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Objective: MicroRNAs (miRNAs) are gene expression regulators. Altered miRNA levels

are associated with diabetes, insulin resistance, and inflammation. Insulin resistance and

inflammation are both features of Polycystic ovary syndrome (PCOS). The aim of this

study was first to assess differences in selected miRNAs (miR-146a, miR-155, miR-320,

miR-370, miR-486), involved in insulin sensitivity regulation and inflammation, in women

with or without PCOS. Second, to investigate relationships among these miRNAs, insulin,

High mobility group box 1 (HMGB1), and IL-6 in follicular fluid (FF), serum 17-beta

estradiol (E2), and the number of dominant follicles.

Methods: Thirty PCOS and thirty-six non-PCOS women undergoing in vitro fertilization

were enrolled. RNA from granulosa cells (GC) and FF was extracted and the specific

miRNAs were evaluated using qRT-PCR. HMGB1, insulin, and IL-6 in FF, and serum E2

were assayed using specific kits.

Results: MiR-146a, miR-155, miR-486 were upregulated and miR-320 and miR-370

were downregulated in GC from the PCOS patients. In FF, miR-146a, miR-155, and

miR-486 showed lower levels in PCOS, whereas miR-320 and miR-370 showed an

opposite trend but no significant changes were observed. These miRNAs showed

relationships with Body Mass Index (BMI), age, E2, number of dominant follicles, insulin,

and HMGB1.

Conclusion: In conclusion, the miRNAs analyzed showed changes in PCOS ovaries

and had relationships with indices of inflammation and insulin sensitivity within the ovary,

providing evidence for new regulatory mechanisms.
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is a common multifactorial
and heterogeneous endocrine disorder affecting women of
reproductive age (1). Although its etiology remains unclear,
environmental, genetic and epi-genetic factors contribute to
this disorder.

PCOS is characterized by hyperandrogenism, ovulatory
dysfunction, and polycystic ovarian morphology (1). Although
insulin resistance (IR) is not considered as a diagnostic criterion,
it underpins the disease in 50–70% of women independent of
Body Mass Index (BMI) (2). Furthermore, insulin sensitizing
treatments, as metformin, have often proved to be effective (3)
and in recent years inositol derivatives (4, 5) and alpha lipoic
acid have shown positive effects besides being safe (6, 7). The
mechanisms related with the regulation of insulin sensitivity
at the ovarian level are not fully elucidated yet. Definitely
an important role has been described relative to Peroxisome
proliferator-activated receptors (PPARs) (8–10).

In recent years, it has been reported that PCOS is associated

with systemic low-grade inflammation (LGI) (11–14). Recent
evidence reports that intrafollicular inflammatory mediators are
enhanced in periovulatory follicles of PCOS women (15), and

chronic LGI might be a precursor of ovarian dysfunction in

PCOS. In addition, High mobility group box 1 (HMGB1), a small
protein with cytokine activity (16), is increased in follicular fluid
(FF) from ovaries of PCOS women (17) in relationship with
decreased Cystic fibrosis transmembrane conductance regulator
(CFTR) expression in granulosa cells (17), as previously described
in Cystic Fibrosis (CF) (18, 19). Serum HMGB1 levels have been
reported to be higher in PCOS women with IR (17, 20).

MicroRNAs (miRNAs) represent a recent chapter of
epigenetics and have become useful for the comprehension
of multiple diseases offering new insights into the molecular
mechanisms. They consist in endogenous small single stranded
non-coding RNAs, ∼22 nucleotides long, which act as post
transcriptional regulators. A single miRNA can act on several
hundreds of target mRNAs and each mRNA can be the target of
many miRNAs (21, 22). Upon biosynthesis, they can be released
into the extracellular space and appear remarkably stable in
various bodily fluid such as FF, which reflects the secretory
and metabolic activities of oocytes and follicle niche (23).
Therefore, altered levels of miRNAs could affect/reflect ovarian
insulin sensitivity, hormone synthesis, and inflammation.
However, few studies, and with contradictory results, have been
conducted in humans relative to miRNAs in the different ovarian
compartments (24).

We selected miR-146a, miR-155, miR-320, miR-370, and
miR-486 involved both in insulin sensitivity and in chronic
inflammation and regulated in serum of CF patients at onset of
CF related diabetes (25).

MiR-146a is increased in vitro under inflammatory
stimulation (26), and is involved in insulin resistance in type 2
diabetic patients (27). MiR-155 has a well-documented role in
autoimmune and other chronic inflammatory diseases (28–31).
Furthermore, miR-155 has been demonstrated to regulate insulin
sensitivity in vitro (32) and in vivo in mice (32, 33). MiR-320

is currently considered as a potential target for type 2 diabetes
mellitus therapy (34, 35) since it regulates the expression of
phosphoinositide-3-kinase (PI3K), a downstream mediator of
insulin signaling. Moreover, miR-320 regulates the expression
of NOD2 a cytosolic receptor involved in the proinflammatory
cascades in chronic inflammatory bowel diseases (36). MiR-370
is a modulator of IRS1 expression, a scaffold protein involved in
the insulin pathway (37, 38). MiR-486 directly targets mediators
of insulin-like growth factor (IGF) signaling including IGF-I,
IGF-I receptor (IGF1R), and PI3K regulatory subunit 1 (alpha)
(PIK3R1) and is reduced in plasma of diabetic patients (39, 40).

The aim of this study was first to assess differences in the
selected miRNAs, in women with or without PCOS undergoing
in vitro fertilization (IVF); second to investigate relationships
among these miRNAs, HMGB1, insulin, IL6 in FF, and 17-beta
estradiol (E2) in serum.

SUBJECTS AND METHODS

Patients
In the present study we enrolled 30 female patients with PCOS
and 36 regularly cycling women as controls (CTRL) matched
for age and BMI as previously described (17). All subjects
were enrolled at the time of oocyte retrieval at IVF center of
our Institution. Details concerning the hormonal stimulation
protocol are specified below. PCOS patients (CA: 34.43 ±

0.84 yr; BMI: 25.92 ± 132 0.99 kg/m2; hirsute N.12; with
amenorrhea N.2, oligomenorrhoea N.13, regular cycles N.15)
were diagnosed according to the Rotterdam ESHRE/ASRM
2003 criteria: presence of amenorrhea or oligomenorrhoea
(<10 cycles/year), polycystic ovaries on ultrasonography, and
hirsutism which was assessed according to Ferriman–Gallwey
score (>8) (41). CTRL subjects (CA: 35.72 ± 0.55 yr;
BMI: 24.08 ± 0.79 kg/m2) were women undergoing IVF
because of tubal or unknown infertility causes, with normal
endocrine exams and regular menstrual cycles. Exclusion criteria
were the presence of tumors, endometriosis, coeliac disease,
genetic or chronic diseases, Cushing syndrome, changes in
thyroid function, hyperprolactinemia, and dysmorphisms. BMI
was calculated as weight/height2 (kg/m2). All subjects were
monitored by transvaginal ultrasonography (US) before oocyte
retrieval according to the standard protocol in use at our
Institution and the number of dominant follicles (diameter
>17mm) was recorded. All participants did not receive any
additional treatment for at least 2 months before IVF, except for
the ovarian stimulation therapy. Clinical details of PCOS and
CTRL are reported in Table 1.

Hormonal Stimulation
Ovarian hormonal stimulation was conducted according to a
long luteal gonadotropin-releasing hormone (GnRH) agonist
depot protocol in order to obtain ovarian downregulation in
all patients. After biochemical and instrumental confirmation of
complete down-regulation (E2 concentrations <30 pg/ml and
endometrial thickness ≤5mm at transvaginal ultrasonography),
recombinant FSH (rFSH) was administrated using a starting dose
(first 5 days) tailored according to the patient’s age and antral
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TABLE 1 | Clinical features of subjects enrolled in the study.

CTRL (N = 36) PCOS (N = 30)

CA (years) 35.72 ± 0.55 34.43 ± 0.84

BMI (kg/m2 ) 24.08 ± 0.79 25.92 ± 0.99

Dominant Follicles (N) 3.92 ± 0.45 4.77 ± 0.48

E2 (pg/mL) 1275.86 ± 129.27 1894.10 ± 246.81*

Hirsute (N) – 12

Amenorrhoea (N) – 2

Oligomenorrhoea (N) – 13

Regular cycles (N) 36 15

CA, chronological age; BMI, body mass index; E2, 17β-estradiol in serum. Data are mean

± SEM values.; *p < 0.05.

follicle count. From day 6 of ovarian stimulation, the dose of
rFSH was adjusted according to ovarian response (monitored
by transvaginal US and serum E2 concentrations). In case of
appearance of leading follicles (of 17mm and above), ovulation
was triggered by injection of 10,000 IU human chorionic
gonadotropin (hCG), 24 h after the last injection of rFSH,
and 36 h later oocyte retrieval was performed by US-guided
transvaginal aspiration.

Collection of Follicular Fluid Samples and
Granulosa Cell Isolation
FF was aspirated from follicles (14–22mm in diameter) during
the oocyte retrieval and was processed immediately after oocyte
pickup. FF samples were centrifuged for 10min at 1,500 ×

g at room temperature and then for 10min at 3,000 × g at
room temperature to completely remove red blood cells or
detriments, then stored at −80◦C for subsequent analyses. GC
were isolated from the pellet obtained after the first centrifugation
step which was resuspended in 10mL of a 1:1 ratio mixture of
Medium 199 (Sigma Aldrich, Inc., USA) andHanks’ balanced salt
solution (Euroclone S.p.A., Italy). Then it was slowly layered on
10mL of Lymphocyte separation medium (Ficoll-Paque Plus, GE
Healthcare, UK) and centrifuged at 600 × g for 30min at room
temperature. The granulosa cells, collected at the interface, were
drawn off using a sterile Pasteur pipette, then washed three times
with Hanks’ balanced salt solution and stored at −20◦C until the
RNA extraction.

RNA Isolation and Reverse Transcription
Total RNA enriched in small RNAs was extracted from GC
lysates and FF using the miRVanaTM PARIS miRNA isolation Kit
(Thermo Fisher Scientific, USA) according to the manufacturer’s
protocol. The RNA concentration of all samples was quantified by
NanoDrop 1000 (Thermo Fisher Scientific, USA). The miRNAs
from GC lysates and FF were reverse transcribed using the
TaqMan R© MicroRNA Reverse Transcription Kit (Thermo Fisher
Scientific, USA) using a miRNA primer pool (see below)
according to the manufacturer’s protocol and the thermo-cycler
T100 (Bio-Rad Laboratories, Inc., USA).

RT-qPCR
Quantitative reverse transcription PCR (RT-qPCR) was
performed in real-time using specific TaqMan R© probes 20x
(Thermo Fisher Scientific, USA) for hsa-miR146a (assay ID
000468), hsa-miR155 (assay ID 002623), hsa-miR320-3p (assay
ID 002277), hsa-miR370-3p (assay ID 002275), hsa-miR486-
5p (assay ID 478128_mir), U6 snRNA (assay ID 001973),
and RNU48 (assay ID 001006) for the amplification of the
endogenous controls. The small nuclear RNAs U6 and U48
were selected as reference genes. Experiments were performed
in triplicate in optical 96-well reaction plates on the CFX96
TouchTM (Bio-Rad Laboratories, Inc. USA) thermo-cycler with
TaqManTM Universal Master Mix II, no UNG. Expression levels
of the selected miRNA genes were normalized with respect to
snU6 and snU48 expression levels in the same sample. Melting
curves were analyzed to ensure that fluorescence signals reflected
solely specific amplicons. The relative quantification analysis was
determined using the 2−1Ct method (42).

Biochemical Assays
HMGB1 concentrations in FF were assayed using a specific
research ELISA kit (HMGB1 ELISA, Tecan Trading AG,
Switzerland). The intra-assay coefficient of variation (CV) was
5.4%, and the inter-assay CV was 8.2%. The sensitivity of
the method was <0.15 ng/mL. Insulin was measured in FF
using a specific ultrasensitive ELISA kit (Mercodia Ultrasensitive
Insulin ELISA, Mercodia AB, Sweden); the intra-assay CV
was 6.5 and the inter-assay CV 7.1%. IL-6 was quantified
in FF using an ultrasensitive ELISA method (Human IL6
Quantikine ELISA kit, R&D Systems, Inc. USA) according to
the manufacturer’s protocol; the intra-assay CV was 3.8% and
the inter-assay CV 9.9%. The sensitivity of the method was
<0.11 pg/mL. E2 concentrations, obtained from venous blood
samples taken the same day as oocyte retrieval, were assayed with
the ADVIA Centaur R© Enhanced Estradiol Assay (Siemens AG

2010 ©2018, Germany), an automated, monoclonal, competitive,
chemiluminescent immunoassay.

miRNA-Target Gene Analysis
A list of experimentally validated direct target genes for each
miRNA was obtained from an in silico analysis conducted on
miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/php/
index.php) in order to have confirmed that the miRNAs selected
were tightly connected with the regulation of insulin sensitivity.
Among the experimentally validated direct target genes of the
analyzed miRNAs, those documented in the Literature to be
related with insulin sensitivity have been reported in Table 2.

Statistical Analysis
Standard statistical analysis was performed using the statistical

package SPSS 24.0 for Windows (IBM Analytics, ©IBM
Corporation 1994, 2017, USA) as appropriate. The Mann-
Whitney U test for independent samples was used to study
differences in miRNA levels between PCOS and CTRL. Pearson’s
linear regression or Spearman’s rank were used for correlation
analysis to investigate relationships among miRNAs, HMGB1,
insulin, number of dominant follicles, E2, CA, BMI as
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appropriate. Only significant data are reported in the text.
MiRNAs showing a p ≤ 0.05 were considered as differentially
expressed. Data relative to miRNA are expressed as median and
25th-75th percentile, unless otherwise stated.

Ethical Approval
The study was approved by the Ethical Committee of Reggio
Emilia (Prot. No. PCOS2_15_17). All participants gave written
informed consent in accordance with the Declaration of Helsinki.

RESULTS

Analysis of miRNAs Levels in Granulosa
Cells and Follicular Fluids
Changes in miRNAs expression levels from GC of PCOS
ovaries with respect to CTRL are reported in Figure 1A.
MiR-146a and miR-155 were significantly upregulated,
whereas miR-320 and miR-370 were downregulated in
PCOS. MiR-486 did not differ significantly between

TABLE 2 | miRNAs and their validated target genes related with insulin sensitivity obtained using miRTarBase.

miRNA miRBase ID Validated target genes

miR-146a hsa-miR-146a-5p CFH, TLR2, FADD, TRAF6, IRAK1, BRCA2, BRCA1, FAF1, PA2G4, NFKB1, EGFR, FAS, ERBB4, SMAD4, TLR4, STAT1, ICAM1,

SMAD2, PTGS2, CCL5, PTGES2, CXCL12, RAC1, COX2, SOS1, NOTCH2, SOX2, IL6, RHOA, LFNG, TGFB1, MIF, NOTCH1,

CCND2, CCND1, RHO, RARB, NOS1

miR-155 hsa-miR-155-5p MECP2, SOCS1, SHIP1, DET1, SMAD5, HIVEP2, JARID2, RHEB, PKN2, MYO10, RHOA, FOXO3, RUNX2, KBTBD2, KRAS, CYR61,

SMAD2, SOX6, JUN, KDM3A, IL13RA1, BCL6, CARHSP1, MYBL1, NKX3-1, PRKAR1A, RAC1, ANXA2, CCND1, INPP5F, PAK2,

UBQLN1, NFKB1, RAD51, MXI1, SOCS6, PTEN

miR-320 hsa-miR-320a-3p IGF1R, HOXA10, VDAC1, MYC, ITGB3, RAC1, PDCD4, BMI1, ARF4, NRP1, NFAT, PTEN, RAB14, FOXM1, RUNX2, VEGFA, NOD2,

FH, AR, HMGB1

miR-370 hsa-miR-370-3p CPT1A, TGFBR2, FOXO1, LIN28A, SIK1, AQP3, CPT1B, FOXN3, HNRNPA1, IFNGR2, TRAF1, PYGO2, GPR146, PTEN, NUCKS1,

WDTC1

miR-486 hsa-miR-486-5p CD40, ARHGAP5, OLFM4, PIM1, IGF1R, CADM1, PCCA, FOXP1, SEC23IP, MACROD2, ARF6, FBN1, CDK4, SMAD2, FOXO1,

PTEN, PIK3R1, HMGA1

FIGURE 1 | MiRNA expression levels in granulosa cells (A) and follicular fluids (B) from CTRL and PCOS. Results in box plots are shown as normalized expression

(2−1Ct) and the band inside the box is the median. The upper and lower whiskers represent the maximum and minimum values among data respectively. Data were

compared using the Mann–Whitney U-test (*P ≤ 0.05).
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TABLE 3 | Significant correlations among miRNAs in granulosa cells in the entire

group.

ρ p-value

ENTIRE GROUP miR-146a vs. miR-155 0.596 0.001

miR-320 −0.285 0.029

miR-155 vs. miR-370 −0.432 0.001

miR-486 0.515 0.034

miR-320 vs. miR-370 0.762 0.001

ENTIRE GROUP, control subjects+ Polycystic Ovary Syndrome patients; miR, microRNA;

ρ, Spearman’s correlation coefficient.

the two groups but its expression level was increased
in PCOS.

Changes in miRNAs from FF are represented in Figure 1B. In
detail, miR-146a, miR-155, and miR-486 showed a trend to lower
expression levels in PCOS, whereas miR-320 and miR-370 levels
exhibited an opposite trend. However, none of these changes was
statistically significant.

Overall, levels were lower in FF compared with those detected
in GC lysates.

Correlation Analyses in GC and in FF
Correlations Among miRNAs in GC
Within GC, significant correlations of miRNAs with other
miRNAs are reported in Table 3.

In the entire group of subjects (PCOS and CTRL) miR-146a
correlated positively with miR-155 (ρ = 0.596; P < 0.001) and
negatively with miR-320 (ρ = −0.285; P = 0.029). MiR-155
correlated with miR-370 (ρ = −0.432; P = 0.001) and miR-486
(ρ = 0.515; P = 0.034). MiR-320 correlated miR-370 (ρ = 0.762;
P < 0.001).

In the CTRL group, miR-320 correlated with miR-370 (ρ =

0.557; P = 0.002).
In PCOS, miR-146a correlated with miR-155 (ρ = 0.562; P =

0.001), and miR-320 with miR-370 (ρ = 0.491; P = 0.006).

Correlations of miRNAs in GC With Clinical

Parameters and Biochemical Data
In the entire group of subjects (PCOS and CTRL) miR-486
correlated with BMI (R = −0.671; P = 0.003) (Figure 2A),
and both miR-155 (R = −0.259; P = 0.047) and miR-
370 (R = 0.260; P = 0.047) correlated with the number
of dominant follicles. MiR-155 correlated negatively with
HMGB1 (R = −0.258; P = 0.048) in FF (Figure 2B).
MiR-155 (R = 0.411; P = 0.001), miR-320 (R = −0.406;
P = 0.001), and miR-370 (R = −0.510; P < 0.001)
correlated all with insulin concentrations. MiR-320 correlated
with serum E2 concentrations (R = 0.272; P = 0.037)
(Figure 2C).

In PCOS, miR-486 correlated both with chronological age
(R = −0.676; P = 0.032), BMI (R= −0.644; P = 0.045),
and serum E2 concentrations (R = 0.741; P = 0.014).
MiR-146a correlated with HMGB1 (R = 0.333; P = 0.072)
in FF.

FIGURE 2 | Correlation analysis in the entire group. MiR-486 levels in GC

correlated with BMI (R = −0.671; P = 0.003) (A). MiR-155 levels in GC

correlated with HMGB1 concentrations (R = −0.258; P = 0.048) (B), and

miR-320 levels in GC correlated with serum E2 concentrations (R = 0.272; P

= 0.037) (C).

Correlations Among miRNAs in FF
In the entire group of subjects miR-155 positively correlated with
miR-370 (R = 0.611; P = 0.027). MiR-320 correlated both with
miR-370 (R = 0.727; P = 0.005) and miR-486 (R = 0.827; P =

0.001); miR-370 correlated with miR-486 (R= 0.781; P = 0.002).
In the CTRL group miR-370 correlated both with miR-155 (R

= 0.910; P= 0.032), and miR-486 (R= 0.985; P = 0.002).
In PCOS, miR-320 correlated both with miR-370 (R = 0.800;

P = 0.017) and miR-486 (R = 0.956; P = 0.001). MiR-486 and
miR-370 were also related (R= 0.740; P = 0.036).
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Correlations of miRNAs With Clinical Parameters

in FF
In the entire group, miR-155 correlated with BMI (R = 0.366; P
= 0.039).

In the CTRL group, miR-155 correlated both with CA (R =

0.512; P = 0.030) and BMI (R= 0.492; P = 0.038).
In PCOS, miR-486 correlated with E2 (R = −0.661; P =

0.038), miR-146a with insulin concentrations (R = 0.548; P =

0.042), andmiR-155 correlated with IL6 (R=−0.587; P= 0.027).

DISCUSSION

This study showed an upregulation of miR-146a, miR-155,
miR-486 levels and a downregulation of miR-320 and miR-
370 levels in GC from PCOS patients compared with a CTRL
population. Although no significant changes were found in FF,
miR-146a, miR-155, and miR-486 showed lower levels in PCOS,
whereas miR-320 and miR-370 levels exhibited an opposite
trend. These miRNAs showed relationships with BMI, serum
E2 concentrations, number of dominant follicles, insulin, and
HMGB1 concentrations in FF.

We are aware that this study has some limitations. In
particular, the fact that all analyses were performed after ovarian
hormonal stimulation that might induce changes; however, both
PCOS and CTRL subjects underwent the same stimulation
protocol, thus differences between the two groups must be
considered as such. Furthermore, for ethical reasons, GC and
FF can be easy to obtain as a secondary product during
IVF procedures.

The finding of increased miR-146a in GC from PCOS is
consistent with reports under conditions of insulin resistance
in pancreatic β-cells after exposure to saturated fatty acids
(43) and in serum from type 2 diabetic patients (44). In the
miRTarBase database it is reported that about 54% of the
experimentally validated direct target genes for miR-146a are
related with insulin sensitivity (Table 2). A downregulation of
miR-146a has been associated with increased protein-tyrosine
phosphatase non-receptor-type 1 (PTPN1), an inhibitor of the
insulin receptor (45). As we previously described reduced insulin
content in FF in PCOS (17), it could be speculated that insulin
uptake might be enhanced in GC in PCOS women, due to
enhanced insulin sensitivity possibly associated with reduced
PTPN1. Interestingly, miR-146a upregulation was reported in
patients with premature ovarian failure, and associated with
enhanced ovarian GC apoptosis (46). This could be further
supported by our finding of a positive correlation between
miR-146a and HMGB1, as HMGB1 has been described to
be released during apoptosis (47). Furthermore, we previously
described relationships of HMGB1 with glucose metabolism
and inflammation both in cystic fibrosis and PCOS (17, 18).
Interestingly, miR-146a was found to be positively correlated also
with miR-155. Both these miRNAs are recognized as possible
regulators of the FOXO1 gene, a key downstreammediator of the
insulin signaling cascade (25).

MiR-155 is considered a multifunctional miRNA and is
strongly related with inflammation, insulin resistance, obesity,
and steroidogenesis (33, 48, 49) reflecting the main features

of PCOS. Furthermore, following in-silico analysis using
miRTarBase, about 21% of experimentally validated direct target
genes of miR-155 are related with insulin sensitivity (seeTable 2).
In this study miR-155 was found upregulated in PCOS and
correlated with both HMGB1 and insulin concentrations in FF,
supporting a possible involvement of miR-155 in the regulation
of inflammation and ovarian insulin sensitivity. As mentioned
above, miR-155 is predicted to target the FOXO1 gene (25),
which also controls genes involved in gluconeogenesis and
adipogenesis, metabolic processes related with insulin sensitivity.
The correlation with BMI, CA and IL-6 is in agreement
with inflammation increasing with BMI and age (50, 51). The
correlations with other miRNAs confirm the existence of a
network of miRNAs regulating a network of corresponding genes
involving in the regulation of insulin sensitivity within the ovary.

MiR-320 and miR-370 were decreased in GC from PCOS
and correlated with insulin concentrations. In serum these
miRNAs are known to regulate insulin sensitivity (38, 52).Within
miRTarBase database, ∼14–43% of validated target genes for
these miRNAs are found among genes known to regulate insulin
sensitivity (see Table 2). Our data suggested also that they play
a role in regulating insulin sensitivity within the ovary. The
relationships of miR-320 with E2 and of miR-370 with the
number of dominant follicles suggests a role in ovarian function.
Interestingly, miR-320 and miR-370 have been described to
regulate mediators downstream the follicle-stimulating hormone
(FSH) receptor that plays a key role in folliculogenesis, and
oocyte maturation (53). Some of these mediators are shared by
the insulin receptor signaling pathway, therefore, a cross talk
between the two receptors could be hypothesized.

MiR-320 is currently considered as a promising target for
the treatment of type-2 diabetes mellitus (34) and regulates the
expression levels of the p85 subunit of the PI3K which enhances
adipocyte insulin sensitivity in obesity (52). Furthermore, miR-
320 has been described to downregulate the expression of IGF-
1 and its receptor (52, 54). MiR-370 has been shown to be a
FOXO1 gene regulator in prostatic cancer cells (55, 56). It is also
described as a regulator of Insulin receptor substrate 1 (IRS1), an
insulin-signaling scaffold-protein (37, 38, 55).

MiR-486 has been previously described as a FOXO1 gene
regulator and thus is related with insulin sensitivity (34, 57,
58). Furthermore, following in-silico analysis using miRTarBase,
about 27% of validated target genes of miR-486 are related with
insulin sensitivity (see Table 2). Changes were not significant
in PCOS, although it was increased with respect to controls
both in GC and in FF levels. MiR-486 was correlated with
BMI, chronological age, and serum E2 concentration in PCOS,
thus suggesting that aging and adiposity were related with
ovarian function.

In conclusion, this study highlighted that some miRNAs
are of importance in PCOS within the ovary, and show
relationships with insulin levels, ovarian insulin sensitivity
and inflammation. GC and FF, due to their close proximity
with the oocyte and its nurse cells reflect the secretory and
metabolic activities of oocytes and follicle niche. Overall this
study offers new knowledge on PCOS within the ovarian
microenvironment, providing a new insight into insulin
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sensitivity even if insulin per se and insulin sensitivity
need to be further investigated and understood within
the ovary.
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