants are rich in functional groups very reactive 

toward chlorine, leading to the formation of chlorinated byproducts, which, in many cases, are highly

toxic and carcinogenic [ 3 , 9 ]. Furthermore, many investigations have demonstrated that the use of TiO 2 

as a photocatalyst is effective to eliminate pharmaceuticals and organic compounds in water by the

action of hydroxyl radicals. Nevertheless, this system requires that photocatalysts must be removed or 

recycled at the end of processes, which limits their applications [10] . 

Effect of process on the antimicrobial activity 

To demonstrate the action of the sono-photo-Fenton method (which showed elimination capability, 

Fig 3 A), beyond the degradation efficiency, the AA evolution was assessed. Fig 4 presents the

inhibitory halo caused by treated meropenem on S. aureus at different times (0, 15, 30, and 45 min) of

the method application. After 30 min of the treatment with sono-photo-Fenton, there is no inhibitory

halo (which corresponded to 43% of meropenem degradation). This indicates that at 30 min of the

sono-photo-Fenton action, this process led to imipenem concentration levels below the effective ones 

for inducing antimicrobial activity [7] . 
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[  
inal remarks 

i) The high-frequency ultrasound-based processes were able to degrade meropenem in water. 

ii) Sono-photo-Fenton was the most efficient method to degrade imipenem. 

iii) Sono-photo-Fenton eliminated the AA after 30 min of treatment even when only 43% of meropenem

was degraded. 
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