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ABSTRACT
The processing of salient and rewarding stimuli is integral to engaging our attention, stimulating anticipation for future
events, and driving goal-directed behaviors. Widespread impairments in these processes are observed in psychosis,
which may be associated with worse functional outcomes or mechanistically linked to the development of symptoms.
Here, we summarize the current knowledge of behavioral and functional neuroimaging in salience, prediction error,
and reward. Although each is a specific process, they are situated in multiple feedback and feedforward systems
integral to decision making and cognition more generally. We argue that the origin of salience and reward processing
dysfunctions may be centered in the subcortex during the earliest stages of psychosis, with cortical abnormalities
being initially more spared but becoming more prominent in established psychotic illness/schizophrenia. The neural
circuits underpinning salience and reward processing may provide targets for delaying or preventing progressive
behavioral and neurobiological decline.

https://doi.org/10.1016/j.bpsgos.2021.12.003
Psychoses of the schizophrenia spectrum are characterized by
positive symptoms, such as hallucinations and delusions,
which are dominant during the psychotic stages of the dis-
ease; negative symptoms, such as lack of motivation and
emotional blunting; and cognitive symptoms, such as memory
dysfunctions (1). Although the underlying mechanisms leading
to this complex set of symptoms are not fully understood, one
of the most robust findings in psychosis and schizophrenia
and even in the prodromal stages of the disease [e.g., (2)] is the
elevation of striatal dopamine [e.g., (3)]. Dopamine is therefore
the target of most antipsychotic pharmacological interventions
(1), greatly reducing positive symptoms (4). Unfortunately,
however, approximately 30% of patients with schizophrenia
classify as treatment resistant to dopamine D2 receptor an-
tagonists and have worse long-term functional disability, with
more severe positive, negative, and cognitive symptoms [e.g.,
(5)]. Glutamatergic systems may be more relevant than dopa-
mine for the pathogenesis of positive psychotic symptoms in
these individuals (6). Similarly, links between negative and
cognitive symptoms and dysregulation of the glutamatergic
system have also been observed [e.g., (7)]. However, phar-
macological interventions targeting the glutamatergic system
have been less successful (1). Given the strong associations
between dopamine, salience/reward, and negative symptoms,
this review is focused largely on subcortical dopamine systems
and their associated corticostriatal networks.

In this article, we examine evidence for dysfunction of the
neural circuitry subserving reward and salience processing and
their links to dopaminergic dysregulation in the psychosis
spectrum (Table 1). These dysfunctions are potentially highly
relevant for understanding the core aspects of schizophrenia
and related symptoms, including positive symptoms and
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negative symptoms. A brief introduction to the psychological
processes included in salience, prediction error, and reward
processing is provided in Figure 1. We endeavored to examine
the extent to which neural dysfunctions have been linked to
clinical symptoms, cognitive impairments, or functional
disability because not all neural abnormalities may have dele-
terious consequences. Much of the work in this field is cross-
sectional; however, we have endeavored to discuss jointly all
stages of illness to highlight the relevant similarities and dif-
ferences as much as possible.
SALIENCE PROCESSING IN PSYCHOSIS

Salience is a property that characterizes the importance of a
stimulus and ultimately attracts attention to drive cognition and
behavior. Salience is a multifaceted concept (8) including
different dimensions, such as reward or novelty (Box 1).
Abnormal salience processing following dysregulation of the
dopaminergic system has been linked to the formation and
maintenance of positive and negative symptoms (9–12) and is
referred to as the aberrant salience hypothesis of psychosis
(8,13–15). According to the aberrant salience hypothesis,
elevated levels of dopamine in psychosis [e.g., (16)] create
neurobiological noise, which is misinterpreted as meaningful-
ness and may lead to the attribution of salience to the
otherwise unimportant, ordinary experiences that incidentally
co-occur with this experience. The interpretation of these
falsely judged–important stimuli may lead to the formation of
hallucinations and delusions.

At the same time, relevant stimuli, such as a reward pre-
diction error or an emotional stimulus, fail to be processed
appropriately, leading to a blunted response, potentially
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Table 1. Psychosis Spectrum

Disease Stage Description

At Risk By at risk, we mainly refer to people who are at increased risk of psychotic illness due to being help-seeking patients presenting
with mild (subthreshold) clinical symptoms, especially subthreshold positive psychotic symptoms, such as suspicions or
hallucinations without delusional interpretations. Such individuals are sometimes termed ultra-high-risk, clinical high-risk, at-risk
mental state, or prodromal psychosis, with several (slightly differing) operational criteria available to categorize people in such
states (131). We note that although such groups are especially at (relatively) high risk of psychosis, they also are at risk for other
adverse psychiatric outcomes (132).

Early Psychosis By early psychosis, we refer to the early stages after the onset of established psychotic illness, such as first-episode psychosis
and first-episode schizophrenia. While some studies only include patients who meet the diagnostic criteria for schizophrenia, a
number of research studies include a broader mixture of patients with first-episode psychosis. These are people presenting with
psychotic illness for the first time, many with nonaffective schizophrenia spectrum psychosis, and others with affective
psychosis such as bipolar disorder or depressive psychosis.

Chronic Psychosis/
Schizophrenia

In general, we use the term chronic psychosis/schizophrenia for referring to patients who have been unwell beyond the early
stages of illness/first 5 years of psychotic illness. Where studies have specified a minimum duration of illness, we use the term
chronic schizophrenia, but we note that some studies include a mixture of patients with schizophrenia at different stages of
illness.
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explaining negative symptoms (12,17). The human and animal
literature describes the critical role of dopamine in reward
prediction error processing (18,19). Reward prediction errors
are intrinsically salient (see Prediction Error Signaling in
Psychosis and Reward Processing in Psychosis). The firing
of dopamine neurons, however, is not exclusive to reward
prediction error but has been reported in response to non-
rewarding unexpected events, such as aversive or alerting
(11,20), as well as novel events (21), surprising events (22), or
physical change (23). Therefore, dopamine release, at least in
some contexts, may reflect general salience (24).

Aberrant Salience as Altered Processing of
Irrelevant Information

Several studies investigated the processing of neutral or unin-
formative stimuli using different methods and exploring different
stages of the disease and the link to symptoms; while
update our beliefs and goals associated with the initial stimuli (or action required
event in the future (n1 1), it is more likely to be considered salient. Reward proces
attention (reward anticipation), drive associative learning (reward learning), and
rewarding outcome; however, perceptual and attentional processes of sensory st
via prediction errors.
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theoretically clear, the experimental results show in-
consistencies. Roiser et al. (25) adapted a monetary reinforce-
ment learning task (salience attribution task) to investigate the
salience assigned to irrelevant stimuli. Their study revealed that
schizophrenia patients with delusions showed higher levels of
aberrant salience to irrelevant stimuli than patients without de-
lusions (25); however, aberrant salience was correlated with
negative symptoms. Applying the same task to at-risk in-
dividuals, aberrant salience attribution to irrelevant stimuli was
associated with the severity of positive symptoms (26). Simi-
larly, using novel computational approaches to investigate the
differences between patients with schizophrenia and control
subjects in the implicit salience task, Katthagen et al. (27) found
that patients had a stronger bias toward irrelevant information,
which was associated with stronger negative symptomatology
and not with positive symptoms as conceptually expected.
Partially, these inconsistencies might be explained by different
Figure 1. Conceptual interactions between
external events (cyan), salience and prediction error
(red), and reward processing (purple) in decision
making. An external event (e.g., action outcome) will
be perceived and attended to when it overcomes a
certain level of salience (referred to as a salience
threshold). The input is then integrated into asso-
ciative learning networks to inform decision-making
processes. Computation of potential rewards avail-
able (valuation) and the effort required for each
(effort-cost trade-off) are then used to identify the
optimal choice and whether or not it is acted upon. In
this example, the outcome is rewarding (external
feedback as action outcome), which is then
compared with our prior expectations. Our prior
expectation is associated with how accurate our
valuation of the outcome is. In cases where the
outcome matches the expectation (green tick), the
associations are reinforced. In cases where there is a
mismatch between the outcome and our expecta-
tion, a prediction error signal is generated. The pre-
diction error is used to update our understanding of
input-output relationships. Prediction error informa-
tion (magnitude, precision, and so on) is then used to

). This updates our salience threshold so that when we encounter this same
sing (purple) affects multiple stages in this process to subsequently increase
govern our motivation to work toward a future goal. Here, we focus on a
imuli work similarly, causing belief updating and salience threshold updating

www.sobp.org/GOS

http://www.sobp.org/GOS


Box 1. Salience

The world around us is highly complex and produces constant noisy and ambiguous sensory input to our brain. The biggest challenge for our brain is to
rapidly and efficiently identify important stimuli and to process them effectively. One efficient way that the brain applies is to evaluate the saliency of
incoming sensations and prioritize them accordingly considering the context. Imagine, for example, the change of the traffic lights from green to red; the
change in the physical qualities of the visual input is highly informative and important to adapt our behavior and decisions. This example shows that
there is a strong interaction between stimulus-driven processing and goals or belief of the individual to determine the saliency of incoming information.

We can differentiate between different forms of saliency (133), the first distinction being between incentive or motivational salience and non-
motivational salience. Incentive salience describes the desire to obtain a reward by increasing attention and motivational drive (see the sections on
Prediction Error Signaling in Psychosis and Reward Processing in Psychosis for more information). Tasks used to investigate motivational salience use
mainly monetary rewards. Nonmotivational salience, which is usually studied in visual/auditory oddball paradigms or when investigating the processing
of irrelevant stimuli in monetary reward paradigms, can be distinguished in novelty salience and surprisal (134), which are essential drivers of intrinsic
motivation (not reward related) and attention. Surprise is characterized by a change in condition through the comparison of the expected to the actually
perceived (e.g., the physical change of a stimulus or emotional change) and is strongly linked to an unsigned (i.e., without valence indication, worse or
better than expected) prediction error (135). For novelty, however, the concept is less concrete. Generally, novelty refers to a sensory input never
encountered before (complete novelty) or not encountered for some time (short-term/long-term novelty). See Barto et al. (134) for details. Once some
sensory input is being evaluated as salient, this is ultimately a driver for learning and behavior (136).

When experimentally investigating salience processing, two different aspects might be explored: the processing of salient, such as emotional, novel,
or motivational stimuli, or the processing of irrelevant, uninformative, neutral stimuli. In schizophrenia, deficits in the first aspect conceptually relate to
the development and preservation of negative symptoms (12,17); the latter suggests the overweighting of irrelevant stimuli, which is linked to the
emergence of positive symptoms. The current literature provides evidence for aberrant salience processing across both aspects in early psychosis and
chronic schizophrenia; however, links to symptomatology are less concise.
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medication or treatment statuses. Abboud et al. (9), for
example, showed that patients with treatment-resistant
schizophrenia did not show heightened aberrant salience.
This result may be explained by the nonelevated levels of
dopamine synthesis capacity (28) in contrast to otherwise
elevated levels in the early and chronic stages of the illness (29).
A further argument explaining the inconsistencies might be the
investigation of task-irrelevant information in a rewarding
setting, which might not allow a clear differentiation between
the underlying processes.

In a reward-independent learning setting, Ceaser and Barch
(30) found that during a cognitive control task, patients with
schizophrenia were more likely to inappropriately encode
irrelevant distracter stimuli, showing increased prefrontal and
striatal activity. In emotion recognition studies, patients with
chronic schizophrenia consistently showed increased brain
signaling to neutral emotional stimuli, the irrelevant stimuli in
the tasks, with effects being especially strong for face stimuli
(31). Similar results were also reported for emotional and
neutral word processing; patients with schizophrenia and their
unaffected first-degree relatives demonstrated increased
attention to neutral words compared with control subjects (32).
The brain regions involved varied across studies and included
the amygdala, prefrontal and cingulate subregions, and hip-
pocampus (31). Results in individuals at risk for psychosis were
less consistent with regard to neutral stimuli (31). These
studies provide evidence for altered processing of neutral
events in subcortical regions associated with dopaminergic
dysregulation. When studying the processing of neutral stimuli
in a reward-independent setting, there is more consistent ev-
idence of a link between neural dysregulation and performance
and symptom strength; increased striatal activity during
incorrect distracter trials correlated positively with aberrant
salience symptoms (30). In a behavioral causal learning task,
Morris et al. (33) showed that people with schizophrenia with
severe positive symptoms failed to discriminate between
Biological Psychiatry: Glob
predictive and nonpredictive cues compared with healthy
adults. Furthermore, overweighting nonpredictive cues was
correlated with more severe positive symptom scores in
schizophrenia (33). A recent study (34) exploring neutral stimuli
in a reward learning setting showed that individuals with
psychotic-like experiences overattribute salience to neutral
stimuli and underattribute salience to rewards, indicating that
abnormal salience attribution is a trait-like feature. Together,
these studies show that neutral or irrelevant stimuli are
consistently overweighted in patients at different disease
stages, with the exception of patients with treatment-resistant
schizophrenia, showing a clear indication of aberrant salience,
although associations with symptoms are inconsistent.
Aberrant Salience as Altered Processing of
Relevant Information

Aberrant brain processing of informative and relevant but
nonmotivational salient events in psychosis has been reported
in several studies. In a recent study, Knolle et al. (35) used a
visual, passive oddball paradigm (36) to investigate novelty,
negative emotional salience, and targetness, which required a
button press, in patients with antipsychotic naïve first-episode
psychosis. The patients exhibited reduced substantia nigra,
ventral tegmental area, and striatal and cingulate signaling to
novelty; reduced substantia nigra, ventral tegmental area,
amygdala, and striatal and cingulate signaling to negative
emotional salience; and reduced substantia nigra, ventral
tegmental area, and cingulate signaling to targetness. Modinos
et al. (37), using the same paradigm, showed similar results for
novelty processing in at-risk individuals using the same task.
Similar results of altered salience processing have been re-
ported in patients with Parkinson’s disease exhibiting psy-
chotic, mainly hallucinatory, symptoms (38), again using the
same paradigm (36). Moreover, patients with schizophrenia
and early psychosis show deficits when processing emotions
al Open Science January 2023; 3:33–46 www.sobp.org/GOS 35
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and intrinsic salient events, especially in the context of facial
recognition (39). In a positron emission tomography (PET)
study, Taylor et al. (40) showed impaired neuronal signaling in
the ventral striatum in response to emotional salient events in
people with chronic and acute psychosis. In general, experi-
mental findings are less consistent. A study reporting overall
increased arousal in patients with schizophrenia during pro-
cessing of emotionally neutral and salient stimuli (41) showed
that the increase resulted solely from falsely attributing
salience to neutral stimuli. This view has been confirmed by a
meta-analysis showing similar processing of emotionally rele-
vant information but attribution of aberrant salience to
emotionally neutral information (42).

A recent electroencephalography study (43) using a P300
auditory oddball paradigm reported that reduced P300, which
reflects impaired salience processing, indicated both transition
to psychosis in at-risk individuals and transition to remission
from psychotic symptoms. These studies show consistent
findings for altered, mainly reduced, processing of salient
stimuli compared with control subjects. Bringing both ac-
counts together, a study by Boehme et al. (44) investigating
healthy subjects showed that individual variability in aberrant
salience measures related negatively to ventral striatal and
prefrontal reward prediction error signals and, in an exploratory
analysis, was found to be positively associated with nucleus
accumbens presynaptic dopamine levels.

Aberrant Salience and Symptomatology

The literature provides evidence for aberrant processing of
nonmotivational (and motivational) salience with regard to
relevant and irrelevant events. Dysregulations in salience pro-
cessing are associated with a range of brain areas in early
psychosis and chronic schizophrenia (Figure 2). Here, we wish
to argue that aberrant salience may explain positive and
negative symptoms via different, although interrelated,
Role: Coding stim
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inappropriate sali
reduced activation
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mechanisms. As Maia and Frank (12) discussed, the failure to
distinguish between salient and nonsalient events may be re-
flected in the dysregulated activity of phasic firing of dopamine
neurons. While increased phasic dopaminergic firing to a
nonsalient event, such as a radio in the background, may lead
to the attribution of attention to this otherwise irrelevant stim-
ulus, this suddenly important information (content of the radio
show) might be reinterpreted causing, e.g., delusional thinking.
However, decreased dopaminergic phasic firing to a salient
event, such as an unexpected positive emotional expression
on a person’s face, may blunt the importance of this infor-
mation. The inadequate interpretation or evaluation of the sit-
uation may be linked to, e.g., anhedonia. The aberrant
processing of these informative or relevant (i.e., salient) events,
as seen in blunted prediction errors to rewards (see Prediction
Error Signaling in Psychosis) (45,46) or decreased responses
to relevant visual stimuli (38,47), seem to relate to negative
symptoms, such as anhedonia or lack of motivation (47–50). In
contrast, aberrant processing of irrelevant (i.e., nonsalient)
events, such as neutral events in reward learning or oddball
paradigms, seems to provide an explanation for positive
symptoms (33,34). We do note, however, some studies with
contradictory symptom associations [e.g., (25,27,51)].

PREDICTION ERROR SIGNALING IN PSYCHOSIS

Prediction error is the mismatch between expectation and
outcome and is, as an intrinsically salient event, a key driver of
learning (52). Several studies reported reduced midbrain,
striatal, and/or cortical processing of reward prediction errors
in psychosis, which may underpin aspects of the clinical
manifestations of psychotic illness (45,46,50,53–55). Here, we
will mainly focus on functional magnetic resonance imaging
(fMRI) studies of reward prediction error; other closely related
topics such as mismatch negativity, Kamin blocking, latent
inhibition, and causal learning prediction error have been
ulus motivational 
nal salience.

sed activation for 
ence attribution, and 
 to salient events.

ra/VTA

rom salient input, and 
tion.
ced activation to

-motivational salience. 
petitive motivation.
appropriate salience 
 informative events.

Figure 2. Salience areas and psychosis. Simpli-
fied diagram of key regions involved in salience
processing and underlying problems observed in
psychosis. See text for citations and details. dl,
dorsolateral; vm, ventromedial; VTA, ventral
tegmental area.
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previously studied in schizophrenia and discussed elsewhere
[e.g., (56,57)].

fMRI Studies of Reward Prediction Error in Early
Psychosis and At-Risk Patients

In an early study, Murray et al. (45) demonstrated abnormalities
in patient brain responses correlating with reward prediction
error in the dopaminergic midbrain, in striatal and limbic re-
gions, and in cortical regions such as the dorsolateral pre-
frontal cortex (PFC). Subsequent studies using different
psychological paradigms have found similar abnormalities
[e.g., (54,55)], especially in the early stages of psychosis,
including in at-risk states [e.g., (58)]. Ermakova et al. (46)
documented impaired subcortical (midbrain) reward prediction
error signals in an antipsychotic-free early psychosis sample
and showed that an at-risk group with mild psychotic symp-
toms had a degree of midbrain signaling abnormalities.
Notably, there was dorsolateral PFC prediction error
dysfunction in the early psychosis sample, with comparatively
intact cortical function in the at-risk group with mild psychotic
symptoms.

Relevant Pharmacological and Molecular Imaging
Results

Although PET studies have demonstrated robustly that there is
excessive dopaminergic striatal release in schizophrenia (59),
neuroimaging studies have generally shown impaired striatal
signaling in patients during learning, which may appear per-
plexing if striatal fMRI signals are considered a pure assay of
dopamine release. This apparent paradox was addressed by
Bernacer et al. (60), who showed that administration of meth-
amphetamine (which floods the striatum with dopamine) to
healthy volunteers leads to a disruption of striatal prediction
error–associated activity. The degree to which methamphet-
amine induced mild psychotic experiences was related to the
degree to which it disrupted the expected value signal in the
ventromedial prefrontal and posterior cingulate cortices. The
study showed that a drug that reliably increases dopamine
Substdorsal Anterior cingulate cortex

dorsolateral Prefrontal cortex

Role: 
predic

Psych
rewar
signal

Subc

superior Frontal cortex

Role: Coding reward prediction error, 
especially unsigned prediction error 
or positive prediction error.

Psychosis: Disrupted reward 
prediction error signaling; impaired 
representation of the precision of the 
prediction error signal.

Cortical areas
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release is not beneficial to neural or behavioral indices of
learning, indicating that caution should be exercised when
using fMRI signals as a clean readout of neurochemical pro-
cesses. A related, nuanced finding is that antipsychotic
dopamine D2 receptor antagonist medications may enhance
brain activations during reward processing in patients, in
contrast to their effects in studies in healthy individuals (61).

Precision of Prediction Error

Recent interest has focused not simply on prediction error per
se, but on the precision of prediction error, which theory posits
should play an important role in belief updating under uncer-
tainty. Simple models update value or beliefs in proportion to
the prediction error, but it is thought that a prediction error of a
given magnitude should influence belief updating depending
on the degree of uncertainty with which it is estimated. Sub-
stantially updating beliefs because of an imprecisely estimated
prediction error could be maladaptive (22,62), and several
authors have posited that the precision of the prediction error
could be a key locus of dysfunction in psychosis (27). Haarsma
et al. (22) found behavioral and brain imaging evidence that
patients with early psychosis have learning abnormalities
related to the degree of precision weighting of prediction error
in the superior frontal cortex. They focused on unsigned pre-
diction error (i.e., prediction error that indicates surprise
without valence evaluation, being worse or better than ex-
pected), which is often associated with cortical brain activity in
human fMRI studies (63). The degree of cortical abnormality
was most pronounced in early psychosis and linked to the
severity of positive psychotic symptoms, with relatively less
impaired cortical function in at-risk patients with fewer symp-
toms. This pattern fits with the relatively distinct roles of the
cortical areas in modulating the level of certainty of an un-
signed prediction error estimation, compared with the role of
the subcortical areas in signaling signed prediction errors, and
hints toward a key role for the cortical function in the pro-
gression from the at-risk state to the frank psychotic illness
state (Figure 3).
antia nigra/VTA

Coding reward 
tion error.

osis: Disrupted 
d prediction error 
ing.

ortical areas

Striatum

Thalamus

Figure 3. Prediction error areas and psychosis.
Simplified diagram of key regions involved in pre-
diction error signaling and underlying problems
observed in psychosis. See text for citations and
details. VTA, ventral tegmental area.
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Prediction Error Signals in Psychosis May Differ
Across Illness Stages

We do note that there have been inconsistencies in the liter-
ature of prediction error signaling in psychosis. This is reflected
in the conflicting accounts of two meta-analyses, one of which
found relatively little evidence of abnormal fMRI reward pre-
diction error signals in patients with schizophrenia compared
with control subjects, although there were differences between
schizophrenia and depression (48,64). Another meta-analysis
did document striatal reward prediction error abnormalities in
psychosis (65). Some studies that do not show group differ-
ences in activation have shown relationships at the interindi-
vidual level between striatal activation and the severity of
anhedonia (47,66). One theme that may be emerging is that
predominantly medicated samples of patients with schizo-
phrenia have relatively intact brain prediction error signals,
especially in chronic illness [e.g., (67)], whereas wholly or partly
unmedicated samples, especially of early psychosis or
schizophrenia, often show brain reward prediction error
Table 2. Types of Reward Processes

Process

Anticipation Increased attention and responsiveness to up
of the striatum, amygdala, and thalamus, a
prefrontal cortices can also be recruited (1
expected value, with the dorsal striatum (c
human studies indicate that dopamine func
dopamine tending to increase anticipation

Valuation Comparison of various reward outcomes. Rew
The areas involved in computing and comp
and ventromedial prefrontal cortex (119). In
before computing the effort-reward trade-o
update our understanding of the relationsh
reinforcement learning and generating anti

Effort and Motivation Calculation of the effort-reward trade-off. The
(141), whereas the nucleus accumbens and
(142–144). In healthy people, greater endog
manipulations increase the willingness to e
demonstrated that dopamine function in th
although arguments that dopamine is prima
been put forth (148,149).

Outcome and Outcome-Specific
Devaluation

Encoding the presence or absence of a reward
reward outcomes include the nucleus accu
(137), although this depends on the specifi
test of goal-directed action, requiring a pa
been devalued. This requires effective rew
(between the two possible outcomes), and

Learning With a Focus on
Reversal Learning

Incorporating reward outcomes and experien
reward learning, but one of the most widely
participant to navigate trial-by-trial feedbac
misleading negative feedback on the bette
worse choice (often 20% reward probability
To further probe how adaptable reward lea
of the correct choice (6–10 consecutive co
probabilistic reversal learning include the st
studies have also shown that dopamine is
amphetamine (a dopamine stimulant) admi
(150). Yet, increasing phasic dopamine sign
win-stay, even if the choice itself was not
subregion) decreases win-stay use (151). A
learning. For example, inactivating or lesio
been shown to alter reward or punishment
However, punishment learning may be mo

38 Biological Psychiatry: Global Open Science January 2023; 3:33–46
abnormalities (35,45,50,55), as has been seen previously in the
related field of latent inhibition studies in psychosis (56,68).

REWARD PROCESSING IN PSYCHOSIS

Reward describes a range of processes relating to the calcu-
lation, computation, and attainment of positive outcomes (69)
(Table 2). Reward deficits feature in a variety of psychiatric
disorders and are commonly associated with dopamine sys-
tems (70,71). Increased negative symptoms in people with
psychosis have been associated with decreased function in
the ventral striatum in particular (72), but with structural
changes in the orbital frontal cortex (73,74) and increased
glutamate levels in the anterior cingulate in early psychosis
(75). However, a variety of brain areas are involved in reward,
and understanding the discrete contributing processes is
critical for an appropriate neurobiological interpretation.
Growing evidence supports a specific set of problems in pa-
tients with psychosis, related primarily to motivation and
reinforcement learning.
Role

coming rewards. In general, reward anticipation is associated with activation
nd if multiple choices are available, the orbitofrontal and ventromedial
37). Within the striatum, the nucleus accumbens is thought to code the
audate) more involved in selection, action, and choice (137). Preclinical and
tion is important in reward anticipation (82,138,139), with increasing
toward future rewards (140).

ard valuation is important in multiple stages of decision-making processes.
aring value include the orbitofrontal cortex, nucleus accumbens, amygdala,
itially, a comparison of the various rewards that may be available is required
ff. Once an outcome is acquired, its value is again assessed and used to
ips between actions, effort, and reward. This is critical for effective
cipatory or incentive motivation for future rewards.

dorsal striatum is potentially involved in the selection of low-effort choices
anterior cingulate cortex are critical in modulating effort-cost trade-offs
enous striatal dopamine function or dopamine-stimulating pharmacological
xpend effort when pursuing rewards (145,146). Preclinical studies have
e nucleus accumbens is important in generating the value of work (147),
rily coding reward value with minimal coding for the required effort have also

and the actual reward value. The areas involved in monitoring and encoding
mbens, orbitofrontal cortex, ventromedial prefrontal cortex, and amygdala
c reward learning task parameters (114). Outcome-specific devaluation is a
rticipant to adjust, or bias, their actions away from an outcome after it has
ard valuation (one outcome is now less rewarding), reward comparison
then using this information to guide action selection.

ce to navigate future choices. Many approaches have been used to probe
used in psychosis research is probabilistic reversal learning, which requires a
k to determine which of two stimuli is rewarded more often. The presence of
r choice (often 80% reward probability), as well as positive feedback on the
), means that the participant cannot rely solely on a “follow the win” strategy.
rning is, after the participant has successfully demonstrated their knowledge
rrect trials), the contingencies are reversed. The areas commonly involved in
riatum, orbitofrontal cortex, and ventral prefrontal cortex (96,100). Preclinical
important for probabilistic reversal learning. For example, systemic
nistration in rats alters punishment learning without affecting win-stay use
aling in the nucleus accumbens during a choice can increase the tendency to
rewarded (147). Alternatively, inactivating the nucleus accumbens (shell
range of cortical areas have also been implicated in reward and punishment
ning the prelimbic, infralimbic, and orbitofrontal cortex subregions have all
learning during reversal learning in rodents and marmosets (152–154).
re sensitive to cortical modulation than reward learning (152,154).
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Since its original classification, schizophrenia has been
associated with anhedonia (76,77), a deficit in the pleasure
received from rewarding or emotional stimuli (78). Anhedonia is
a core feature of major depressive disorder (79), and in
schizophrenia it has been thought to contribute to broad
motivational deficits. For example, if a reward is perceived to
be less valuable, then the effort-reward trade-off is biased
toward inaction. However, a growing amount of evidence
suggests that people with schizophrenia experience the same
pleasure from positive emotional and hedonic outcomes
(42,80,81). Perceived levels of anhedonia may instead be im-
pairments in other reward processes, such as the anticipatory
motivation toward rewarding outcomes (80).

Reward Anticipation

Deficits in reward anticipation have consistently been
observed before psychosis onset. For example, a meta-
analysis (including six studies in those at risk) observed im-
pairments in those at risk (65), and others have observed
similar deficits in early psychosis (82). A combined fMRI and
PET study in healthy individuals found that nucleus accum-
bens dopamine release during reward anticipation was asso-
ciated with activation of the dorsal striatum, amygdala,
hippocampus, and thalamus (83), suggesting that dopamine
release in the nucleus accumbens may be causative in
recruiting the necessary networks. Multiple meta-analyses
have observed reduced activation of the striatum and ante-
rior cingulate cortex in those with schizophrenia [e.g., (65,84)].
Less striatal activation was associated with greater psychotic
symptoms (even after controlling for antipsychotic dosage)
(84), whereas decreased activation of the nucleus accumbens
in those at risk for and with chronic schizophrenia was asso-
ciated with increased negative symptoms (and not with posi-
tive symptoms) (65). There is some evidence that antipsychotic
treatment can improve striatal signaling during reward antici-
pation in people with schizophrenia but only in those who
show significantly decreased positive symptoms (85) or when
treated with atypical antipsychotics (86). However, the rela-
tionship between antipsychotic treatment, negative symptoms,
and reward anticipation may be more complicated (87).
Furthermore, impairments in reward anticipation may be an
early developmental trait preceding psychosis onset. For
example, Vink et al. (88) found that nucleus accumbens acti-
vation during reward anticipation decreased across adoles-
cence in the children of people with schizophrenia (i.e.,
carrying a higher familial risk of developing psychosis) but not
in the children of healthy control subjects. Conversely, it has
been suggested that reduced anticipatory motivation may be a
byproduct of a decreased ability to accurately maintain value
representation (89) or reward learning, more generally (90).

Avolition and Effort-Reward Trade-offs

Another primary negative symptom thought to reflect reward
impairments is avolition, or a lack of willingness to do tasks
required for achieving a goal. Decreased motivation is evident
in self-reports in those with early psychosis (91), and there is
strong evidence that people with schizophrenia are less
motivated and less willing to expend the same effort to attain
rewards as healthy individuals (72,92). For example, people
Biological Psychiatry: Glob
with schizophrenia reached breakpoint earlier on a progressive
ratio task (93). In the progressive ratio task, the effort required
to get a reward increases with each reward delivery, and the
breakpoint refers to the point at which participants decide that
the effort-reward trade-off is no longer worthwhile. This per-
formance deficit was associated with greater amotivation
scores and decreased ventral striatal function (93). Decreases
in motivation and willingness to work toward goals may be
specific to certain types of rewards and the required efforts.
For example, those with early psychosis were less likely to
select the high-effort, high-reward options than healthy control
subjects (94). Furthermore, in a task in which increasing the
effort improved the chance of receiving a high or low reward,
people with schizophrenia were willing to expend the same
effort regardless of reward size, whereas healthy individuals
heavily biased their effort to increase the chance of higher
rewards (95). This was associated with reduced functional
changes in the caudate and anterior cingulate cortex during
reward presentation and in the caudate during effort selection.

Goal-Directed Actions and Reward

In parallel to motivational and effort-based impairments, peo-
ple with schizophrenia are less able to use reward information
correctly when guiding their actions (89). A good example is
the result obtained when patients with schizophrenia carry out
outcome-specific devaluation tasks (96,97). Morris et al.
(98,99) demonstrated that people with schizophrenia were able
to understand that one outcome was worth less after devalu-
ation but failed to alter their actions in response to this infor-
mation. Our work suggests that this may occur in a specific
subgroup of those with chronic psychosis and is less likely to
be observed in early psychosis (97). These goal-directed ac-
tion impairments were due to the inability to correctly relate
outcomes causally to actions rather than problems in reward
valuation (99). Disruptions in caudate function, but not PFC
function, were associated with the deficit in responding toward
the more valuable outcome (98). The observed decreases in
caudate function during responses in those with schizophrenia
were associated with increased negative symptom severity
(including avolition) (98). Furthermore, impairments in the
ability to causally relate action-outcome associations were
accompanied by increased overall disability scores (100).
Preclinical studies have highlighted that striatal dopamine is
important in establishing causal action-outcome associations
and in action selection (101,102). Whether these impairments
are evident at earlier disease stages is not known, but they
likely reflect impairments in reward learning rather than reward
valuation.

Cognitive Control and Risk

Imaging studies focused on cognitive control have indicated
that across adolescence there is a marked improvement in our
ability to increase cognitive performance directed at higher
reward or risk. This may contribute to impairments in effort
allocation in psychosis (103). Higher stakes recruit striatal,
ventrolateral PFC, thalamic, and anterior cingulate areas more
so than low-stakes trials (104). Moreover, the nucleus
accumbens functional coupling was greatest with the dorsal
striatum in young adolescents but shifted to the ventrolateral
al Open Science January 2023; 3:33–46 www.sobp.org/GOS 39
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PFC with increased age (104). Model-based reward learning is
positively associated with nucleus accumbens dopamine
synthesis and activation of the nucleus accumbens and lateral
PFC (105). In unmedicated patients with schizophrenia who
follow similar reinforcement learning strategies as control
subjects, decreased nucleus accumbens activation has been
observed (55), but in those who do not follow the same stra-
tegies (i.e., poorer performers), decreased activation of both
the nucleus accumbens and ventrolateral PFC has been
observed (55), suggesting that model-based circuitry may be
dysfunctional. In another study looking at high-reward/risk
comparisons, caudate and dorsolateral prefrontal coupling
increased with age (106). This may indicate that when
comparing reward values in choice situations, the maturation
of corticostriatal systems critical for focusing cognitive effort
are impaired or delayed in people with psychosis. Evidence of
functional connectivity alterations in those with early psychosis
and chronic schizophrenia demonstrates progressive deviation
from healthy control subjects (107), showing large alterations in
functional connectivity in the thalamus, anterior cingulate
cortex, and striatum (107). However, other studies have
demonstrated more widespread connectivity changes in un-
medicated people with early psychosis, with changes in limbic
circuits still pronounced (108). Improvements in thalamocort-
ical connectivity were associated with antipsychotic treatment,
suggesting that medication status is important when inter-
preting changes in functional connectivity.

Reward Learning

There is ample evidence that reward learning, or reinforce-
ment learning, is altered in psychosis. Deficits in reward
learning have been associated with higher general symptoms
(109) and negative symptoms (66,110). For example, people
with schizophrenia tend to place more emphasis on immedi-
ate rewards, even when these choices are less advantageous
over time (109). Furthermore, psychosis is associated with
jumping to conclusions, whereby those with psychosis are
more likely to update their beliefs using less information [e.g.,
(111,112)]. A study in those at risk suggested that this
reasoning bias develops with the onset of psychosis and may
not be evident beforehand (113). Decreased activation of the
nucleus accumbens, anterior cingulate cortex, and dorsolat-
eral PFC has been associated with impaired reward learning
in those with schizophrenia (90,114). One consistently
reported behavioral tendency in schizophrenia is reduced
win-stay use in reversal learning tasks (50,66,97,110,115).
Role: Stimulus-loss associations.
Psychosis: Broad changes in functional connectivity.
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Anterior cingul
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Win-stay refers to a participant selecting the same stimulus
after winning a reward on the prior trial. Poorer reversal
learning performance in unmedicated people with schizo-
phrenia has been associated with decreased activation of the
ventrolateral PFC and nucleus accumbens (55). Decreased
win-stay use has been observed in the Wisconsin Card
Sorting Test (116), which features a greater number of stimuli
and contingencies. Deficits in social reward learning (117)
provide evidence of how these deficits can increase the
functional burden of those with schizophrenia. Overall, it ap-
pears that people with schizophrenia are less able to use
rewarding feedback to guide learning. Working memory defi-
cits may also present as impaired reward learning processes,
which has been demonstrated using task-based and
computational modeling–based approaches in those with
schizophrenia (118). However, other studies suggest that
learning impairments in psychosis are often not explained by
deficits in working memory (119–121). These conflicting
studies suggest that reinforcement learning deficits may not
be a universal core trait in psychosis but rather a feature in a
large subgroup of those with psychosis. Deficits in rein-
forcement learning are observed in those at risk for psychosis
(58) and with early psychosis (122,123). Those at risk for
psychosis exhibited less activation of the nucleus accumbens
and ventromedial PFC in reward processing (58). In contrast,
reinforcement learning studies conducted in those with early
psychosis suggest that deficits may include punishment
learning, specifically a decreased sensitivity to punishment
(97,123). However, reversal learning impairments in early
psychosis are less robust than in those with persistent
schizophrenia, with some studies observing relatively intact
performance (118,122). Clearly more work, including longitu-
dinal studies, is required to determine what reversal learning
indices in those at risk for psychosis or with early psychosis
mean for subsequent outcomes (both diagnostically and in
terms of treatment efficacy).

Reward Systems in Psychosis

Overall, schizophrenia is associated with a broad group of
reward deficits spread across multiple brain areas (Figure 4).
These include anticipatory and effort-related motivation,
reward-based decision making, and reward learning. Never-
theless, all of these processes rely heavily on corticostriatal
circuitry, which corroborates well-known alterations in striatal
dopamine function (65,90,100) and changes in cortical struc-
ture and function (96,107,108).
le: Subjective reward value/
entive value of chosen action.
chosis: Reduced activation 
ing reward learning.

ntral Prefrontal cortex

ipation/effort-reward trade-off.
d activation 
cipation and presentation.

ate cortex

Figure 4. Reward areas and psychosis. Simplified
diagram of key regions involved in reward process-
ing and underlying problems observed in psychosis.
Impairments tend to be less obvious in earlier dis-
ease stages or, in the case of reward/punishment
learning, may actually be in opposition. See text for
citations and details.
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SALIENCE AND REWARD ACROSS THE PSYCHOSIS
SPECTRUM

Our review is based heavily on cross-sectional data using
different experimental paradigms. Although not surprising, this
highlights the need for focused longitudinal studies to track
how these processes change across illness stages. Never-
theless, a picture is emerging over several studies showing
that cortical function during reward and salience processing is
impaired in psychotic illness (established/chronic schizo-
phrenia), especially in the ventral and dorsolateral PFC and the
anterior cingulate cortex, but relatively spared in the earliest
stages of psychosis (Figure 5). However, there is evidence of
subcortical reward and salience dysfunction in at-risk patients,
consistent with PET studies showing dopaminergic abnor-
malities, especially increased levels of striatal dopamine (59),
early in the course of illness. In psychosis, antipsychotic
medication may normalize some learning abnormalities and
learning-related brain signals, such as prediction error signals
(61), potentially explaining the alleviating effects on positive
symptoms. We suggest that subcortical reward and salience
dysfunction may be an early manifestation of the illness, with
cortical abnormalities in these domains becoming more
prominent as the illness progresses. This contrasts with the
hypotheses of schizophrenia that have proposed the primary
abnormalities as being cortical in origin, which proceed and/or
induce subcortical dopamine dysfunction (120). However, our
proposal is consistent with some animal models that show
proof of principle for cortical dysfunction secondary to primary
subcortical lesions (121) or developmental changes in
subcortical dopamine systems (124).

Translational Potential

There are several potentially helpful new interventions at
various stages of development, highly relevant for reward and
Figure 5. Neurochemical and functional imaging associations with salience and
(A) chronic psychosis and (B) schizophrenia. Colored arrows reflect key neuroch
imaging changes in those with psychosis and their associated behavior. Evidence
are commonly found in subcortical structures, such as the associative striatum, n
However, evidence of cortical glutamatergic abnormalities in the anterior cing
widespread functional impairments in those with chronic psychosis or schizoph
corticostriatal projections (dashed lines) and reduced functional activity during s
and dorsolateral PFC (dlPFC). Therefore, it may be that subcortical alterations
salience and reward processing.

Biological Psychiatry: Glob
salience processing domains in psychosis. For example, the
behavioral intervention of cognitive remediation therapy has
already been shown to be capable of modulating the aspects
of reinforcement learning, such as sensitivity to rewards and
punishments (125). Moreover, reward learning can be used to
improve attentiveness during conversational skill learning
relevant for everyday functioning, improving outcomes (126).
Pharmacological interventions at numerous molecular targets
are of interest in the treatment of cognitive deficits in schizo-
phrenia, including reinforcement learning domains, and could
potentially be combined with cognitive remediation in-
terventions (127). A relevant line of inquiry in the rodent models
advanced by Grace et al. (128) indicates that administration of
prepubertal benzodiazepines mitigates the deleterious effect of
perinatal or adolescent insults that otherwise lead to a hyper-
dopaminergic state directly relevant for salience processing.
Recent advances in noninvasive brain stimulation also show
potential for modulating brain circuits discussed in this article;
for example, transcranial-focused ultrasound appears to be
well tolerated in humans and has recently been shown to have
the potential to target not only cortical but also subcortical
structures and thus potentially to modulate brain activations in
networks throughout the brain (129). fMRI-based techniques
that draw on real-time fMRI signal decoding and neurofeed-
back are under investigation regarding their ability to influence
various psychological states, including addressing symptom
domains in schizophrenia [e.g., reduction of auditory halluci-
nations (130)], and merit further investigation. To fully realize
the potential benefits of novel brain stimulation technology, we
need to accelerate our understanding of the causal relation-
ships between brain circuits and behavior in patients.

CONCLUSIONS

Together, salience and reward processes are integral to
engaging our attention, stimulating anticipation of future
reward processing in those at risk for and in early psychosis compared with
emical changes, and black arrows indicate functional magnetic resonance
of salience and reward impairments in those at risk for and in early psychosis
ucleus accumbens, ventral tegmental area (VTA), and substantia nigra (SN).
ulate cortex (ACC) have been observed. In contrast, there is evidence of
renia. This includes reduced functional connectivity in thalamocortical and
alience and reward processing in the ACC, ventral prefrontal cortex (vPFC),
precede cortical impairments in driving negative symptoms and deficits in
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events, and driving goal-directed behaviors. In this review, we
have summarized the current knowledge of behavioral and
functional neuroimaging in salience, reward, and prediction
error. Although they are specific processes, they interact in
multiple feedback and feedforward systems essential for de-
cision making and cognition more generally. Further studies
focused on subcortical systems during adolescence and the
transition to psychosis are warranted.
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