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Abstract

To support accurate memory-guided reaching, the brain must represent both the direction

and amplitude of reaches in a movement plan. Several cortical areas have been shown to

represent the direction of a planned reaching movement, but the neuronal representation of

reach amplitude is still unclear, especially in sensory-motor integration areas. To investigate

this, we recorded from neurons in the medial intraparietal area (MIP) of monkeys performing

a variable amplitude memory reach task. In one monkey, we additionally recorded from the

dorsal premotor cortex (PMd) for direct cross-area comparisons. In both areas, we found

modest but significant proportions of neurons with movement-planning activity sensitive to

reach amplitude. However, reach amplitude was under-represented relative to direction in

the neuronal population, with approximately one third as many selective neurons. We

observed an interaction between neuronal selectivity for amplitude and direction; neurons in

both areas exhibited significant modulation of neuronal activity by reach amplitude in some

but not all directions. Consistent with an encoding of reach goals as a position in visual

space, the response patterns of MIP/PMd neurons were best predicted by 2D Gaussian

position encoding model, in contrast to a number of alternative direction and amplitude tun-

ing models. Taken together, these results suggest that amplitude and direction jointly modu-

late activity in MIP, as in PMd, to form representations of intended reach position.

Introduction

Humans and non-human primates are capable of accurately reaching to the remembered loca-

tion of a visual target [1]. We are all familiar with the seemingly simple act of reaching for a

coffee cup while maintaining our gaze on the words on a page. To support this “memory-

guided” reaching behavior, the primate brain must be capable of extracting information about

both the direction and amplitude of the reach movement goal, and encoding this information

in a motor plan. Several decades of research in non-human primates has shown that reach
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direction is well represented in motor planning signals in several cortical areas; the direction

of a planned movement modulates the spiking activity of neurons in posterior parietal sen-

sory-motor integration areas (V6A, MIP, area 5 and 7a), premotor (PMd) and motor (M1)

cortices [2–10]. Similarly, many studies have examined the representation of reach depth in

both association and motor and sensory-motor integration areas [11–15]. In contrast, similar

evidence for neuronal modulation by reach amplitude in the fronto-parallel plane is largely

restricted to motor output areas PMd and M1 [4, 16–21], while higher-level association areas

have not yet been examined using neurophysiological techniques. A recent functional MRI

adaptation study in humans reported that posterior parietal cortex and frontal regions

responded differentially to reach amplitude [22]. Since this non-invasive method offers limited

temporal resolution, these differences could not be attributed to movement planning signals,

and direct physiological data addressing this question is still lacking. Here, we directly tested

the hypothesis that the movement planning neuronal activity in areas specialized for reaching

in the posterior parietal cortex represents both the direction and amplitude of a planned reach.

To this end, we recorded from neurons in the medial intraparietal area (MIP) from three

monkeys while they performed a variable amplitude memory reach task. MIP, a sub-area of

the parietal reach region (PRR) [23], is located on the medial bank of the intraparietal sulcus,

receives inputs from nearby visual and proprioceptive areas [24–27] and, importantly, is

specialized for reaching movements [28]. We also simultaneously recorded from the dorsal

premotor cortex (PMd) in one of the three monkeys for direct cross-area comparisons. We

found that a modest but statistically significant proportion of neurons in both MIP and PMd

modulated their movement planning activity based on reach amplitude. In both areas, we

observed conjoint encoding of reach direction and amplitude, with significant modulations of

neuronal activity by reach amplitude in some but not all reach directions. Finally, we found

that a Gaussian target-position encoding model better predicted the neuronal movement plan-

ning responses in both areas, compared to alternative models of direction and amplitude tun-

ing. Taken together, these results suggest that neurons in MIP, as in PMd, may jointly encode

amplitude and direction signals to form a high-level representation of intended reach target

position.

Materials and methods

Subjects and preparatory surgery

Data was collected from three awake, behaving male rhesus monkeys (Macaca Mulatta, F, H,

S), weighing between 5.6 Kg and 11.9 Kg. Monkeys were first implanted with a MRI-compati-

ble head post (Rogue Research) and trained on the experimental paradigm until they were

thoroughly familiar with the task. We then performed a second surgery to implant a 2-cm

circular recording chamber (Crist Instrument, IAC series) on the contralateral side of the

reaching right arm of monkeys H and F. Chamber placement was guided stereotaxically and

centered at posterior 7 mm, lateral 5 mm in monkey F. For monkey H, we placed the chamber

in a position that maximized access to the medial bank of the intraparietal sulcus as confirmed

by Brainsight, a neuro-navigation system (Rogue Research); surgery plan images centered on

the targeted area are shown in Fig 1D. We secured the chamber in place with MRI-compatible

ceramic screws (Rogue Research) and Simplex P bone cement (Stryker, Hamilton, ON, Can-

ada). Monkey S was implanted with two 16-channel micro-electrode arrays (MicroProbe, Gai-

thersburg, MD) each in areas MIP and PMd of the left hemisphere (64 channels in total).

Micro-electrode array locations were planned using Brainsight, by first registering sulcal

markers (the intraparietal sulcus) to a stereotaxic atlas registered to the animal’s structural

MRI. During surgery, a motion-capture system using skull-referenced fiducial points was used
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to precisely locate the planned array implantation site (Rogue Research). In both acute and

chronic recording setups, we recorded from deep within the sulcus (2-8mm for single elec-

trode recordings, 3-6mm for micro-electrode arrays) to exclusively target area MIP. The elec-

trode depth measurements were made using a stereotaxic atlas registered to each animal’s

structural MRI. The approximate anatomical location of chronic microelectrode array implan-

tation is shown in Fig 1C. Additional surgical and experimental procedure details are reported

elsewhere [29]. All surgical and experimental procedures complied with the Canadian Council

of Animal Care guidelines and were approved by the McGill Animal Care Committee. Mon-

keys were weighed and their health and growth monitored daily. Animals were also pair-

housed and had constant access to exercise via a jungle gym on all days, including experimen-

tal days. Each monkey had its own recording schedule that ensured that experiments started at

the same time every session. Monkeys were given fresh fruits in the lab after all completed

sessions.

The monkeys performed the experiment in a dimly lit Faraday chamber. Each animal was

seated in a chair within arm’s reach (~45cm) of a touch screen (ELO Touch, California) that

was coupled to a monitor. The only light in the chamber emanated from visual cues displayed

on the monitor and the monitor’s low ambient output. Monkeys reached the touch screen

through an opening in the chair on the side of their reaching hand (right arm in all animals).

The non-reaching hand was obstructed. The monitor and touchscreen were on the fronto-par-

allel plane, within arm’s reach of the animal. Behavior was controlled by a real time system

Fig 1. (A) Variable amplitude memory reach task. To initiate a trial, monkeys had to touch a central green circular target and visually fixate a

red target located in the center of a touch screen for 500ms (fixation). A cue (circular green target) was then flashed in the periphery for

300ms indicating the target of the upcoming reach. A randomized delay period followed (memory period: 1.1–1.7 s) during which monkeys

had to maintain the visual fixation and the hand contact established in the fixation period. The central green target was then extinguished

instructing the monkeys to reach to the location indicated by the cue flash. Monkeys had to touch the screen within a 2.5 cm circle centered

on the target for 400ms without breaking visual fixation. If successful, monkeys were rewarded with juice. (B) Target configurations.

Monkeys reached to targets in two different configurations. In Task 1, targets were arranged at two amplitudes along each of four equally

distributed directions. In Task 2, targets were at three amplitudes in each of 16 equally spaced directions, slightly offset from a perfectly

radial configuration to maximally use the touchscreen area. (C) Electrophysiological recording anatomy. The approximate anatomical

location of chronic microelectrode array implantation is shown for MIP and PMd. (D) Structural MRI with surgery plan targeting area MIP in

one monkey. The intra-parietal sulcus (IPS) is marked for anatomical reference. The cross-hairs indicate the center of the targeted location,

and the ticks represent the boundary of the cortical surface of interest.

https://doi.org/10.1371/journal.pone.0182519.g001
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(LabVIEW RT, National Instruments). Eye position was monitored with an infrared reflection

camera (ISCAN, Boston) and hand position was monitored using the acoustic touch screen.

The single unit recording procedure is reported in detail elsewhere [29]. Briefly, extracellu-

lar recordings in monkeys F and H were performed with a single channel from a multichannel

micromanipulator system (NAN Drive, NAN Instruments). Before each recording session, a

23-gauge stainless steel guide tube containing a 120-mm tungsten microelectrode (FHC, Pl/Ir

impedance: 1 MO) was placed over the appropriate cortical location (in the XY plane) and low-

ered onto the dura mater surface. Thus the guide tube served as the electrical ground. The elec-

trode was then lowered into the cortex to a desired depth ranging from 2 to 8 mm and left to

rest from 15 to 60 min before any subsequent movements. All neurons that could be isolated

and stabilized were recorded. Single-/multi-channel recordings were filtered (250Hz– 8000 Hz

for spikes) and amplified using commercially available systems (Plexon Inc, Texas). Each

channel was digitized (at sampling rates of 40 kHz for spikes) and continuously recorded to

disk for further analysis. Spike waveforms were sorted online using a manual-sorting method

(Plexon Inc.), and offline using custom software (MATLAB) before being visually inspected.

Behavioral task and datasets

We trained the monkeys on the memory reach task, illustrated in Fig 1A, for several months

before collecting data. To initiate a trial, monkeys had to touch a central green circular target

and visually fixate a red target located in the center of a touch screen for 500ms (fixation). A

cue (circular green target) was then flashed in the periphery for 300ms indicating the target of

the upcoming reach. A randomized delay period followed (memory period: 1.1–1.7 s, uni-

formly distributed) during which monkeys had to maintain the visual fixation and hand

contact established in the fixation period. The central green target was then extinguished,

instructing the monkeys to reach to the location indicated by the cue flash. Monkeys had to

touch the screen within a 2.5 cm circle centered on the target for 400ms without breaking

visual fixation. If successful, monkeys were rewarded with juice.

We used two different reach target configurations (see Fig 1B): Task 1 consisted of targets

at two amplitudes along each of four equally distributed directions, while Task 2 consisted of

targets at three amplitudes in each of 16 equally spaced directions. The reach targets subtended

the near periphery (±12.5 degrees of visual angle for Task 1 and ±25 degrees of visual angle for

Task 2). Reach targets in Task 2 were slightly offset from a perfectly radial configuration to

maximally use the touchscreen area (see Fig 1B right panel). We first recorded 93 MIP neurons

while monkeys F and H reached to targets in Task 1. Using chronically implanted micro-elec-

trode arrays, we recorded 39 MIP neurons and 42 PMd neurons from monkey S performing

Task 1. In order to characterize the spatial response patterns of neurons, we recorded an addi-

tional dataset of 58 MIP neurons and 52 PMD neurons in one session of monkey S reaching to

targets in Task 2 (see Fig 1B). Three out of these 48 targets were omitted due to insufficient

number of trials. In total, we collected 42 (30) trials per target for Task 1, and 10 (1) trials per

target for Task 2 (median and interquartile range).

In total, 190 MIP neurons (33, 60, and 97 from monkeys F, H, and S respectively) and 94

PMd neurons (from monkey S) were recorded. We analyzed the firing rates of these neurons

in four different trial epochs (cue, early-memory, late-memory, movement) of length 500ms.

We defined the criterion for task-relatedness as significantly different spiking activity during

at least one of these four trial epochs relative to a baseline epoch (p< 0.05/4, t-test with Bon-

ferroni correction for multiple comparisons); importantly, this criterion for task-related neu-

rons is not based on tuning properties such as selectivity for amplitude or direction. Based on

this task-relatedness criterion and a threshold on firing rates (>1Hz in at least one of the four

Neuronal representations of reach amplitude in MIP
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trial epochs considered), 152 MIP neurons and 68 PMd neurons were selected for analysis in

the current study. Data and analyses are made available on a public repository: https://github.

com/RishiRajalingham/musallam_plos2017.

Analysis

We computed firing rates in four trial different epochs, of 500ms bins aligned to trial events:

Cue (C): [0ms, 500ms] after target cue onset; Early-Memory (EM): [200ms, 700ms] after target

cue offset; Late-Memory (LM): [-700ms, -200ms] before go signal; Reaction and Motion Time

(RT/MT): [0ms, 500ms] after go signal. The early and late memory period epochs (EM and

LM) were temporally offset from cue offsets to avoid contamination by visual and preparatory

movement signals respectively. As such, the early and late memory period epochs could over-

lap slightly, with an average overlap of 0ms. The RT/MT epoch overlapped substantially with

the reaching movement, as the monkeys’ reaction times (time from go signal to start of hand

movement) and motion times (time from start of hand movement to target acquisition) were

276ms (±29ms) and 186ms (±38ms) respectively. As such, the reach and gaze positions were

spatially dissociated during this epoch.

Single unit analyses

We examined the modulation of neuronal firing rate by the instructed reach amplitude and

direction. To assess significant modulation in firing rate due to these task variables, we used

multivariate (2-way) fixed-effect ANOVAs with interaction of firing rate with direction and

amplitude as factors. ANOVAs were approximately balanced, as the factors (reach target direc-

tion and amplitude) were sampled from a uniform distribution. To further assess significant

modulation by amplitude in each direction separately, we used unpaired t-tests between firing

rate distributions in small and large amplitude trials. When testing for significant effects in at

least one of the four epochs of interest, we adjusted the significance threshold (Bonferroni cor-

rection) to counter problems of multiple comparisons. When testing significance of a one-

group proportion against chance (e.g. proportion of neurons with significant amplitude mod-

ulation per area), we used a one-tailed binomial test. We use the convention of denoting

p< 0.05 as �, p< 0.01 as �� and p< 0.001 as ��� throughout.

Response field characterization

In order to characterize the spatial response fields of neurons, we examined the firing rate of

neurons recorded as monkey S reached to 3 amplitudes in each of 16 directions. We first

mapped targets to Cartesian coordinates and used linear interpolation to estimate the firing

response at each point in a Cartesian grid (11x11 bins, spanning 14cm x 14cm). The interpola-

tion procedure simply estimates neuronal responses for arbitrary target locations within the

experimentally measured reach target space, using a spatial smoothness prior on firing rates.

We quantitatively characterized the interpolated response patterns by measuring the eccentric-

ity of the peak response coordinate. Additionally, we measured the response field width,

defined as the square root of the spatial area containing the top quartile of responses. Both

response field eccentricity and width were converted to degrees of visual angle, based on a

45cm eye-to-screen distance.

Response field modeling

To quantitatively test several alternative hypotheses of neuronal encoding, we constructed and

tested the goodness of fit of several computational models (see Table 1, Fig 2). Our primary

Neuronal representations of reach amplitude in MIP
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goal was to uncover models of neuronal response patterns with good generalization accuracy,

i.e. models that accurately capture the data without over-fitting it, such that they can generalize

to new, unseen data. To this end, we used cross-validated accuracy, wherein a fixed learned

model is explicitly tested on held-out data [30]. This metric directly measure a model’s general-

ization ability rather than estimate it indirectly based on model parsimony, as is the case with

measures such as Akaike’s information criterion (AIC) or Bayesian information criterion

(BIC) [30]. Moreover, AIC and BIC metrics do not apply in a cross-validation scheme, as all

cross-validated models are fixed (have zero free parameters) with respect to the test data [30].

The models and the procedure used to estimate their goodness of fit with the neuronal data are

described in detail below, fully characterized in Table 1, and illustrated conceptually in Fig 2.

For each neuron and each epoch, we first split the trials into two halves. From these two

disjoint sets of trials, we estimated two response patterns N1 and N2 using linear interpola-

tion as described above. The interpolated response patterns were mid-range normalized

(FR FR� minðFRÞ

maxðFRÞ� minðFRÞ
) to map onto [0,1]. The Pearson correlation between N1 and N2 is the

Table 1. Description of all computational models tested, with mathematical characterizations, explicitly stated optimization parameters and

constraints.

Model Equation # Params Constraints Description

1 f(x) = cos(θ − θ0) 1 θ0 2 [−π, π] Cosine directional tuning

2 f(x) = cos(θ − θ0) * kr 2 θ0 2 [−π, π], k 2 [−100,100] Cosine directional tuning with linear amplitude

gain

3 fðxÞ ¼ es cosðy� y0 Þ

2pI0ðsÞ
2 θ0 2 [−π, π], σ 2 [0.01,1] Von Mises directional tuning

4 fðxÞ ¼ es cosðy� y0 Þ

2pI0ðsÞ
� kr 3 θ0 2 [−π, π], σ 2 [0.01,1], k 2

[−100,100]

Von Mises directional tuning with linear

amplitude gain

5 fðxÞ ¼ eðx� μÞ
TS� 1ðx� μÞ,μ = [μx μy],

S ¼

"
sxsx rsxsy

rsxsy sysy

#
5 μx, μy 2 [−20, 20], σx, σy 2 [−5, 50] Gaussian position tuning

https://doi.org/10.1371/journal.pone.0182519.t001

Fig 2. Response field characterization and modeling. For an example PMd neuron, the response field characterization

procedure is shown. Color scale indicates firing rate response. The mean firing rate response to each reach target (left panel) is

used to interpolate the two-dimensional spatial response pattern (middle panel). This interpolated response pattern is then used to

fit computational encoding models of neuronal responses. Model response patterns for each of the tested models (corresponding

to models 1–5) are shown below.

https://doi.org/10.1371/journal.pone.0182519.g002
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neuronal internal consistency, a measure of the reliability of the neuronal response pattern

estimated across disjoint sets of observations. This value corresponds to a noise ceiling of the

neuronal data, as it is measured relative to the neuron’s best possible model, namely itself.

From each response pattern, we solved for the model parameters with constrained non-linear

least-squares minimization (see Table 1 for parameters and parameter constraints), resulting

in two model response patterns M1 and M2. The Pearson correlation between N1 and M2

(and between N2 and M1) is the cross-validated correlation (%neuron,model), as it compares the

neuronal response pattern to the prediction from a model fitted on different sets of observa-

tions (trials). This cross-validation procedure is crucial to ensure that model fits do not reflect

over-fitting. For each neuron and each epoch, we repeated this procedure 50 times with ran-

dom resampling of trial split-halves to estimate average values for correlation values. For

brevity, we refer to the cross-validated correlation between model and neuronal response pat-

terns as the model consistency. Using this method, we tested the consistency of several models

that each map a two-dimensional point x = (x, y) = (θ, r) to a scalar normalized firing rate

value FR(x). As with the neuronal response patterns, the model response patterns were mid-

range normalized (FR FR� minðFRÞ

maxðFRÞ� minðFRÞ
) to map onto [0,1].

All five tested models are listed in Table 1 and visualized for an example neuron in Fig 2.

We tested for directional tuning using both cosine and Von Mises functions, parameterized by

preferred direction angle and width (concentration parameter). For each of these, we tested

either a pure directional tuning, or directional tuning with a linear amplitude gain (parameter-

ized by a gain k). The resulting four model equations are shown in Table 1 (Models 1–4). We

also tested a model of position tuning (see Model 5 in Table 1), consisting of a 2D Gaussian

function, characterized by parameters μ and S denoting the two-dimensional center and

width of the Gaussian respectively. This model corresponds to a smooth response field that

fires maximally at a particular location in reach space. Example response patterns for each of

these models is shown in Fig 2.

We modeled the response patterns of all task-related neurons recorded under Task 2, sepa-

rately for each epoch. As noted above, the models were fitted and/or optimized using only the

training data, and subsequently tested on held-out testing data to measure model consistency.

Importantly, this cross-validation procedure avoids the problem of over-fitting, (where exces-

sively complex models, i.e. models with large number of parameters, fit the noise in the data).

By always measuring model consistency on held-out data, we ensure that differences in consis-

tencies across models are not due to their ability to over-fit (i.e. number of parameters).

Results

Our primary goal was to test the hypothesis that the amplitude of a planned reach is repre-

sented in the activity of neuronal populations in MIP. We also set out to compare any ampli-

tude encoding in MIP to the corresponding representation in PMd. To do so, we recorded

single neuron activity from monkeys (three monkeys for MIP, one monkey for PMd) perform-

ing a variable amplitude memory reach task (see Materials and methods). The task, as illus-

trated in Fig 1A, required the monkeys to accurately reach to a remembered visual target.

Reach targets were arranged in two different configurations (see Fig 1B): Task 1 consisted of

targets at two amplitudes along each of four equally spaced directions, while Task 2 consisted

of targets at three amplitudes in each of 16 equally spaced directions. Fig 3A and 3B show

example neuronal and behavioral data for an MIP neuron recorded under Task 1. For visual

clarity, the behavioral data (Fig 3B) only show the endpoint of 15 reaches per target (small,

large amplitude shown in black, grey respectively). The four panels in Fig 3A show the example

neuron’s spike density functions (mean ± SE) for small and large amplitude, separately for

Neuronal representations of reach amplitude in MIP
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each reach direction. For this neuron, we observe significant modulation of memory period

spiking activity by reach amplitude in some (UP, LEFT) but not all directions, suggesting that

neuronal responses are modulated by reach amplitude, possibly as an interaction of reach

direction and reach amplitude.

To quantify this phenomenon at the population level, we measured the frequency of occur-

rence of significant main and interaction effects of reach amplitude and reach direction (2-way

ANOVA interaction model) in each of four trial epochs, for populations of neurons recorded

from MIP and PMd under both target configurations. We restricted this analysis to the subset

of “task-related” neurons, defined as cells with significantly different spiking activity during

at least one trial epoch (Cue (C), Early Memory (EM), Late Memory (LM), Movement (RT/

MT)) relative to the baseline pre-trial epoch (p< 0.05/4, t-test with Bonferroni correction for

Fig 3. (A) Example neuronal data. For an example neuron recorded under Task 1, the spike density functions (mean ± SE) for small and large amplitude is

shown (small and large amplitude are shown in grey and black respectively). Each panel corresponds to a reach direction. Vertical lines mark trial events; the

go signal is shown as mean +- SE due to the randomized length of the memory period (see dashed line). Axes are identical for the four panels. For this

neuron, we observe significant modulation of memory period spiking activity by reach amplitude in some but not all directions. (B) Example behavioral data

from one session. The endpoint of reaches to target in Task 1 are shown. For visual clarity, 15 trials for each target are shown. Small and large amplitude are

shown in grey and black respectively. (C) Population analysis of modulation by reach direction and amplitude for both tasks. The proportions of task-related

MIP and PMd neurons with significant main or interaction effects of reach amplitude (and reach direction), in any of the four trial effects (p < 0.05/8 with

Bonferroni correction for eight comparisons across effect types and epochs; 2-way ANOVA interaction model) are shown (white bars), along with the “null”

proportion expected by chance (dashed line). The corresponding proportions when considering only movement planning epochs (p < 0.05/4, Bonferroni

correction for four comparisons), are also shown (black bars).

https://doi.org/10.1371/journal.pone.0182519.g003
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multiple comparisons). Importantly, this criterion for task-related neurons is not based on

tuning properties such as selectivity for amplitude or direction, and thus does not overestimate

the measured proportions of neurons.

We first counted the number of neurons with significant main or interaction effects of

reach amplitude, in any of the four trial epochs (p< 0.05/8 with Bonferroni correction for

eight comparisons across effect types and epochs; 2-way ANOVA interaction model). Fig 3C

shows the proportion of task-related MIP and PMd neurons that satisfied this criterion (see

white bars). The “null” proportion expected by chance (dashed line, obtained by performing

the same analysis on randomly shuffled data 100 times) is shown for comparison. This propor-

tion was statistically significant (MIP: 19%, p = 5.26e-10; PMd: 43%, p< e-100; binomial test

against 5% null). Furthermore, this result holds even when restricting to only movement plan-

ning epochs (p< 0.05/4, Bonferroni correction for four comparisons), albeit with smaller pro-

portions of neurons (MIP: 12%, p = 6.34e-4; PMd: 26%, p = 4.33e-9; binomial test against 5%

null). Thus, a small but statistically significant proportion of task-related neurons in both MIP

and PMd exhibit spiking responses modulated by reach amplitude.

For task related neurons, we examined the dependence of amplitude sensitivity on the trial

epoch (cue, early memory, late memory, and motion epochs) and effect type (main versus

interaction effect). Fig 4A shows the proportion of task-related MIP and PMd neurons with

responses significantly modulated by main and interaction effects of reach amplitude, for each

of four trial epochs (main effect: gray bars; interaction effect: white bars; p< 0.05, 2-way

ANOVA interaction model). Again, the corresponding proportions of task-related neurons

with significant main effects for reach direction (white bars), as well as the “null” proportion

expected by chance (dashed line, obtained by randomly shuffling the data 100 times), are

shown for comparison. Fig 4B shows these proportions of neurons with significant main and

interaction effects for each epoch separately, including the overlap in populations selected

from these criteria (see Venn diagrams).

In particular, the prevalence of interaction effects suggest a joint encoding of direction and

amplitude by neurons in both areas. To examine the dependence of amplitude selectivity on

reach direction, we performed post-hoc tests measuring the number of reach directions in

which task-related neurons showed significant modulation due to reach amplitude. For

each neuron recorded under Task 1 (two amplitudes in each of four directions), trials were

separated by reach direction and t-tests were used to infer significant differences between

responses of small and large amplitudes, for each direction. We found that over one fifth of

task-related MIP neurons exhibited amplitude selectivity in exactly one out of the four direc-

tions for all epochs (C: 22%, EM: 18%, LM: 18%, RT/MT: 28%), while a smaller proportion

were selective to reach amplitude in two directions (C: 1%, EM: 6%, LM: 4%, RT/MT: 4%).

Less than 1% of task-related MIP neurons showed selectivity to reach amplitude in more than

two directions. PMd exhibited similar patterns of amplitude selectivity; approximately a third

of all neurons were selective to amplitude in one direction: (C: 29%, EM: 21%, LM: 36%, RT/

MT: 36%), but this proportion decreased significantly for selectivity in two directions (C: 0%,

EM: 4%, LM: 7%, RT/MT: 7%), with zero neurons showing amplitude selectivity in more than

two directions in any epoch. Thus, all task-related neurons, in both MIP and PMd, show

significant modulation of firing activity by reach amplitude in at most some but not all

directions.

Furthermore, directions with significant modulation by amplitude often coincided with the

preferred direction of the neuron. For each neuron, we defined the preferred direction as that

which resulted in maximum mean firing rate, for each epoch separately. For each epoch, we

then computed ΔPD, the difference in direction angle between this preferred direction and the

direction with “greatest amplitude modulation,” i.e. the direction with minimal p-value for
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amplitude modulation, from unpaired t-tests. This analysis only included neurons with signifi-

cant amplitude modulation in at least one direction (p< 0.05, unpaired t-tests for each direc-

tion) recorded under Task 1. Fig 5A shows the proportion of these amplitude selective

neurons in MIP and PMd as a function of the ΔPD, for each epoch; the data pooling over all

epochs is shown in black. We observe that significant amplitude modulation is tuned towards

Fig 4. (A) Population analysis of modulation by reach direction and amplitude for both tasks. The proportions of neurons that varied their activity

significantly due to the instructed reach direction (black bars), instructed reach amplitude (gray bars), and an interaction of direction and amplitude

(white bars) are shown for each of four trial epochs. The two panels correspond to task-related neurons recorded from MIP and PMd respectively,

pooling across both target configurations. The proportion expected by chance (“null”, obtained by randomly shuffling the data) is shown with the

black horizontal line. Asterisks indicate significance of proportions relative to chance (*: p < 0.05, **: p < 0.01, ***: p < 0.001). (B) Main and

interaction effects of reach amplitude. For each cortical area and trial epoch, a Venn diagram shows the proportion of task-related neurons with a

significant main effect (gray discs) and interaction effect (white discs) of reach amplitude. The overlap in the two discs (light gray) indicate the

proportion of neurons exhibiting both significant main and significant interaction effects due to reach amplitude.

https://doi.org/10.1371/journal.pone.0182519.g004
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the preferred direction of the neuron in both MIP and PMd. The histogram of ΔPD was signif-

icantly non-uniform (MIP: p = 6.79e-5; PMd: p = 0.03; Rayleigh test for circular uniformity)

and centered near 0˚ (MIP: -6.71˚ ± 6.19˚; PMd: 4.76˚ ± 10.34˚; circular mean ± SE). This

result holds when ΔPD is computed relative to the circular average of all directions with signif-

icant amplitude modulation, rather than the direction with greatest amplitude modulation

(MIP: p = 3.6e-4, centered at -2.07˚ ± 6.30˚; PMd: p = 0.01, centered at -12.61˚ ± 10.07˚).

In particular, neuronal responses in both areas most consistently peaked for reach targets at

large amplitudes along the preferred direction. Fig 5B shows the normalized firing rate

response to reaches to small, medium and large amplitude targets along the preferred and

anti-preferred directions of all task-related cells recorded under Task 2 (mean ± SE over neu-

rons shown, for each epoch). We observe that the largest amplitude target along the preferred

direction consistently resulted in the greatest neuronal response. Pooling over all epochs,

there is a significant positive correlation between the target amplitude and the normalized neu-

ronal firing rate along the preferred direction (MIP: r = 0.46, p = 7.25e-28; PMd: r = 0.29,

p = 1.83e-10), but not along the anti-preferred direction (MIP: r = 0.01, p = 0.84; PMd:

r = -0.02, p = 0.66). In brief, neurons in MIP and PMd exhibit evidence for a joint encoding of

direction and amplitude, wherein modulation by amplitude is most likely to be observed and

strongest along the preferred direction of the neuron, with maximal response to more periph-

eral targets along the preferred direction.

Neuronal spatial response patterns

Together, these results indicate that the direction and amplitude of a reach target in space

conjointly modulate neuronal activity in MIP and PMd. The interaction between amplitude

and direction suggests a possible encoding of the position of a target as a coordinate in visual

space, rather than a representation of direction and/or amplitude. These different encoding

hypotheses are not optimally differentiated using the sparse reach target configuration in Task

1. In order to do so, we characterized the response patterns of task-related neurons in MIP

and PMD simultaneously recorded while one monkey performed reaches to a dense spatial

Fig 5. (A) Bias in directions with amplitude-selectivity. Each polar histogram shows the proportion of neurons as a function of ΔPD, the difference in angle

between directions with significant amplitude modulation and the preferred direction of the neuron. The two panels correspond to neurons recorded from MIP

and PMd under Task 1; different markers correspond to the four epochs of interest. Significant amplitude modulation is tuned towards the preferred direction

of the neuron. (B) Bias in amplitude response. Each subpanel shows normalized firing rate response to reaches to small, medium and large amplitude

targets of all task-related cells recorded under Task 2. Markers indicate responses for each epoch, and solid lines indicate the pooled average (mean ± SE

over neurons shown). Data are separated by responses along the preferred (black line) and anti-preferred (gray line) directions.

https://doi.org/10.1371/journal.pone.0182519.g005

Neuronal representations of reach amplitude in MIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0182519 August 9, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0182519.g005
https://doi.org/10.1371/journal.pone.0182519


sampling of targets (16 directions x 3 amplitudes, referred to as Task 2). We analyzed the spa-

tial response patterns of neurons using the procedure (described in Methods) illustrated in Fig

2. Briefly, the average firing rates of neurons in response to reaches to the different targets

were used to interpolate and characterize their spatial response patterns in a 2D fronto-parallel

plane, for each neuron and each epoch. To test our encoding hypotheses, we compared the

cross-validated goodness of fit (consistency) of several alternative computational models with

respect to the interpolated response patterns of single neurons. Fig 6 shows spatial response

patterns for two example neurons, one from each area, for all epochs considered. The mea-

sured average firing rates at spatial positions of the reach target are shown (colored circles)

overlaid on the interpolated spatial response pattern. We first qualitatively observe that neu-

rons exhibit reliable spatially tuned responses in both areas. Further, these example response

patterns suggest that neurons are not simply modulated by target direction alone, but rather

seem to encode particular regions of reach-space in each epoch. As previously shown (see Fig

5B), response fields typically peaked in the periphery. Quantitatively, the eccentricities of the

peak response locations were not different between MIP and PMd (MIP: 16.04˚ ± 0.43˚; PMd:

16.05˚ ± 0.44˚, mean ± SE, pooling across epochs). Response field widths were slightly but sig-

nificantly larger in MIP than in PMd (MIP: 11.28˚ ± 0.07˚; PMd: 10.89˚ ± 0.09˚, p< 1e-4,

unpaired t-test, see Methods). We additionally observe that the spatial response patterns of

neurons can vary across epochs. However, these temporal dynamics were considered beyond

the scope of the current study.

To quantitatively test alternative encoding hypotheses of neuronal responses, we asked how

well several alternative computational encoding models could predict the observed neuronal

responses. The tested encoding models, ranging from cosine directional tuning to Gaussian

Fig 6. Example spatial response patterns. Each row shows the spatial response patterns of an example neuron, for each epoch considered. One

example neuron from each area is shown. The measured average firing rates at spatial positions of the reach target are plotted (colored circles)

overlaid on the interpolated spatial response pattern (11x11 colored maps), using the same color scale. Warmer colors indicate higher firing rates. For

visualization purposes, the interpolated spatial response patterns have been slightly smoothed, using a two-dimensional Gaussian kernel of width 0.5

bins.

https://doi.org/10.1371/journal.pone.0182519.g006
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position encoding, are mathematically described in Table 1 and illustrated with example

model fits in Fig 2. The large number of targets in Task 2, and corresponding small number of

trials per target condition, could result in a relatively noisy estimate of average neuronal firing

rate for each target. We measured this noise ceiling via the neuronal internal consistency (the

correlation between neuronal response patterns estimated from disjoint split halves of the

data). Importantly, the entire modeling procedure was cross-validated: the model training

and testing were done on separate disjoint halves of the data (see Methods for detailed descrip-

tion of modeling procedure). Cross-validation ensures that differences in consistencies across

models are not due to their ability to over-fit (i.e. are not due to differences in number of

parameters).

For each of the five tested models, we computed a consistency value for each task-related

neuron recorded under Task 2 and for each epoch. Fig 7A shows the resulting distribution of

model consistencies over neuronal samples (mean ± SE) for each model. First, we observe that

all models capture a relatively large proportion of the replicable variance in neuronal responses

(i.e. the model consistencies are relatively close to the noise ceiling of the data). However, we

observe a significant improvement in model consistency for the Gaussian position encoding

model (model 5), relative to null models of direction and amplitude tuning (models 1–4). Fig

7B shows this quantitative comparison for each pairwise combination of models. Each panel

(row i, column j) directly compares two models (model #i vs. model #j), and each point in the

panel’s scatter plot corresponds to the models’ consistency to a particular neuronal response

pattern. The dashed unity line corresponds to equal consistency across these two models. The

p-value obtained from a two-tailed signed rank test comparing the distributions of correlations

between models i and j is shown in the panel title, and model pairs with statistically significant

differences are highlighted in grey. We observe that the Gaussian position-encoding model

(#5) significantly outperforms all other models. In particular, these comparisons suggest that

for a subset of neurons (points along the identity line), the consistencies of direction and posi-

tion encoding models are largely indistinguishable, whereas for a sizeable proportion of neu-

rons, the position-encoding model (model #5) vastly out-performs the direction-encoding

model (see points above the unity line). Taken together, these results suggest that a simple

Gaussian position-encoding model most accurately captures the response patterns of task-

related neurons in MIP.

Fig 7C and 7D repeat this procedure for task-related PMd neurons, with very similar

results. However, both cosine direction-encoding (model 1) and Gaussian position-encoding

(model 5) accurately capture the neuronal response patterns, significantly better than all other

models, but these data do not have the power to distinguish between these two models.

Discussion

Representation of reach amplitude and direction in MIP

In this work, we tested the hypothesis that the reach amplitude is represented in the activity of

neurons, during movement planning and execution, in sensory-motor integration area MIP, a

sub-region of the parietal reach region. Previous work has examined the neuronal representa-

tion of the in-plane depth of reaches in neighboring and overlapping reach-related posterior

parietal areas [11–13, 31]. Here, we found that neurons in MIP, similarly to PMd, conjointly

represent the intended reach direction and amplitude, in a manner consistent with encoding

of the remembered location of the reach goal.

Similar to previous findings in motor and premotor cortices [4, 20], our results highlight an

under-representation of reach amplitude relative to reach direction in movement planning sig-

nals; the number of neurons with significant modulation by reach amplitude is approximately
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Fig 7. (A) Model Consistency. For each of the five tested models, the resulting distribution of model consistencies over all task-related MIP

neurons and all epochs (mean ± SE) is shown for each model. The gray horizontal bar corresponds to the noise ceiling (internal consistency

of the neuronal response patterns, mean ± SE). (B) Quantitative comparison for each pairwise combination of models. Each panel (row i,

column j) directly compares two models (model #i vs. model #j), and each point in the panel’s scatter plot corresponds to a particular

neuronal response pattern in MIP. The dashed unity line corresponds to equal consistency across these two models. The p-value obtained

from a two-tailed signed rank test comparing the distributions of correlations between models i and j is shown in the panel title, and model

pairs with statistically significant differences are highlighted in grey. (C, D) Identical to (A,B) for task-related neurons in PMd.

https://doi.org/10.1371/journal.pone.0182519.g007
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one third of the corresponding number for reach direction. Such a comparison may not be

valid given that the two variables were not matched in dynamic range: while the full range of

reach directions in the fronto-parallel plane were presented, the tested reach targets extended a

limited range of amplitudes. However, the observed differences in representation of direction

and amplitude are reflected in the reaching behavior. Psychophysical experiments in humans

show that subjects make greater errors in the extent of a reach compared to the direction [32],

and that the initial kinematics of a movement do not perfectly predict movement amplitude

without the inclusion of compensatory adjustments [33]. These behavioral data point towards

a poorer representation of reach amplitude, relative to direction, in the movement plan. How-

ever, reach amplitude must be represented in the neuronal motor plan, because the visual sti-

muli defining the reach goal no longer exist in the external environment in the context of

memory-guided reaches. As such, the modest neuronal modulation of movement planning

signals by amplitude observed both here and in previous studies is consistent with the behav-

ioral output.

We focused our analyses on neuronal activity in MIP (152 task-related neurons in monkeys

H, F, S), and recorded from PMd (68 task-related neurons in monkey S) for direct cross-area

comparisons. We did not observe any idiosyncratic behavioral or neuronal signatures in mon-

key S and, importantly, multi-electrode recordings in monkey S simultaneously sampled from

both MIP and PMd in each session, thus eliminating the possibility of experimental variance

that selectively affects one brain area, and maximizing power for direct comparisons. Further-

more, our recordings in PMd largely replicate previously reported findings characterizing this

area, namely that the activity of PMd neurons is modulated by an interaction of reach direc-

tion and amplitude [20], and likely to represent the instructed target location [34]. Thus, we

argue that this data has sufficient power to support inferences about the representation of

reach goal amplitude in MIP, as compared to PMd.

Neurophysiological recording sites were targeted for area MIP based on a stereotaxic defini-

tion. Recording chambers for acute recordings were placed sufficiently posterior (-7) such that

area 5 is restricted to the gyral surface, and our electrode penetrations were deep enough (2-

8mm) to exclusively target putative area MIP. For chronic array recordings, we used long and

staggered electrodes (3-6mm), thus restricting the recording sites to deep within the sulcus at

the planned location. Using a neuro-navigation system (Brainsight), we were able to precisely

register the stereotaxic atlas to individual subject structural MRI scans (for monkey H, S) for

targeting and surgery planning. However, the boundary between MIP and neighboring corti-

cal area 5 is not stereotaxically well defined, and the denominations are not always consistent

across studies [35]. In this study, we did not perform histological validation of recording site

locations, which may help differentiate these two neighboring areas [36], but rather rely on ste-

reotaxic planning to claim that recordings targeted area MIP.

We trained monkeys to perform memory-guided reaches in order to investigate the repre-

sentation of reach direction and amplitude in movement planning signals, independently of

visual responses. We observed that monkeys accurately reached to the remembered target,

with an average (± SEM) error of 1.91˚ (± 0.05˚); this suggests that closed-loop visual feedback,

while likely extremely useful [37–39], may not be necessary for making correct reaching move-

ments, especially in the domain of highly trained movements. We found that a modest but sig-

nificant proportion of neurons in MIP and PMd modulate their movement planning activity

based on both the direction and the amplitude of the forthcoming reach, suggesting that these

neuronal representations may causally support accurate memory-guided reaching behavior.

Furthermore, we speculate that these same representations may contribute to planning and

executing visually-guided reaches [40].
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We examined the representation of reach direction and amplitude at various epochs within

a memory reach trial. It is important to note that the cue epoch (C) overlaps with the visual

stimulus, whereas the movement epoch (RT/MT) overlaps with a hand movement. The

observed selectivity to reach target direction and amplitude during the former (C) could reflect

visual response selectivity. Likewise, the selectivity during the latter (RT/MT) could reflect a

representation of the hand position. Moreover, since we did not vary eye position (monkeys

held gaze fixation throughout the trial), these data do not provide evidence for or against an

eye-centered representation, i.e. a representation of the reach goal or hand position relative to

the center of gaze.

Finally, we found a bias in the representation of reach space in our recorded neuron popu-

lation, with systematically stronger response for planned reaches to large amplitudes (see Fig

4). Importantly, this response bias does not necessarily suggest that the periphery is better rep-

resented; indeed, the high-dimensional neuronal population can accurately represent both

central and peripheral reach targets without having a substantial proportion of individual

units respond with high firing rates to these targets. Additionally, this finding may depend on

our choice of reach targets positions, where the observed peak locations correspond to ceiling

effects from insufficient spatial sampling. However, in this work, we used reach targets with

eccentricities at near practical limits (to subtend the entire touchscreen surface for Task 2),

comparable or greater in extent relative to previous similar work [20, 41–44]. Including more

peripheral targets may be useful to make accurate inferences about response field properties

beyond the examined range of reaching movements.

Spatial response fields

We found strong evidence for a conjoint encoding of reach direction and amplitude; neurons

in both areas exhibited significant modulation of movement planning activity by reach ampli-

tude in some but not all reach directions. In particular, a dense sampling of reach targets

revealed that neurons in both areas exhibit reliable spatial response patterns that are best pre-

dicted by a position-encoding model rather than a number of alternative direction and ampli-

tude encoding models. Interestingly, this internal representation of the instructed reach target

is highly consistent with previously observed sensory representations in the posterior parietal

cortex [45–47], as well as corresponding response fields for saccadic movement plans.

The differences in model consistencies were not simply due to the complexity of models

(i.e. the number of parameters), as models were evaluated in a cross-validation scheme. Impor-

tantly, the relatively high consistency of a Gaussian position-encoding model is not at odds

with the relatively small proportions of neurons with significant modulation by amplitude, as

compared to reach direction (~one third the population size). Indeed, for a large subset of neu-

rons, both direction- and position-encoding models equally captured the neuronal response

patterns (points along the unity line in Fig 7B and 7D), suggesting that this simple Gaussian

model may concisely and accurately capture the response patterns of all (both amplitude-mod-

ulated and not) task-related neurons. Alternatively, it is possible that there exist two distinct

populations of neurons that are best captured by two different models; however, our current

data do not strongly suggest such heterogeneity.

Conclusion

In this work, we characterized the responses of MIP neurons as monkeys planned and

executed center-out reaches to targets varying in both direction and amplitude in the fronto-

paralel plane. We found that a significant proportion of neurons had firing rate responses

modulated by reach amplitude, but this population was relatively small (approximately one
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third in size) compared to reach direction. Moreover, these neurons were conjointly modu-

lated by both reach direction and amplitude, in a manner consistent with an encoding of reach

goals as a position in visual space. Indeed, the spatial response patterns of MIP neurons were

best predicted by 2D Gaussian position encoding model, in contrast to a number of alternative

direction and amplitude tuning models. Taken together, these results suggest that amplitude

and direction jointly modulate activity in MIP to form representations of intended reach

position.
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