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Abstract. Retinal ganglion neurons extend axons that 
grow along astroglial cell surfaces in the developing 
optic pathway. To identify the molecules that may 
mediate axon extension in vivo, antibodies to neuronal 
cell surface proteins were tested for their effects on 
neurite outgrowth by embryonic chick retinal neurons 
cultured on astrocyte monolayers. Neurite outgrowth 
by retinal neurons from embryonic day 7 (E7) and Ell 
chick embryos depended on the function of a calcium- 
dependent cell adhesion molecule (N-cadherin) and 13t- 
class integrin extracellular matrix receptors. The in- 

hibitory effects of either antibody on process extension 
could not be accounted for by a reduction in the at- 
tachment of neurons to astrocytes. The role of a third 
cell adhesion molecule, NCAM, changed during devel- 
opment. Anti-NCAM had no detectable inhibitory 
effects on neurite outgrowth by E7 retinal neurons. In 
contrast, Ell retinal neurite outgrowth was strongly 
dependent on NCAM function. Thus, N-cadherin, 
integrins, and NCAM are likely to regulate axon ex- 
tension in the optic pathway, and their relative impor- 
tance varies with developmental age. 

I 
t~ the developing primary visual system of vertebrates, 
the endfeet of neuroepithelial astroglial precursors are 
prominent components of the routes taken by retinal 

ganglion cell axons within the eye, optic nerve, and optic 
tectum (Rager, 1980; Easter et al., 1984; Silver and Rutis- 
hauser, 1984; Lemmon, 1985, 1986; Bork et al., 1987). In 
the retina, growth cones contact the endfeet of radially 
oriented glia as well as the inner limiting basement mem- 
brane as they grow toward the optic stalk (Rager, 1980; 
Easter et al., 1984). In the optic nerve, small fascicles of 
axons are separated by glial processes, and their growth 
cones frequently contact glial surfaces (Rager, 1980; Silver 
and Rutishauser, 1984; Bovolenta and Mason, 1987). Al- 
though the role of glial surfaces in the ordered growth of op- 
tic fibers into the tectum is unknown, the optic nerve fiber 
layer of the embryonic tectum is penetrated by numerous 
radial glial endfeet (Lemmon, 1985, 1986; Bork et al., 
1987). Thus, observations of optic pathway development in 
vivo suggest that astroglial precursors stimulate and guide 
the elongation of retinal ganglion cell axons. 

Studies of central nervous system development and regen- 
eration have demonstrated that astrocytes provide an effective 
cellular substrate for axonal elongation (Bohn et al., 1982; 
Smith et al., 1986). Astrocytes isolated from embryonic or 
early postnatal brain are good substrates for rapid neurite ex- 
tension by both central and peripheral neurons in vitro (No- 
ble et al., 1984; Fallon, 1985; Tomaselli et al., 1986). In 
particular, embryonic chick retinal neurons extend profuse, 
unfasciculated neurites on astrocyte surfaces while they do 
not respond as well to fibroblast monolayers (McCaffery et 

al., 1984; Fallon, 1985). Therefore, astrocytes are distinct 
from other cell types in that they express highly active neurite 
outgrowth-promoting factors. Retinal neurons also attach 
and extend neurites on substrates coated with the purified ex- 
tracellular matrix (ECM) 1 proteins, laminin, fibronectin, 
and collagen types I and IV (Akers et al., 1981; Adler et al., 
1985; Cohen et al., 1986; Hall et all., 1987; Neugebauer, 
K., unpublished observations). Laminin, which is the most 
effective of these ECM proteins in promoting neurite out- 
growth by retinal neurons (Hall et al., 1987), is expressed 
on the surfaces of cultured astrocytes (Liesi et al., 1983). Re- 
cent evidence indicates, however, that laminin is not the only 
neurite outgrowth-promoting factor expressed by astrocytes. 
First, retinal neurons isolated from embryonic day-11 (El 1) 
chick embryos no longer respond to purified laminin, yet 
they continue to extend neurites rapidly on astrocyte surfaces 
(Cohen et al., 1986; Hall et al., 1987). Second, neurite out- 
growth by peripheral neurons on astrocytes is only mildly in- 
hibited by a monoclonal antibody (CSAT) that completely in- 
hibits neurite outgrowth on these ECM-derived substrates 
(Tomaselli et al., 1988). This antibody recognizes the inte- 
grin 131 subunit shared by a family of ECM receptor hetero- 
dimers (see Hynes, 1987, for nomenclature) and blocks 
neuronal attachment and process outgrowth on laminin, 
fibronectin, collagens, and native ECMs (Bozyczko and 
Horwitz, 1986; Tomaselli et al., 1986, 1987; Cohen et al., 

1. Abbreviations used in this paper: E, embryonic day; ECM, extracellular 
matrix. 
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1987; Hall et al., 1987). Thus, cultured astrocytes express 
neurite-promoting factors that are distinct from these ECM 
proteins. 

Recently, attention has been focused on the role of cell 
adhesion molecules (CAMs) as cell surface-associated neu- 
rite-promoting factors. N-cadherin is a 130-kD cell surface 
glycoprotein that mediates calcium-dependent adhesion be- 
tween neural cells (Grunwald et al., 1982; Hatta et al., 1985) 
and is expressed by both central and peripheral neurons 
(Hatta et al., 1986, 1987; Crittenden et al., 1988). Neurite 
outgrowth by peripheral neurons grown on astrocytes de- 
pends strongly on the function of N-cadherin (Tomaselli et 
al., 1988). N-cadherin also functions in peripheral neurite 
outgrowth on skeletal myotubes and Schwann cells (Bixby et 
al., 1987, 1988). The calcium-independent CAM, NCAM, 
is also widely distributed in the nervous system (cf. Daniloff 
et al., 1986). Although it promotes neuronal adhesion and 
process outgrowth on myotubes in vitro (Rutishauser et al., 
1983; Bixby and Reichardt, 1987; Bixby et al., 1987), 
NCAM does not appear to be involved in peripheral neurite 
outgrowth on astrocytes or Schwann cells (Tomaselli et al., 
1988; Bixby et al., 1988) or on the surfaces of other periph- 
eral axons (Chang et al., 1987). However, as NCAM is ex- 
pressed on astrocytes in culture (Noble et al., 1985; Keil- 
hauer et al., 1985), itremains a candidate for mediating 
interactions that lead to neurite outgrowth by some types of 
neurons on astrocytes. 

As a first step towards defining the molecular mechanisms 
underlying axon extension in the retinotectal pathway, we 
have examined embryonic retinal neurite outgrowth on astro- 
cytes in vitro, using antibodies that inhibit the function of 
N-cadherin, NCAM, and the integrin I~-class ECM recep- 
tor heterodimers. Our results implicate all three of these neu- 
ronal receptors in neurite outgrowth by retinal neurons on 
astrocytes and suggest changes in the relative importance of 
NCAM function as development proceeds. 

Materials and Methods 

Animals 
Fertile White Leghorn chicken eggs were purchased from Feather Hill Farm 
(Petaluma, CA) and were maintained at 38°C and 95% humidity until 
use. Mice were from Simonson Laboratories (Gilroy, CA), and newborn 
Sprague-Dawley rats were from Bantin and Kingman (Fremont, CA). 

Chemicals and Reagents 

Murine laminin was purified from the Engelbreth-Holm-Swarm sarcoma by 
Dr. D. E. Hall (University of California, San Francisco) using published 
procedures (Timpl et al., 1979). L-[35Slmethionine was from Amersham 
Corp. (Arlington Heights, IL). Aquasol was from New England Nuclear 
(Boston, MA). Protein A-Sepharose CL-4B was obtained from Pharmacia, 
Inc., (Piscataway, NJ). DEAE cellulose (DE-52) was from Whatman Inc. 
(Clifton, NJ). Pepsin was from Worthington Biochemical Corp. (Freehold, 
NJ), and all other chemicals were from Sigma Chemical Co. (St. Louis, 
MO). 

Antibodies 

Hybridoma cells secreting the CSAT monoclonal antibody were the gener- 
ous gift of Dr. A. E Horwitz (University of Illinois, Urbana, IL) and were 
grown as described (Neff et al., 1982). CSAT recognizes an epitope on the 
avian integrin 13~ subunit and will henceforth be referred to as anti-integrin 
13L (Buck et al., 1986; see Hynes, 1987, for integrin nomenclature). The 
224-1A6-AI (1A6) hybridoma cell line (Lemmon et al., 1982) was kindly 
provided by Dr. David Gottlieb (Washington University, St. Louis, MO). 

IA6 is identical to monoclonal antibody 105 which has been shown to bind 
an extracellular epitope of NCAM but not to inhibit NCAM function as as- 
sayed by brain vesicle aggregation (Watanabe et al., 1986). Hybridoma cells 
secreting the monoclonal antibody A2B5 which recognizes gangliosides on 
the surfaces of neurons and type II astrocytes (Eisenbarth et al., 1979; Raft 
et al., 1983) were purchased from the American Type Culture Collection 
(RockviUe, MD). For the preparation of ascites fluid, hybridoma cells were 
injected intraperitoneally into 10-wk-old BALB/c female mice that had been 
primed 10 d previously with tetramethylpentadecane (pristane). CSAT IgG 
was purified from ascites fluid by protein A-Sepharose CL-4B chromatogra- 
phy as described in Neffet al. (1982), and 1A6 IgG was purified by ammo- 
nium sulfate precipitation followed by ion exchange chromatography on 
DEAE cellulose as described in Hudson and Hay (1980). Fab fragments of 
CSAT and 1A6 IgG were prepared by papain digestion followed by ion ex- 
change chromatography on DEAE cellulose as described in Hudson and 
Hay (1980). 

A rabbit antiserum to chick brain NCAM was generated as described in 
Bixby and Reichardt (1987); the antiserum recognizes all three forms of 
NCAM (ld, sd, and ssd) in immunoblots of brain membranes and inhibits 
adhesion and neurite outgrowth by chick peripheral neurons on skeletal myo- 
tubes in vitro (Bixby and Reichardt, 1987; Bixby et al., 1987). The anti- 
N-cadherin serum was generated in New Zealand White rabbits against a 
purified 90-kD proteolytic fragment of a 130-kD Ca2+-dependent CAM 
expressed by avian neural retinal cells (Crittenden et al., 1988). The anti- 
N-cadherin serum recognizes a single 130-kD protein in immunoblots of 
chick retinal membrane proteins separated by two-dimensional gel elec- 
trophoresis (Crittenden et al., 1988). This polypeptide has been referred to 
in the literature as NcalCAM (Bixby et al., 1987; Crittenden et al., 1988) 
but is now known to cross react with monoclonal antibodies to N-cadherin. 
Anti-NCAM and anti-N-cadherin IgG were prepared by ammonium sulfate 
precipitation followed by chromatography on DEAE (Hudson and Hay, 
1980). Fab' fragments of these antibodies were prepared by pepsin digestion 
followed by reduction and alkylation as described in Hudson and Hay 
(1980). 

Cell Culture 

Since the integrin 13~ monoclonal antibody is highly species-specific, rat 
astrocytes were chosen as a substrate for neurite outgrowth by chick retinal 
neurons to minimize the effects of this antibody on the astrocytes them- 
selves. Similarly, the N-cadherin and NCAM antisera were generated 
against avian antigens, but do cross react to some extent with rat antigens. 
Astrocytes were isolated from neonatal rat cortices as described (Fallon, 
1985) and >90% expressed the astrocyte marker, glial fibrillary acidic pro- 
tein (GFAP). Of these GFAP-positive cells, 90-95% were flat, polygonal 
cells that resembled type I astrocytes isolated from rat optic nerve; the re- 
maining 5-10% were process-bearing and, like type II astrocytes, expressed 
the cell surface gangliosides recognized by the A2B5 monoclonal antibody 
(Raffet al., 1983). Enzymatically dissociated E7 and Ell chick retinal neu- 
rons were separated from non-neuronal cells by differential adhesion to tis- 
sue culture plastic and grown in defined medium as described in Hall et al. 
(1987). When the neurons were cocultured with astrocytes, the defined 
medium was supplemented with 0.5% FCS as in Cohen et al. (1986). 

Substrate Preparation and Coculture 

In some experiments, astrocytes were cultured as small "island" monolayers 
(5 mm in diameter) centered on 13-mm glass coverslips that had been previ- 
ously coated with laminin (10 0.g/ml in Ca 2+, Mg2+-free PBS) as described 
in Tomaselli et al. (1986). For other experiments, coverslips were coated 
with 1 mg/ml poly-v-lysine in water, washed with Ca 2+, Mg2+-free PBS, 
and seeded with "~105 astrocytes, such that after 24-48 h of culture, a con- 
fluent monolayer of astrocytes extended to the coverslip edge. In coculture 
experiments, ,',,105 retinal neurons were plated per coverslip and cultured 
for 16-20 h at 37°C in the absence or presence of antibodies. Antibodies 
were diluted in medium and sterile filtered through 0.45 ltm nitrocellulose 
filters (Millipore/Continental Water Systems, Bedford, MA) before use. 

Attachment Assays 
Astrocytes (•20,000 cells/0.28 cm 2 well) were plated into 96-well tissue 
culture plates (Flow Laboratories, Inc., McLean, VA) that had been previ- 
ously coated with poly-o-lysine. After 1-2 d of culture, retinal cell attach- 
ment to confluent monolayers of astrocytes was tested as follows. Retinal 
neurons were labeled for 3-5 h in methionine-free growth medium contain- 
ing [35Slmethionine (100 p.Ci/ml). The labeled cells were pelleted by cen- 
trifugation at 1,000 g for 5 min and resuspended in normal growth medium. 
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Figure 1. E7 retinal neurite outgrowth on astrocytes and laminin. Neurons were cultured for 16 h, fixed, and labeled with the A2B5 monoclo- 
nal antibody followed by a rhodamine-conjugated second antibody. (a) Retinal neurites on a laminin substrate; (b) neurites on a confluent 
astrocyte monolayer; and (c) a higher magnification view of neurite outgrowth at the border of a single astrocyte (outlined by arrows) sur- 
rounded by laminin. Note that the neurites tend to follow the edge of the astrocyte before fasciculating and growing onto the laminin. Bars: 
(a and b) 50 ~tm; (c) 10 Ixm. 

Approximately 50,000 cells (~500,000 cpm) were added to each well, and 
the plates were spun for 3 min at ,~600 g to ensure an even distribution of 
retinal neurons on the astroeyte monolayer. Cells were allowed to attach for 
1 h at 37°C. Nonadherent retinal neurons were removed by adding 0.1 ml 
of medium to each side of the well and aspirating the supernatants. This 
wash procedure was sufficient to completely remove neurons from wells 
coated with the nonadhesive protein, BSA. A more stringent wash was 
achieved by performing this wash procedure three times instead of once. 
Wells were then examined through a microscope to confirm that the astro- 
cytes themselves were not being lost from the substrate. Retinal cells that 
adhered to the astrocyte monolayer were then extracted in 0.1 ml 1% SDS 
in PBS overnight, mixed with 3 ml Aquasol, and counted in a scintillation 
counter. In each experiment, all determinations were made in triplicate. 

Analysis of Retinal Neurite Outgrowth on Laminin and 
Astrocyte Substrates 

Retinal neuron-astrocyte cocultures were fixed in 3.7 % formaldehyde and 
stained with the A2B5 monoclonal antibody as described in Tomaselli et 
al. (1986). Briefly, fixed cultures were blocked and permeabilized in 1% 
normal goat serum/0.05% saponin/PBS, and then incubated for 1 h in a 
1:500 dilution of A2B5 ascites fluid. After washing five times in PBS, 
cultures were incubated for 1 h in a 1:200 dilution of rbodamine iso- 
thiocyanate-coupled goat anti-mouse second antibody (Cappel Labora- 
tories, Inc., Malvern, PA). Coverslips were mounted with gelvatol and 
viewed with a 63x  planopochromat oil immersion lens on a Zeiss inverted 
IM microscope equipped with rhodamine optics. Since the A2B5 monoclo- 
nal antibody vividly stains both the cell bodies and processes of all avian 

Table I. Neurite Outgrowth by E7 Retinal Neurons on 
Laminin and Astrocytes 

Percent with Average neurite 
Substrate neurites length (~m) 

Laminin (10 lag/ml) 32 + 5 (6) 110 + 13 (33) 
Astrocytes 41 + 6 (4) 243 + 18 (76) 

E7 retinal neurons were grown on astrocyte islands centered on laminin-coated 
coverslips for 16-20 h. Neurons were stained with A2B5 antibody followed by 
a rhodamine-conjugated second antibody, and the percentage of labeled neu- 
rons with a neurite greater than 2-cell diameters was determined for the number 
of coverslips indicated in parentheses. Fluorescent neurites were drawn by 
camera lucida, and the total neurite length per neuron was determined using 
a computerized digitizing pad. The number of neurites measured is indicated 
in parentheses. All values represent the mean + SEM. The difference between 
percent of cells with neurites is not significant (P > 0.05, Student's t test); the 
difference between average neurite length is significant (P < 0.0005). 

neural retinal cells (Eisenbarth et al., 1979), the number of neurons bearing 
processes and the length of these processes could be determined. "Pype II 
astrocytes were also labeled by A2BS, but were easily distinguished from 
neurons on the basis of their fibrous morphology (see Raft et al., 1983). 
The percentage of A2B5 positive neurons with a neurite greater than two 
cell body diameters in length was counted. Between 100 and 200 neurons 
per coverslip were tabulated in this manner. To determine neurite lengths, 
processes that were visible from cell soma to growth cone were drawn by 
camera lucida. Drawings were traced onto a computerized digitizing pad 
(GTCO, Inc., Rockville, MD) which calculated their lengths. Retinal neurons 
usually extended a single, unbranched neurite. When a neuron had more 
than one process, the lengths of individual neurites were summed to give 
the total neuritic output per neuron. All values presented in the tables and 
figures, therefore, refer to the total neuritic output per neuron. 

Results 

E7 Retinal Neurite Outgrowth on Laminin Substrates 
and Astrocyte Monolayers 

Neurite outgrowth by embryonic chick retinal neurons 
grown in vitro was examined by quantifying the percent of 
neurons bearing neurites and the total length of neuronal 
processes extended by each neuron. Retinal neurons from E7 
embryos were grown on substrates consisting of small is- 
lands of rat cortical astrocyte monolayers centered on glass 
coverslips that were coated with a concentration of laminin 
(10 ~tg/ml) that is optimal for attachment and neurite out- 
growth by E7 retinal neurons (Hall et al., 1987). After 16- 
20 h of culture, retinal neurons extended a profuse array of 
neurites on both the astrocyte monolayers and the surround- 
ing laminin substrate (Fig. 1, a and b), and neurites fie- 
quently crossed the border between the two substrates (Fig. 
1 c). Of the neuronal cell bodies in contact with the astrocyte 
monolayer, 41% extended neurites, compared with 32% of 
those in contact with the laminin substrate (Table I). Com- 
parison of the average lengths of retinal neurites extended on 
these substrates showed that those on astrocyte monolayers 
were •2.2-fold longer than those on laminin (Table I). More- 
over, neurites at the astrocyte-laminin border appeared to 
prefer the astrocyte substrate, often following the edge of the 
astrocyte island before growing onto the laminin surround 

Neugebauer et al. Retinal Neurite Outgrowth on Astrocytes 1179 



Table II. Effects of Antibodies on E7 Neurite Outgrowth 

Astroeytes Laminin 

Antibody Percent with neurites Percent average length* Percent with neurites Percent average length* 

None 41 5 : 6  (4) 119 5 : 1 1  (60)~ 32 5 : 5  (6) 109 + 11 (33) 

1A6 
1 rng/ml IgG 42 5 : 5  (4) 100 -I- 3 (72) 27 5 : 3  (5) 100 5 : 1 0  (42) 
1 mg/ml  Fab 42 5 : 4  (5) 100 5 : 5  (128) 

Integrin I~ 
0.10 mg/ml IgG 20 5:1 (3) 71 + 6 (40)§ 1 + 1 (3) - 
0.25 mg/ml Fab 32 ± 6 (3) 81 ± 5 (91)§ 8 + 4 (3) ND 
0.50 mg/ml Fab 22 (1) 85 ± 9 (37)§ 

N-cadherin 
1 mg/ml IgG 9 ± 2 (4) 40 ± 4 (51)§ 24 ± 3 (8) 100 ± 10 (29) 
1 mg/ml Fab' 22 + 5 (4) 61 ± 4 (93)§ 
2 mg/ml Fab' 19 (1) 52 + 6 (42)§ 

NCAM 
1 mg/ml  IgG 25 + 3 (4) 56 ± 5 (67)§ 27 5 : 5  (8) 103 ± 11 (25) 

1 mg/ml  Fab'  38 ± 5 (4) 93 + 6 (95)~ 
2 mg/ml  Fab' 32 (1) 109 5 :11  (33)~ 

E7 retinal neurons were cultured for 16-20 h on either confluent astrocyte monolayers or on laminin in the absence or presence of antibodies. After fixation and 
immunostaining with A2B5, the percent of neurons bearing neurites was determined as described in Materials and Methods; the number of cultures examined 
is indicated in parentheses. Fluorescently labeled neurites were traced and their lengths determined as described in Materials and Methods; the number of neurites 
measured is indicated in parentheses. All values represent the mean + SEM; note that neurite lengths are expressed as percent of IA6 control. The average neurite 
length on laminin in the presence of IA6 IgG is 101 + 10 lam, and on astrocytes in the presence of IA6 FaD is 191 + 9 tim. The Student's t test was used to 
assign significance levels to differences in average neurite length from IA6 controls as indicated. 
* Relative to 1A6 control. 

Not significantly different from 1A6 control (P > 0.05) 
§ Significantly different from tA6 control (P < 0.005). 

(Fig. 1 c); neurites were rarely seen skirting the astrocytes 
in favor of the laminin substrate. These observations suggest 
that astrocyte cell surfaces are a more favorable substrate for 
process extension than laminin alone. 

Neurite Outgrowth by E7 Retinal Neurons on Astrocyte 
Monolayers: Inhibition by N-Cadherin and 
lntegrin ~1 Antibodies 

To define the molecular interactions underlying E7 retinal 
neurite outgrowth on astrocyte surfaces, antibodies that recog- 
nize and inhibit the activity of avian neuronal cell surface 
proteins were tested for their effects on astrocyte-stimulated 
neurite outgrowth. The monoclonal antibody 1A6, which 
recognizes an extracellular epitope of avian NCAM but does 
not inhibit any detectable NCAM function (Watanabe et al., 
1986; Bixby and Reichardt, 1987; Bixby et al., 1987), was 
used to control for possible nonspecific effects of antibody 
binding to cell surfaces. Compared with cultures grown in 
the absence of antibodies, neither 1A6 IgG nor 1A6 Fab 
significantly affected the percent of process-bearing neurons 
or the average length of neurites extended on either laminin 
or astrocytes (Table II). 

A monoclonal antibody (CSAT) that recognizes the avian 
~ subunit of the integrin family of ECM receptor heterodi- 
mers (Horwitz et al., 1985; Buck et al., 1986; reviewed in 
Hynes, 1987, and Ruoslahti and Pierschbacher, 1987), has 
previously been shown to eliminate retinal neuron attach- 
ment and process outgrowth on laminin, fibronectin, and 
collagen types I and IV (Hall et al., 1987; Neugebauer, K., 
unpublished observations). When E7 retinal neurons were 
grown on astrocyte monolayers in the presence of high con- 
centrations of either anti-integrin I~ IgG (0.1 mg/ml) or 

Fab fragments (0.25 mg/ml), the percent of neurons bearing 
processes was reduced by 25-50% as compared with 1A6 
Fab-containing control cultures (Table II). The average 
lengths of the remaining processes were significantly re- 
duced by 15-30% (Table II; Fig. 3). These effects on astro- 
cyte-stimulated neurite outgrowth were relatively weak com- 
pared with the virtual elimination of neurite outgrowth by 
integrin 131 antibodies on laminin (see Table II). Since dou- 
bling the concentration of anti-integrin 13~ Fab to 0.5 mg/ml 
had only a slightly stronger effect on neurite outgrowth on 
astrocytes, the 0.25 mg/ml concentration of anti-integrin I~L 
Fab used in these and subsequent experiments appears to 
have been saturating. As illustrated in Fig. 2, the overall mor- 
phology of neurons cultured in the presence of integrin ~ 
antibodies resembled that of neurons in 1A6-containing cul- 
tures despite the inhibitory effects of integrin 13~ antibodies 
on neurite outgrowth. 

Antibodies that recognize and inhibit the function of N-cad- 
herin, a Ca2+-dependent cell adhesion molecule expressed 
on avian retinal neurons (Crittenden et al., 1988), had dra- 
matic effects on several aspects of retinal neurite outgrowth 
on astrocyte monolayers. In the presence of 1 mg/ml anti- 
N-cadherin Fab's, the percent of process-bearing E7 retinal 
neurons was reduced by ~50% (Table II). Neurites that did 
grow in the presence of anti-N-cadherin Fab's were visibly 
shorter than those seen in control cultures, reflecting a ~40% 
reduction in average neurite length (Table II; Fig. 2 c, Fig. 
3). Often these neurites had enlarged growth cones (Fig. 2 
c). Doubling the concentration of anti-N-cadherin Fab' did 
not significantly enhance these effects, indicating that the 
effects of 1 mg/ml anti-N-cadherin Fab' were saturating 
(Table II). Interestingly, bivalent anti-N-cadherin IgG had 
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Figure 2. E7 retinal neurite outgrowth on astrocyte monolayers in the presence of antibodies to neuronal cell surface proteins. Neurons 
were cultured on astrocytes for 16 h in the presence of antibodies, fixed, and stained with A2B5 antibody. (a) Neurite outgrowth in the 
presence of 1 mg/ml 1A6 Fab fragments is extensive: portions of three long neurites traverse the field. (b) In the presence of 0.25 mg/ml 
anti-integrin 13, Fab, neurites do grow but are shorter on average. (c) This single neuron grown in the presence of 1 mg/ml anti-N-cad- 
herin IgG is quite short ('~120 pm) and has two growth cones (arrowheads). (d) Neurite outgrowth in the presence of 2 mg/ml anti-NCAM 
Fab' is not visibly affected; portions of four long neurites crisscross the field. Examples of retinal cell bodies (arrows) and growth cones 
(arrowheads) are visible in each field. Bar, 10 I.tm. 
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Figure 3. Effects of antibodies on E7 retinal neurite 
length on astrocytes after 16-20 h of culture. Dis- 
tribution of neurite lengths in the presence of the 
following Fab fragments: (e) l mg/ml IA6 Fab (n 
= 128 neurites); (~7) 0.1 mg/ml integrin 13t Fab (n 
= 91); (o) 1 mg/ml NCAM Fal¢ (n = 95); (A) 1 
mg/ml N-cadherin Fab' (n = 93). Neurite lengths 
were binned by 25-pm intervals and plotted versus 
the percentage of neurites measured that were 
longer than the length (x) indicated. The distribu- 
tion of neurite lengths in the presence of IA6 Fab 
was identical to that in the absence of antibodies 
(omitted Ibr clarity). (Inset) Histogram of average 
neurite lengths (mean + SEM) in the absence or 
presence of Fab fragments of antibodies. 60 ncu- 
rites were measured for the "no antibody" condi- 
tion. Data from four separate experiments were 
pooled to yield the final distribution curve and 
histogram. 
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Table IlL Effects of Combined Antibodies on E7 Retinal 
Neurite Outgrowth on Astrocytes 1 oo. 

Percent Percent o 80- 
Antibody with neurites average length* o: 

1A6 IgG 40 + 8 (2) 100 + 10 (39) © 6o- 
Integrin IgG 19 + 1 (2) 63 + 8 (40)* 5 

N-cadherin IgG 9 + 3 (2) 37 5 :5  (50)* "~ 40- 
Integrin + N-cadherin 5 5 :2  (1) 33 5 :6  (14)*§ 

1A6 Fab 48 (2) 100 5:9 (30) § 
20" 

NCAM Fab' 44 5:1 (2) 92 5:13 (32) 
N-cadherin Fab' 29 5:1 (2) 61 + 9 (30)* 
NCAM + N-cadherin 26 (1) 64 5:9 (25)*§ 

E7 retinal neurons were grown for 16 h on confluent astrocyte monolayers in 
the presence of the indicated antibodies. All antibodies were added to a final 
concentration of 1 mg/ml, except anti-integrin 13~ IgG was used at 0.1 mg/ml. 
After the cultures were fixed and stained, the percent of neurons bearing neu- 
rites was determined (n = the number of cultures examined) and the neurite 
length was measured as described (n = the number of neurites traced). All 
values represent the mean + SEM. The Student's t test was used to assign sig- 
nificance levels to differences in average neurite lengths from IA6 controls as 
indicated. 
* Relative to IA6 control. 
* Significantly different from 1A6 control (P < 0.0005). 
§ Not significantly different from anti-N-cadherin lgG alone (P > 0.05). 

stronger inhibitory effects than did monovalent Fab' frag- 
ments (Table II). Inhibition of retinal neurite outgrowth by 
N-cadherin antibodies was substrate specific, since neurite 
outgrowth on laminin substrates was not significantly af- 
fected by anti-N-cadherin IgG (Table II). 

To determine whether the inhibitory effects of  integrin 13~ 
and N-cadherin antibodies were additive, E7 retinal neurons 
were cultured on astrocytes in the presence of both antibod- 
ies. A representative experiment shown in Table III demon- 
strates that the combined presence of integrin 13J and N-cad- 
herin bivalent antibodies resulted in a small but statistically 
insignificant increase in the inhibition observed with anti-  
N-cadherin alone. 

When E7 retinal neurons were cultured on astrocytes in 
the presence of an t i -NCAM Fab' fragments at concentra- 
tions as high as 2 mg/ml, no parameter of neurite outgrowth 
examined was significantly affected. Instead, neurons treated 
with ant i -NCAM Fab' were indistinguishable from control 
on the basis of morphology (Fig. 2 d) ,  neurite length distri- 
bution (Fig. 3), percent of  neurons with neurites or average 
neurite length (Table II). Even when added with anti-N-cad- 
herin Fab', ant i -NCAM Fab's did not produce a decrease 
in neurite outgrowth beyond the effects of anti-N-cadherin 
alone (Table III). Thus, we were unable to detect any effects 
of  ant i -NCAM Fab' on E7 retinal neurite outgrowth on as- 
trocytes. However, in cultures treated with 1 mg/ml anti- 
NCAM IgG, a * 5 0 %  decrease in the average neurite length 
was observed (Table II). As our preparation of ant i -NCAM 
Fab's is known to block the function of chick NCAM (Bixby 
and Reichardt, 1987; Bixby et al., 1987), the effects of  biva- 
lent NCAM antibodies in the present experiments seem most 
likely to be due to cross-linking of their target antigen rather 
than a specific inhibition of NCAM function. Interestingly, 
NCAM IgG binding only inhibited process outgrowth on as- 
trocytes, as it had no significant effects on process outgrowth 
on laminin substrates (Table II). 

+ ~  

none 1A6 int I i l  NCAM N-cad  
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Figure 4. Attachment of 3sS-labeled E7 retinal neurons to astrocyte 
monolayers in the absence or presence of antibodies. All antibodies 
indicated are IgG, except anti-NCAM which is Fab'. Antibodies 
were added to a final concentration of 1 mg/ml, except that anti- 
integrin I~1 was used at 0.1 mg/ml. Neurons were allowed to at- 
tach to astrocyte monolayers for 1 h. Wells were subjected to ei- 
ther one (open bars) or three (stippled bars) washes. Radioactivity 
associated with adherent neurons was quantitated by extracting the 
cells with 1% SDS and counting the extracts in a scintillation 
counter. Under both assay conditions, 80-100% of the counts added 
to each well was associated with the monolayer in absence of anti- 
body, although fewer counts were usually detected after the addi- 
tional washing procedure. Triplicate determinations were made in 
each experiment, and the results of three to six experiments per 
variable were averaged. Each value is expressed as a percent of cpm 
remaining with the astrocytes in the presence of control 1A6 IgG 
(mean + SEM). Significant differences from IA6 control were de- 
termined by the Student's t test (*, P < 0.005); bars without asterisks 
are not significantly different (P > 0.05). Note that under extensive 
wash conditions, NCAM antibodies significantly decreased attach- 
ment beyond the effects of N-cadherin plus integrin 13~ antibodies 
(P < 0.05). 

Attachment of  E7 Retinal Neurons to 
Astrocyte Monolayers 

To determine whether the inhibition of neurite outgrowth by 
either integrin 13J or N-cadherin antibodies was correlated 
with a reduction in retinal neuron attachment to astrocytes, 
the attachment of [35S]methionine-labeled E7 retinal neu- 
rons to confluent monolayers of astrocytes was measured in 
the absence or presence of antibodies. In each experiment, 
neurons contacting the astrocyte monolayers were subjected 
to two wash conditions differing in stringency (see Materials 
and Methods). The results in Fig. 4 show that after one wash 
of the monolayer (open bars), neither anti-integrin 13j IgG, 
ant i -NCAM Fab', nor anti-N-cadherin IgG significantly re- 
duced retinal neuron attachment to astrocytes when applied 
individually. The combination of all three antibodies de- 
creased attachment by '~25 % compared with control under 
these conditions (Fig. 4). 

After a more extensive washing procedure (three washes), 
only anti-N-cadherin IgG produced effects when applied 
alone, reducing attachment by 30% (Fig. 4, stippled bars). 
While integrin I~ antibodies did not enhance the inhibitory 
effects of N-cadherin antibodies, the combination of integrin 
13~, N-cadherin, and NCAM antibodies did reduce attach- 
ment by an additional 30% (Fig. 4). Thus, anti-NCAM ap- 
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Figure 5. Ell retinal neurite outgrowth on astrocytes after 16 h of culture in the absence and presence of antibodies. Neurons are fluores- 
cently stained with A2B5 antibody. (a and b) Two distinct neuronal morphologies in the absence of antibodies. Note that the neurites in 
b extend out of the field. (c) In the presence of 1 mg/ml anti-N-cadherin Fab', many neurons lack neurites, and the neurites present are 
short and often wispy. (d) In the presence of 1 mg/ml anti-NCAM Fab', neurites are obviously shortened. Bar, 10 lain. 

pears to potentiate the inhibition of attachment by N-cadherin 
antibodies. This result, in combination with the observed in- 
sensitivity of retinal neurite outgrowth to NCAM antibodies, 
suggests that NCAM function may be more important for 
adhesion than for neurite outgrowth by E7 retinal neurons. 

Process Outgrowth by Ell Retinal Neurons on 
Astrocytes: Inhibition by N-cadherin, Integrin ~1, 
and NCAM Antibodies 

The possibility that retinal neurons of different developmen- 
tal ages use different mechanisms for neurite outgrowth on 
astrocytes was examined using Ell  retinal neurons in the 
coculture paradigm used for E7 neurons. Unlike E7 retinal 
neurons, Eli  retinal neurons do not attach or extend 
processes on either laminin or fibronectin, although they 
continue to do so on collagens and astrocytes (Cohen et al., 
1986; Hall et al., 1987). Ell  retinal neurons grown on astro- 
cytes for 16-20 h exhibited diverse morphologies, ranging 
from cells with large somata and many bifurcating processes 
to cells with small somata and one or two straight neurites 
(Fig. 5, a and b). Spatulate growth cones with multiple 
filopodia were not characteristic of Ell retinal neurons as 

they were for E7 retinal neurons (Fig. 5). Thus, older retinal 
neurons grown on astrocytes regenerate growth cones that 
resemble those observed in the optic nerve and tract in situ 
(Bovolenta and Mason, 1987). Although fewer Ell  than E7 
neurons extended processes (29 vs. 41%; Tables I and IV), 
Ell  neurites were comparable to E7 neurites in average 
length ('~200 ~tm; see Figs. 3 and 6). Ell  neurite lengths 
were more heterogeneous in that approximately twice as 
many Ell as E7 neurons had either very short (<100 I.tm) or 
very long (>500 Ixm) neuritic arbors (compare Figs. 3 and 
6). However, we were unable to correlate neurite length with 
neurons grouped by morphological characteristics. Simi- 
larly, the effects of antibodies on Ell  neurite outgrowth (see 
below) could not be attributed to differential effects on neu- 
rons with distinct morphologies (data not shown). 

Anti-N-cadherin Fab' fragments inhibited E11 neurite out- 
growth on astrocytes to a similar extent as on E7 retinal neu- 
rons. Compared with 1A6 Fab, anti-N-cadherin Fab's consis- 
tently reduced the percent of process-bearing Ell  neurons by 
~50%,  and the average length of remaining neurites by 
*35% (Fig. 6; Table IV). Fig. 6 shows that anti-N-cadherin 
increases the proportion of neurites shorter than 100 txm 
from 35 to 65%. In the presence of anti-N-cadherin, Ell  
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Figure 6. Effects of antibodies on Eli retinal neu- 
rite length on astroeytes after 16 h of culture. Dis- 
tribution of Ell neurite lengths in the presence of 
the following Fab fragments: (e) I mg/ml 1A6 Fab 
(n = 33); (v) 0.25 mg/ml anti-integrin 15~ Fab (n 
= 30); (o) 1 mg/ml anti-NCAM Fab' (n = 33); 
(A) 1 mg/ml anti-N-cadherin Fab' (n = 31). (In- 
set) Histogram of average neudte lengths (mean 
+ SEM) in the absence or presence of Fab frag- 
ments. 33 neurites were measured for the"no anti- 
body" condition. Data from a representative ex- 
periment was used to generate the distribution 
curve and histogram. 

retinal neurons appeared well attached to the astrocytes, al- 
though their neurites were visibly shorter (Fig. 5 c). 

When anti-integrin I~] Fab fragments were tested, both 
the average neurite length and the percent of process-bearing 
neurons were reduced by ,x,30% (Table IV; Fig. 6). About 
50% of the neurites in integrin 13t-containing cultures were 
shorter than 100 lxm (Fig. 6). These effects of anti-integrin 
13~ Fabs were not anticipated, as Eli  retinal neurons have 
lost their integrin-dependent responsiveness to purified lami- 
nin and fibronectin (Hall et al., 1987). 

In contrast to that of E7 retinal neurons, E11 retinal neurite 
outgrowth on astrocytes was sensitive to anti-NCAM Fab' 
fragments in the medium. E11 retinal neurons extended neu- 
rites in the presence of 1 mg/ml anti-NCAM Fab's (Fig. 5 
d), but the percent of process-bearing neurons was reduced 
by ~50% and the average length of neurites was reduced by 
'~25 % (Table IV). Fig. 6 shows that anti-NCAM Fab' frag- 
ments virtually eliminated long neurites in the cultures, as 
"~90% of the neurites were shorter than 175 l.tm. Thus, these 
experiments show that inhibitory effects of anti-NCAM on 
retinal neurite outgrowth on astrocytes depends on the devel- 
opmental age of the retinal neurons. 

Table IV. Antibody Effects on E l l  Retinal Neurite 
Outgrowth on Astrocytes 

Antibody Percent with neurites Percent average length* 

None 29 + 3 (4) 117 + 10 (109) 
1A6 Fab 32 + 6 (4) 100 + 8 (110)~ 
Integrin Fab 20 + 1 (2) 67 + 8 (65)§ 
NCAM Fab' 16 5 :3  (4) 76 + 7 (117)§ 
N-cadherin Fab' 15 5:1 (2) 64 5 : 8  (48)§ 

El I retinal neurons were cultured on confluent astrocyte monolayers for 16-20 h 
in the absence or presence of Fab' fragments. All Fab fragments were added 
to a final concentration of 1 mg/ml, except anti-integrin ~t was used at 0.25 
mg/ml. A2B5-stained neurons were scored for the percent with neurites (n = 
the number of cultures examined). The lengths of fluorescent neurites were de- 
termined as described in Materials and Methods (n = the number of neurites 
measured). All values represent me mean + SEM. The ,'ituctent's t test was used 
to compare differences in average neurite length to 1 A6 control. 
* Relative to 1A6 control. 
~: Not significantly different from IA6 control (P > 0.05). 
§ Significantly different from IA6 control (P < 0.05). 

Discussion 

Our observations of chick retinal neurite outgrowth on astro- 
cytes in the presence of antibodies to neuronal cell surface 
proteins support the following major conclusions. (a) The 
ability of embryonic chick retinal neurons to extend neurites 
rapidly when cultured on astrocyte cell surfaces depends 
strongly on the function of the Ca 2+-dependent cell adhesion 
molecule, N-cadherin, and to a lesser extent, on members 
of the integrin family of ECM protein receptor heterodimers. 
(b) NCAM's role in mediating retinal neurite outgrowth on 
astrocytes depends on the developmental age of the retinal 
neurons, such that Ell  but not E7 neurons require NCAM 
function for maximal neurite extension. (c) Retinal neurons 
use additional receptors for attachment and neurite outgrowth 
on astrocytes, since neither was completely inhibited by any 
individual antibody or combination of antibodies tested. (d) 
The molecules used by retinal neurons for process outgrowth 
on astrocytes are similar to those used by peripheral ciliary 
ganglion neurons but differ in two important respects: retinal 
neurite outgrowth relies on (i) at least one additional CAM 
(NCAM) and (ii) integrin 13j-class ECM receptors even at 
developmental ages at which they have lost their responsive- 
ness to purified laminin. 

N-cadherin is a 130-kD neuronal cell surface protein that 
is important in the calcium-dependent aggregation of avian 
retinal neurons (Grunwald et al., 1982). N-cadherin medi- 
ates peripheral neurite outgrowth on cultured myotubes, 
Schwann cells, and astrocytes (Bixby et al., 1987, 1988; 
Tomaselli et al., 1988). N-cadherin is likely to act by a 
homophilic binding mechanism (i.e., neuronal N-cadherin 
binding to astrocyte N-cadherin), since a closely related epi- 
thelial cell CAM, E-cadherin, has been shown to function, 
at least in part, in this way (Nagafuchi et al., 1987). It is un- 
clear whether any of the effects of N-cadherin antibodies ob- 
served in these experiments can be attributed to the binding 
of antibodies to astrocyte N-cadherin; however, since we 
have shown that saturating levels of anti-N-cadherin were 
used (see Table II), we are confident that N-cadherin on the 
neuronal surface was maximally inactivated. Here we have 
shown that N-cadherin antibodies strongly reduced both E7 
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and Ell  retinal neurite outgrowth on astrocytes. The extent 
of this inhibition was similar for neurons of both ages; in the 
presence of anti-N-cadherin Fab' fragments, '~50% fewer 
E7 and E11 neurons grew neurites, and neurites in both cul- 
tures were 35-40% shorter than those that grew in control 
cultures. The growth cones of E7 retinal neurons often ap- 
peared enlarged in the presence of N-cadherin but not other 
antibodies. Ell  retinal neurites did not bear spatulate growth 
cones under any of the conditions tested. N-cadherin is also 
involved in E7 retinal neuron adhesion to astrocytes, as de- 
termined by quantitative attachment assays. However, even 
under the most stringent conditions of our assay, N-cadherin 
antibodies reduced attachment by only •30%, an amount 
insufficient to account for the potency of their effects on pro- 
cess outgrowth. The importance of N-cadherin in retinal 
neuron process outgrowth on astrocytes and its presence in 
the developing chick neural retina and optic nerve (Hatta et 
al., 1986, 1987) suggest that N-cadherin also promotes ax- 
onal extension on glial surfaces within the primary visual 
pathway. 

Members of the integrin family of ECM receptors also 
mediate process outgrowth by neurons on astrocytes. The 
integrin I~ subunit (Hynes, 1987; Ruoslahti and Piersch- 
bacher, 1987) is shared by cell surface glycoprotein heterodi- 
mers that bind laminin and fibronectin directly (Horwitz 
et al., 1985; Akiyama et al., 1986; Buck et al., 1986; 
Tomaselli et al., 1988). Anti-integrin fi~ monoclonal anti- 
bodies inhibit attachment and neurite outgrowth by a variety 
of avian neurons on substrates coated with purified laminin, 
fibronectin, and collagen types I and IV (Bozyczko and Hor- 
witz, 1986; Tomaselli et al., 1986; Cohen et al., 1987; Hall 
et al., 1987; Neugebauer, K., unpublished observations). 
Since integrin fi~ antibodies also inhibit neurite outgrowth 
on substrates coated with a laminin-heparan sulfate proteo- 
glycan complex secreted by astrocytes as well as on intact 
ECMs (Tomaselli et al., 1986, 1988; Cohen et al., 1987), 
they were expected to prevent retinal neuron interactions 
with the fibronectin and laminin that rat cortical astrocytes 
are known to express in vitro (Liesi et al., 1983; Price and 
Hynes, 1985). 

Anti-integrin fi~ Fab fragments reduced the percent of 
process-bearing E7 retinal neurons and the average neurite 
length by ~30% each. These effects are comparable to those 
of integrin fi~ antibodies on ciliary ganglion neurite out- 
growth on astrocytes (Tomaselli et al., 1988). Integrin fit 
antibodies did not significantly inhibit adhesion of retinal 
neurons to astrocytes in our assays, even though these anti- 
bodies virtually eliminate the attachment of retinal neurons 
to laminin, fibronectin, and collagen I and IV substrates 
(Hall et al., 1987; Neugebauer, K., unpublished observa- 
tions). Thus, integrin receptor interactions with ECM com- 
ponents expressed on astrocyte surfaces do not appear to play 
a major role in neuron-astrocyte attachment. 

Anti-integrin fil Fab fragments inhibited E7 and Ell reti- 
nal neurite outgrowth on astrocytes to the same extent. Ell 
retinal neurons have previously been shown to lose their abil- 
ity to attach to and extend neurites on laminin and fibronectin 
substrates (Cohen et al., 1986, 1987; Hall et al., 1987). 
However, they retain integrins on their surface and their abil- 
ity to attach to collagen types I and IV in an integrin-de- 
pendent manner (Cohen et al., 1987; Hall et al., 1987; Neu- 
gebauer, K., unpublished observations). Thus, the present 

results suggest that astrocytes express ECM proteins in addi- 
tion to laminin and fibronectin (e.g., collagen types I and IV) 
whose neuronal receptor(s) includes the integrin 131 
subunit. Alternatively, Ell  retinal neurons may recover their 
response to laminin and/or fibronectin when grown in con- 
tact with astrocyte cell surfaces. In this respect, the behavior 
of retinal neurons differs from that of ciliary ganglion neu- 
rons: neurite outgrowth by these peripheral neurons on as- 
trocytes is not inhibited by integrin fi~ antibodies at a de- 
velopmental age (El4) when they, like Ell  retinal neurons, 
no longer attach or extend neurites on purified laminin 
(Tomaselli et al., 1988). 

Anti-NCAM Fab' fragments did not affect any parameter 
of E7 neurite outgrowth on astrocytes even when added in 
combination with N-cadherin antibodies (cf. Table III). 
Anti-NCAM Fab' alone did not detectably inhibit E7 retinal 
neuron attachment to astrocyte monolayers. Anti-NCAM 
Fab' did, however, have significant effects on attachment 
when added in combination with N-cadherin and integrin 
131 antibodies. Together, these results suggest that NCAM 
plays a relatively minor role in E7 retinal neuron interactions 
with astrocytes. In contrast, the same anti-NCAM Fab's dra- 
matically inhibited neurite outgrowth by developmentally 
older (Ell) retinal neurons: the percent of process-bearing 
Ell  neurons was decreased by 50 % and the average length 
of Ell  neurites was decreased by 25 %. Since homophilic 
NCAM binding in liposome assays is highly dependent on 
its concentration in the membrane (Hoffman and Edelman, 
1983), the striking developmental change in the sensitivity 
of retinal neurite outgrowth to NCAM antibodies may reflect 
the twofold increase in NCAM levels observed in the retina 
between E5 and El0 (Daniloff et al., 1986). Alternatively, 
changes in the molecular form of NCAM on the surface of 
the neurites may explain these findings: although sialic acid- 
poor 180,000- and 140,000-Mr forms of NCAM predom- 
inate in both E5 and El0 retina, there is an apparent transi- 
tion from sialic acid-rich to poor forms in the optic nerve be- 
tween these ages (Schlosshauer et al., 1984). 

The inhibition of E7 retinal neurite outgrowth on astro- 
cytes by anti-NCAM IgG is the only instance in our experi- 
ments in which an IgG had effects not seen with Fab' frag- 
ments. Specifically, both IgG and Fab's generated from the 
same NCAM antiserum used here reduce ciliary ganglion 
neurite elongation on skeletal myotubes (Bixby et al., 1987), 
while neither is inhibitory on astrocytes or Schwann cells 
(Tomaselli et al., 1988; Bixby et al., 1988). One possible ex- 
planation for these results is that in the process of cross- 
linking NCAM on the surface of retinal neurons, NCAM IgG 
redistributes other relevant proteins (e.g:, N-cadherin) in the 
plane of the membrane. The cell adhesion molecule LI/ 
NgCAM has been shown to co-redistribute with the 180-kD 
form of NCAM on neural membranes after treatment with 
bivalent anti-NCAM IgG (Thor et al., 1986), establishing a 
precedent for this possibility. 

Since neither attachment nor neurite outgrowth by retinal 
neurons on astrocytes was completely inhibited by the anti- 
bodies used in this study (see Fig. 4 and Table III), adhesive 
molecules in addition to N-cadherin, integrin fl~ heterodi- 
mers, and NCAM must be active. It is possible that this ac- 
tivity represents a novel adhesive mechanism. However, 
three previously identified molecules that mediate neuronal 
interactions with astrocytes are also good candidates: (a) 

Neugebauer et al. Retinal Neurite Outgrowth on Astrocytes 1185 



cytotactin, an ECM glycoprotein complex present in the op- 
tic fiber and inner plexiform layers of the embryonic chick 
retina (Crossin et al., 1986); (b) AMOG (adhesion molecule 
on gila), an integral membrane protein that promotes cere- 
bellar granule cell adhesion to astrocytes (Antonicek et al., 
1987); and (c) LI/NgCAM (Grumet and Edelman, 1988), a 
cell adhesion molecule present in the developing optic path- 
way (Daniloffet al., 1986; Lemmon and McLoon, 1986). LI 
has been implicated in neurite outgrowth on other neurites 
and on Schwann cells (Chang et al., 1987; Bixby et al., 
1988), and purified LI promotes neurite extension when 
used as a culture substrate (Lagenaur and Lemmon, 1987). 
It is unlikely that all neurons use such additional mecha- 
nisms, since ciliary ganglion neurite outgrowth on astrocytes 
can be nearly completely accounted for by the combined ac- 
tivity of N-cadherin and the integrin 13~ heterodimers 
(Tomaselli et al., 1988). 

The above results suggest roles for integrins, N-cadherin, 
and NCAM in process outgrowth and adhesion in the de- 
veloping retinotectai pathway. The early chick neural retina 
consists of a sheet of neuroepithelial cells that gradually 
differentiate into the various retinal cell types, beginning 
with the appearance of the first postmitotic retinal ganglion 
cells at embryonic day 2.5-3 (Kahn, 1974). These cells mi- 
grate to the most vitreal portion of the retina and extend 
axons toward the optic stalk, using a laminin-rich basal lam- 
ina and MiJller glial endfeet as growth substrates (Rager, 
1980; Easter et al., 1984; Cohen et al., 1987). At E7, gan- 
glion cell axon initiation peaks (Halfter et al., 1983), and 
other postmitotic retinal cell types are migrating to appropri- 
ate layers of the neural retina (Kahn, 1974). Although the or- 
dered growth of axons to the optic stalk relies on the integrity 
of the basal lamina (Halfter and Deiss, 1984, 1986), direc- 
tional cues for growth are not provided by the intact, isolated 
basal laminae (Halfter et al., 1987). Our observations of E7 
retinal neurite outgrowth on astrocyte surfaces implicate 
N-cadherin as well as integrin-class ECM receptors in ax- 
onal extension at this early developmental stage, raising the 
possibility that N-cadherin on glial endfeet may guide ad- 
vancing axons to the optic stalk. 

Axonal growth within the optic nerve peaks between E7 
and El 1 and occurs primarily along the endfeet of astroglial 
precursors and preexisting axonal surfaces (Rager, 1980; Sil- 
ver and Rutishauser, 1984). Laminin may be involved in the 
elongation of the first ganglion cell axons to enter the optic 
pathway (E3), but it disappears from the optic nerve by E7 
(Cohen et al., 1987). NCAM is localized at the surface of 
gliai endfeet in the nerve where it may play a role in axon 
extension (Silver and Rutishauser, 1984; Thanos et al., 
1984). The observed developmental change in NCAM's role 
in retinal neurite outgrowth on astrocytes is consistent with 
the hypothesis that axonal growth in the optic pathway be- 
comes progressively more dependent on cell surfaces. 

At the optic tectum, retinal ganglion cell axons synapse 
with a topological specificity that generates a tectal map of 
the visual field. Neuronal recognition via differential adhe- 
sion (chemoaffinity) has long been thought to account for this 
targeting phenomenon (Sperry, 1963). Since glial endfeet 
line the developing optic nerve fiber layer of the tectum 
(Lemmon, 1985, 1986; Bork et al., 1987). They may pro- 
vide cues for axon growth and guidance. The sensitivity of 
astrocyte-stimulated El 1 retinal neurite outgrowth to NCAM 

antibodies is consistent with evidence that NCAM is in- 
volved in accurately targeting axons at the rectum (Fraser et 
al., 1984). As N-cadherin and integrins remain active on the 
surface of Ell retinal neurons, it will be of interest to deter- 
mine whether these receptor systems also regulate synapto- 
genic events at the optic tectum. 
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