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Abstract. Neuronal  regeneration does generally not 
occur in the central nervous system (CNS) after injury, 
which has been attributed to the generation of glial scar 
tissue. In this report  we show that the composition of 
the glial scar after traumatic CNS injury in rat and 
mouse is more complex than previously assumed: ex- 
pression of the intermediate filament nestin is induced 
in reactive astrocytes. Nestin induction occurs within 48 
hours in the spinal cord both at the site of lesion and in 
degenerating tracts and lasts for at least 13 months. 
Nestin expression is induced with similar kinetics in the 
crushed optic nerve. In addition to the expression in re- 
active astrocytes, we also observed nestin induction 

within 48 hours after injury in cells close to the central 
canal in the spinal cord, while nestin expressing cells at 
later timepoints were found progressively further out 
from the central canal. This dynamic pattern of nestin 
induction after injury was mimicked by lacZ expressing 
cells in nestin promoter/lacZ transgenic mice, suggest- 
ing that defined nestin regulatory regions mediate the 
injury response. We discuss the possibility that the spa- 
t iotemporal pattern of nestin expression reflects a pop- 
ulation of nestin positive cells, which proliferates and 
migrates from a region close to the central canal to the 
site of lesion in response to injury. 

I 
NJURIES to the nervous system lead to a number of 

changes in cellular function, both in neurons and in 
surrounding cells. The proximal part of the severed 

axon elongates in an attempt to regrow to the target. In 
contrast, the distal part of the injured axon, which has lost 
contact with the neuronal cell body, disintegrates and the 
phenotype of the surrounding glial cells are altered in the 
degenerating tract, i. e., Wallerian degeneration. The cen- 
tral (CNS) a and peripheral (PNS) nervous systems re- 
spond differently to injury, for reasons that are only par- 
tially understood. A distinct difference is that neuronal 
regeneration occurs almost exclusively in the PNS. The 
fact that axons from CNS neurons can grow for long dis- 
tance in peripheral nerve grafts demonstrates that the fail- 
ing regeneration in the CNS is not primarily a result of an 
inherent weak regenerative capacity by these neurons 
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(Aguayo et al., 1991). Rather, the glial environment in the 
CNS fails to support, or may even inhibit, axon growth. 
Although astrocytes support neurite growth in vitro and 
locally at injuries, astrocytes as well as oligodendrocytes 
seem to inhibit axonal growth in vivo (Schwab et al., 1993). 

In the CNS, scar tissue, referred to as the glial scar, 
builds up at the site of the injury. Glial scar is largely 
formed by astrocytes which produce high levels of the in- 
termediate filament (IF) protein glial fibrillary acidic pro- 
tein (GFAP). The GFAP network at the scar area is very 
compact and it has been proposed that glial scar may act as 
a physical barrier to neurite outgrowth (for review see Eng 
et al., 1992; Hatten et al., 1991; Reier et al., 1989). GFAP, 
like other IFs, builds a cytoskeletal network by an initial 
dimerization of two protein monomers followed by higher 
order assembly leading to the formation of 10 nm fibers in 
the cytoplasm (Heins and Aebi, 1994). 

In addition to GFAP, a number of other IFs are ex- 
pressed during nervous system development. Differenti- 
ated neurons express the three forms of neurofilaments, 
newly differentiated neurons express a-internexin and 
neurons in the peripheral nervous system express periph- 
erin (Liem, 1993). Progenitor cells in most parts of the 
CNS and PNS express vimentin (Liem, 1993) and the re- 
cently identified IF nestin (Lendahl et al., 1990). Nestin 
was originally defined by the monoclonal antibody Rat.401, 
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which identifies an epitope expressed by neuroepithelial 
cells and cells in the myotome (Hockfield and McKay, 
1985). Cloning of the rat (Lendahl et al., 1990) and human 
(Dahlstrand et al., 1992b) nestin genes revealed that nestin 
encodes an IF most closely related to neurofilaments and 
a-internexin. Nestin is predominantly expressed by CNS 
progenitor cells (Dahlstrand et al., 1995) and cells early in 
muscle development (Sejersen and Lendahl, 1993). Nestin 
expression is downregulated in the adult nervous system 
(Dahlstrand et al., 1992a, 1995) and very low expression 
levels are observed except in choroid plexus (Dahlstrand 
et al., 1995), in certain Schwann cells (Stemple and Ander- 
son, 1993) and in endothelial cells (Dahlstrand et al., 
1992a). In addition, nestin is expressed in adult CNS stem 
cells, both in vitro and in vivo in the subventricular zone 
(Morshead et al., 1994). Regulatory regions in the nestin 
gene controlling expression in CNS progenitor cells and 
early muscle cells have been identified in transgenic mice 
(Zimmerman et al., 1994). 

The nestin gene is, in addition to its normal expression 
during CNS development, reactivated in different situa- 
tions of cellular stress or induced proliferation. Nestin ex- 
pression is thus induced in CNS tumors, in particular in 
more malignant tumors (Dahlstrand et al., 1992a; Toh- 
yama et al., 1992). Immortalization of CNS progenitor 
cells results in cell lines expressing nestin (Frederiksen et 
al., 1988; Redies et al., 1991; Renfranz et al., 1991). Fur- 
thermore, cells that are removed from adult striatum and 
grown in primary culture express nestin and can differenti- 
ate to neurons and glial cells (Reynolds and Weis, 1992). 
These data suggest that cells originally derived from a nes- 
tin expressing population can resume nestin expression 
when subjected to various stimuli. 

To learn whether the nestin gene is induced upon injury 
to the nervous system we analyzed nestin expression at 
different timepoints after traumatic injury in CNS and 
PNS, both at the site of injury and in the area of Wallerian 
degeneration. To define regulatory regions mediating an 
injury response we analyzed by the same injury paradigm 
transgenic mice carrying a reporter gene linked to the nes- 
tin promoter. Our data show that nestin is induced only in 
CNS and that induction in CNS suggests a role for nestin 
in the formation of glial scar. Finally, the temporal and 
spatial distribution of nestin expression after injury indi- 
cates that a nestin expressing cell population migrates 
from potentially proliferative areas in the subventricular 
zone to the site of injury. 

Materials and Methods 

Animals and Surgery 
Adult male Wistar rats were anaesthetized with chloral hydrate (300-350 
mg/kg) and adult male C57BL/6 mice (20-30 g) were anaesthetized with 
2.5% Avertin. In the mice and a group of rats, a laminectomy was made at 
the mid thoracic level and the dorsal funiculus was cut transversely with 
microsurgical scissors and the lesion was extended rostrally by a superfi- 
cial longitudinal incision in the dorsal funiculus, as previously described 
(Fris6n et al., 1992). In another group of rats the left optic nerve was 
crushed 5 mm behind the eye by compression with a forceps for 10 s. In a 
third group of rats the left sciatic nerve was cut and the proximal and dis- 
tal stumps were ligated. 

Immunohistochemistry 
Rats which underwent spinal cord, optic nerve, or sciatic nerve surgery 

were allowed to survive for 2 or 4 days, 1, 2, or 4 wk after the injury (two 
animals at each survival time and operative procedure). In addition, two 
spinal cord injured rats were sacrificed 13 mo after the injury. Four spinal 
cord injured mice (survival time 1 or 10 d), two uninjured mice, and two 
uninjured rats were also used for immunohistochemistry. The animals 
were anaesthetized as above and perfused with Tyrode's solution, fol- 
lowed by 4% formaldehyde and 0.4% picric acid in 300 mOsm phosphate 
buffer. Cryostat sections (14 gm) were incubated in a humid atmosphere 
at +4°C overnight with rabbit antiserum to nestin (#130, diluted 1:2,000) 
(Dahlstrand et al., 1992a; Tohyama et al., 1992) which in some sections 
was combined with mouse monoclonal antibodies to neurofilament 
(RT97, diluted 1:250) (Wood and Anderton, 1981) or to vimentin (V-6630, 
diluted 1:20; Sigma Chemical Co., St. Louis, MO). Other sections were in- 
cubated with mouse monoclonal antibodies to nestin (Rat-401, ascites 
fluid diluted 1:5) (Hockfield and McKay, 1985) which in CNS tissue was 
combined with rabbit antiserum to GFAP (diluted 1:200, Dako, Glostrup, 
Denmark). After rinsing, the sections were incubated for 45 min at 20°C 
with rhodamine-conjugated swine anti-rabbit antiserum (diluted 1:10; 
Dako) or fluorescein isothiocyanate-conjugated swine anti-rabbit antise- 
rum (diluted 1:10; Dako), which in double labeled specimens was com- 
bined with rhodamine-conjugated goat anti-mouse antiserum (diluted 1: 
100; Boehringer-Mannheim, Biochemicals, Indianapolis, IN). Sections 
which were incubated only with secondary antiserum showed no specific 
labeling. The labeling with the two different antibodies to nestin was iden- 
tical both in normal and injured tissues. 

Electron Microscopy 
Immunoelectron microscopy was performed as previously described (Ris- 
ling et al., 1993). Briefly, cryostat sections were incubated for 24 h with 
rabbit antiserum to nestin (No. 130, diluted 1:2,000). After rinsing, the sec- 
tions were incubated with 1 nm gold particle-conjugated goat anti-rabbit 
antiserum (diluted 1:50, Auroprobe One; Amersham Corp., Arlington 
Heights, IL). All antisera were diluted in 0.01 M phosphate buffer con- 
taining 0.5% IGS gelatin (Janssen Biotech, Beerse, Belgium). The sec- 
tions were osmicated for 30 min and gold labeling was intensified with a 
silver enhancement reaction (Intense M; Amersham). The sections were 
then dehydrated, embedded, thin-sectioned, and contrasted. A Philips 
CM12 electron microscope was used. 

Transgenic Mice 
Transgenic mice were generated by injection of the previously described 
NesPlacZ/3intron construct (Zimmerman et al., 1994) into pronuclei of 
newly fertilized FI(B6CBA) x FI(B6CBA) mouse eggs as previously de- 
scribed (Nilsson and Lendahl, 1993). Transgenic founders were identified 
by PCR analysis as previously described (Nilsson and Lendahl, 1993). In 
anaesthetized mice the dorsal funiculus was transected as described above 
and one or 10 days after the injury the mice were deeply anaesthetized 
and perfused with tyrode's solution followed by 0.2% glutaraldehyde in 
PBS. Spinal cord cryostat sections (14 p.m) were briefly postfixed in 0.5% 
glutaraldehyde in PBS and processed for X-gal histochemistry as previ- 
ously described (Zimmerman et al., 1994). The sections were incubated 
overnight in the X-gal solution to visualize the lacZ expressing cells. 

Cell Cultures 
To prepare astrocytes brains from newborn rats were enzymatically di- 
gested with papain after removing the meninges. 5 mM L-leucine methyl 
ester and 0.1 mg/ml carbonyl iron was added for 3 h to the cell suspension, 
in order to eliminate microglial cells. The cells were then collected by cen- 
trifugation, resuspended in DME containing 10%FCS, 100 U/m1 penicil- 
lin, and 100 ~g/ml streptomycin, and plated in 75 cm 2 tissue culture flasks 
(Costar Corp., Cambridge, MA). This procedure results in a mixed glial 
culture. To obtain separate astrocyte cultures the cell types were sepa- 
rated by difference in adhesiveness (McCarthy and de Vellis, 1980). After 
reaching confluency, the cultures were shaken at 700 rpm for 17 h, and the 
medium containing losely adhering cells was discarded. The remaining cell 
monolayer representing predominantly astrocytes was rinsed once with 
PBS and then removed from the flasks with 0.17 mg/ml trypsin and 0.07 
mg/ml EDTA in PBS and collected by centrifugation. The cells were re- 
suspended in the medium and were allowed to adhere to plastic culture 
dishes. The medium was collected after 30 min, excluding rapidly adhering 
cells from the medium, resulting in >95% astrocytes in the collected me- 
dium, which was transferred to new culture dishes. For studies on the ef- 
fect of mechanical trauma to astrocytes we developed an in vitro assay. In 
confluent astrocyte cultures growing in plastic petri dishes, an incision was 
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made through the cell monolayer. In some of these cultures, dorsal root 
ganglion (DRG) neurons from 2-d-old rat pups were seeded onto the as- 
trocytes. The DRG neurons were cultured for 24 h and then fixed for im- 
munocytochemistry. 

Results 

Nestin Expression in the Adult Intact Nervous System 

We first analyzed the distribution of nestin immunoreac- 
tivity (IR) prior to injury in normal sciatic nerve, spinal 
cord, and optic nerve. At the light microscope level cells 
morphologically similar to Schwann cells in the sciatic 
nerve showed nestin-IR (Fig. 1 A). In the CNS, nestin-IR 
was observed in vascular cells (Fig. 1 B). Furthermore, 
sparsely scattered cells with thin, relatively short exten- 
sions in the white matter of the spinal cord (Fig. 1 B) and 
in the optic nerve (data not shown) were nestin immu- 
noreactive. Because of their relative scarcity, one to two 
cells per section, we have not been able to reveal the iden- 
tity of these scattered cells. By applying immunoelectron- 
microscopy we showed that nestin-IR in the sciatic nerve 
was found in myelinating, but not in non-myelinating, 
Schwann cells (Fig. 1 C) and that the vascular nestin-IR 
was localized to endothelial and perivascular cells (Fig. 1 D). 

Induction of  Nestin at the Site of  Spinal Cord Injury 

To study the expression of nestin in the injured CNS we 
used a well characterised spinal cord injury model where 
the dorsal funiculus is transected (see Materials and Meth- 
ods). The effects on nestin- and GFAP-IR were analyzed 2 
and 4 d, 1, 2, and 4 wk, and 13 mo after the injury. In con- 
trast to the limited nestin-IR in the normal spinal cord, in- 
creased levels were seen already 2 d after injury. The im- 
munoreactivity appeared to reside in glial cells in the 

dorsal horns of the affected segment, in scattered cells at 
the site of lesion and in cells around the central canal (Fig. 
2 A). The dorsal horns appeared not to be directly affected 
by the injury, since the structure of the dorsal horns was 
not morphologically altered, as determined by the pres- 
ence of symmetrically radiating GFAP-labeled glial cells 
(Fig. 2 D) and the absence of invading blood cells in the 
dorsal horns (data not shown). In contrast, GFAP-labeled 
cells in the scar area extended processes in all directions 
(Fig. 2 D). Nestin immunoreactive cells around the central 
canal appeared to be located in the subventricular zone, 
but we cannot establish the identity of these cells (Fig. 2 
A). 2 wk after injury the number of nestin immunoreactive 
cells had increased considerably, in particular in glial cells 
in the scar area (Fig. 2 B). Nestin-IR persisted for at least 
13 mo after injury in the glial cells at the site of injury (Fig. 
2 C). The GFAP-IR shifted from an initially broad area in- 
cluding both the dorsal horns, the scar area and regions of 
the surrounding spinal cord localed laterally to the dorsal 
horns. As discussed above, cells with symmetrically radiat- 
ing GFAP-positive fibers were seen, both in the dorsal 
horns and in the surrounding areas (Fig. 2 D). Later, 
GFAP-IR became more concentrated to the scar area and 
the dorsal horns (Fig. 2, E and F). When compared to the 
distribution of GFAP-IR it was apparent that the nestin 
immunoreactive cells are confined to a subset of GFAP 
immunoreactive cells at all timepoints after injury (Fig. 2, 
A-F).  Nestin and GFAP immunoreactivity was colocal- 
ized in cells with processes extending in all directions, 
whereas only GFAP-IR was observed in cells with sym- 
metrically radiating fibers (data not shown, compare Fig. 2 
A with D and Fig. 2 B with E). This indicates that nestin is 
expressed in reactive astrocytes, but not in other astro- 
cytes (see also Fig. 4). 

Figure 1. Nestin-IR in myelinating Schwann cells 
and vascular cells of the adult rat nervous system. 
Elongated cells in adult rat sciatic nerve show nes- 
tin-IR (A). In the spinal cord, cells associated with 
blood vessels (small arrows) and scattered cells 
with short, relatively thin extensions protruding in 
an apparently random fashion (arrowhead) show 
nestin-IR (B). Silver enhanced immunogold elec- 
tron microscopy localizes the nestin immunoreac- 
tivity in the sciatic nerve to myelinating Schwann 
cells (C) and to endothelial cells and perivascular 
cells in the spinal cord (D). Abbreviations: m, my- 
elin; a, axon. Bars: (A) 20 ~m; (B) 200 p,m; (C and 
D) 2 p.m. 
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Figure 2. Nestin-IR is induced at spinal cord inju- 
ries. The dorsal funiculus was transected in adult 
rats and nestin-IR (A-C) and GFAP-IR (D-F) 
was studied 2 days (A and D), 14 days (B and E) 
and 13 months (C and F) after the injury. The posi- 
tion of the dorsal horns as well as the spinal cord 
grey matter is outlined with broken lines. The po- 
sition of the central canal (arrow) and the approxi- 
mate location of the lesion site (solid lines) are 
also denoted. (A) 2 d after the injury, nestin-IR is 
induced in the dorsal horns, in scattered cells at 
the lesion and in cells close to the central canal. 
The number of nestin immunoreactive cells at the 
injury increase progressively to 14 d after the le- 
sion (B), and remain high after 13 mo (C). The in- 
duced nestin-IR corresponds closely to the area of 
increased GFAP-IR in adjacent sections (D-F). 
Bar, 200 ixm. 

Rapid Nestin Induction in Degenerating Tracts in the 
Spinal Cord 

In addition to the effects in the immediate vicinity of the 
injury there are also changes occuring further away from 
the injury, i.e., in the area of Wallerian degeneration 
(Ram6n y Cajal, 1928). To learn about the extent of nestin 
induction we analyzed the distribution of  nestin-IR in this 
area. Induction of nestin-IR was obvious in glial cells in 
the dorsal funiculus already at 2 d postinjury in the tract 
destined to Wallerian degeneration (Fig. 3 A). Induction 
extended at least 30 mm rostrally to the spinal cord injury. 
At  this timepoint no morphological signs of axonal degen- 
eration could be seen, as judged by unaltered neurofila- 
ment labeling (Fig. 3 G). In some sections nestin-IR was 
also seen in the cells lining the central canal (data not 
shown). It was evident that nestin-IR (Fig. 3 A) increased 
more rapidly than G F A P - I R  (Fig. 3 D) in the dorsal funic- 
ulus undergoing Wallerian degeneration, indicating that 
nestin may be used as a sensitive molecular marker  of neu- 
ral degeneration. From one week after injury, when ax- 
onal degeneration was evident by loss of neurofilament la- 
beling (Fig. 3, H and /), nestin-IR was restricted to the 
denervated part of the dorsal funiculus (Fig. 3, B and C). 
Strong nestin-IR was seen in glial cells in the degenerating 
dorsal funiculus at all survival times analyzed (data not 

shown). The reduction in the area of nestin expression at 
later timepoints (Fig. 3, B and C as compared to A) is be- 
cause the scar area in the Wallerian zone progressively 
shrinks and the nestin immunoreactive cells thus become 
concentrated to a smaller area. Immunoelectronmicros- 
copy showed that the nestin immunoreactive cells in both 
the immediate scar area (Fig. 4 A) and in the dorsal funic- 
ulus undergoing Wallerian degeneration (Fig. 4 B) con- 
tained numerous 8-9-nm filaments, which were present 
throughout the cytoplasm and extended as parallel arrays 
into the processes. The cells were also light in appearance 
compared to other cells in the white matter (data not 
shown). These characteristics are typical for astrocytes 
(Peters et al., 1991), and we therefore conclude that the 
nestin immunoreactive cells are astrocytes. 

The IF vimentin is also upregulated in response to injury 
(for review see Eddleston and Mucke, 1991), and we 
wanted to compare the distribution of  nestin and vimentin 
in the spinal cord injury paradigm. Vimentin-IR was 
widely observed, both at the site of  injury (Fig. 5 B) and in 
the Wallerian zone (Fig. 5 D). High levels of  vimentin-IR 
were found around the central canal (Fig. 5, B and D), 
which correlates with the nestin immunoreactivity pattern 
(Fig. 5, A and C). Cells coexpressing vimentin and nestin 
were also found in the scar area. 
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Figure 3. Rapid and longlasting in- 
duction of nestin-IR in degenerating 
spinal cord tracts. The micrographs 
show immunofluorescence with anti- 
bodies to nestin (A-C), GFAP (D-F) 
and neurofilament heavy chain (G-/)  
in sections taken 20 mm rostral to a 
dorsal funiculus transection 2 days 
(A, D, and G), 14 days (B, E, and H) 
and 13 mo (C, F, and / )  after the in- 
jury. The dorsal funiculus is the area 
above the broken line and the posi- 
tion of the central canal is marked by 
an arrow. In B and C the outer limits 
of the scar area are outlined by ar- 
rowheads. In A the border of the scar 
area is not labeled since the morphol- 
ogy was not obviously altered at 2 d af- 
ter injury (compare also Fig. 3 G). 
Strong nestin-IR is seen in the dorsal 
funiculus already after 2 d (A), be- 
fore any alteration in GFAP (D), or 
neurofilament (G) immunoreactivity 
is evident. Note the difference be- 
tween the nestin-IR in A as com- 
pared to Fig. 1 B. Nestin immunore- 
active cells are concentrated to the 
central denervated part of the dorsal 
funiculus 14 d (B) and 13 mo (C) af- 
ter the injury, closely corresponding 
to the the area where GFAP is in- 
duced (E and F) and neurofilament 
immunoreactivity is abolished (H and 
/). Bar, 200 ~m. 

Nestin Induction Occurs in Other Regions o f  the CNS  

To study whether  nestin induction appeared  in o ther  re- 
gions of the CNS in response to injury, we crushed the op- 
tic nerve five m m  behind  the eye in adult  rats and analyzed 
the results at 2, 4, 7, 14, and 30 d after injury. In the non- 
injured optic nerve nes t in- IR showed a relat ively regular  
pa t t e rn  along the nerve (Fig. 6 A).  2 d after injury, glial 
cells showing strong nes t in- IR were seen in the nerve 

where it had been  compressed and throughout  the distal 
segment  (data  not  shown). The number  of  cells showing 
nes t in- IR increased with t ime and after  seven days a 
strongly nestin immunoreac t ive  glial scar had formed (Fig. 
6 B). The  nes t in- IR also ex tended  to the nerve sheath (Fig. 
6 B). This pa t te rn  may be a consequence of expression in 
fibroblasts,  al though nestin has not  previously been  shown 
to be expressed in f ibroblasts  (Redies  et al., 1991; Sejersen 

Figure 4. Nestin-IR in astrocytes in the injured 
spinal cord. Immunoelectronmicroscopy was used 
to establish which cell type exhibits nestin-IR in 
the injured spinal cord. Astrocytes in the scar tis- 
sue formed at the injury (A) as well as rostral to 
this in the degenerating dorsal funiculus (B) are 
strongly nestin immunoreactive. Note the pres- 
ence of filaments in the cytoplasm of the cells, in 
particular in B. Bars: (A) 5 Ixm; (B) 2 Ixm. 
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Figure 5. Vimentin-IR is induced at spinal cord injuries. The dor- 
sal funiculus was transected in adult rats and vimentin-IR (B and 
D) and nestin-IR (A and C) was studied 2 d after the injury at the 
site of injury (A and B) and in sections taken 20 mm rostral to the 
dorsal funiculus transection (C and D). Vimentin-IR is observed 
in a wide region, including the lesion site and cells around the 
central canal. Cells showing both vimentin- and nestin-IR are la- 
beled (small arrows). The position of the central canal is labeled 
(arrow). Bar, 200 lxm. 

and Lendahl, 1993). Alternatively, the nestin-IR at the 
nerve sheath may come from muscle cells, in keeping with 
previous observations on nestin expression during muscle 
regeneration (Sj6berg et al., 1994b). Distal to the crush le- 
sion, i.e., in the part of the optic nerve undergoing Walle- 
rian degeneration, strong nestin-IR was seen in glial cells 
one week after injury (Fig. 6 B). The distribution of nestin- 
IR corresponded closely to that of GFAP-IR in the Walle- 
rian zone. In contrast, no GFAP-IR was seen close to the 
nerve sheath (Fig. 6 C). Based on the similar immunoreac- 
tivity patterns for nestin and GFAP in the Wallerian zone, 
it is reasonable to assume that the nestin immunoreactive 
cells are astrocytes, although we have not been able to 
strictly prove this. The intensity of the nestin-IR was stron- 
ger at later survival times and was maximal at 14 and 30 d 
(data not shown). 

In contrast to the dramatic increase in nestin-IR in CNS 
glial cells following injury, nestin expression was not al- 
tered in Schwann cells in the sciatic nerve of adult rats at 
all timepoints studied, both in the proximal region, at the 
site of injury, and in the distal region (data not shown). We 
did not observe any induction of nestin-IR in dorsal root 
ganglia, spinal cord, and retina in non-injured rats or at 
any timepoint (2-30 d) after transection of the sciatic and 
optic nerves. 

Induction of  Expression from Nestin 
Regulatory Regions in NesPlacZ/3 Intron Transgenic 
Mice following CNS Injury 

It has previously been shown in transgenic mice that re- 
gions from the nestin gene direct expression of the re- 
porter gene lacZ to CNS progenitor cells, generating an 
expression pattern very similar to that of the endogenous 
nestin gene (Zimmerman et al., 1994). We asked whether 
these DNA regions were activated by CNS injury. To this 
end, we generated a stable line of transgenic mice carrying 
the NesPlacZ/3intron construct. The NesPlacZ/3intron 
construct consists of the lacZ gene flanked by N5 kb of rat 
nestin upstream sequences and the complete nestin gene, 
including the three introns (Zimmerman et al., 1994). 
Transgenic offspring to a NesPlacZ/3intron heterozygous 
founder male showed the previously described expression 
pattern in early CNS and myodermatomes for at least 
three generations (data not shown). To analyse the re- 
sponse to injury eight 8-16-wk-old offspring to the original 
founder male were subjected to spinal cord lesion. The 
five non-transgenic littermates did not show lacZ activity 
after injury (data not shown), while the three transgenic 
offspring did. Two of the transgenic mice were analyzed i d 
after injury and contained lacZ expressing cells in the area 
surrounding the central canal (Fig. 7 E). The third trans- 
genic offspring was analyzed 10 d after injury and lacZ ex- 
pressing cells were found around the central canal, along 
the midline between the central canal and the scar (Fig. 7 
F), and at the site of the scar (data not shown). The lacZ 
expressing cells in the scar area appeared to be astrocytes 
(data not shown), while the cells between the central canal 
and the scar showed an elongated morphology similar to 
that seen for cells expressing the endogenous nestin gene 
(see below, Fig. 7, B and C). Cells expressing lacZ were 
also found in the Wallerian zone in reactive astrocytes, but 
only infrequently around the central canal (data not shown). 
In Fig. 7 (A-D), the endogenous nestin-IR pattern before 
injury and at 2 d, 7 d, and 13 mo after injury is shown. En- 
dothelial cells expressing nestin are seen in approximately 
equal numbers at all timepoints (Fig. 7, A-D), and there 
are also reactive astrocytes that express nestin within 48 h 
at the site of lesion (data not shown). In addition, there is 
another, more dynamic pattern of nestin expression. At 2 d 
after injury there is a population of nestin immunoreactive 
cells located around the central canal and along the mid- 
line between the central canal and the scar (Fig. 7 B). The 
cells along the midline often had an elongated morphol- 
ogy, oriented along the dorsal-ventral axis (Fig. 7, B and 
C). At 7 d after injury there are still nestin immunoreac- 
tive cells around the central canal and along the midline 
but in addition many more cells closer to the site of injury 
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(Fig. 7 C). Finally, at 13 mo after injury the nestin express- 
ing cells that are not endothelial cells are largely confined 
to the area close to the injury (Fig. 7 D). These cells are 
presumably astrocytes. The lacZ expressing cells most 
likely form a subset of the cells expressing the endogenous 
nestin gene (compare Fig. 7, E with B and F with C). 

Nestin Expression in Primary Astrocytes 

To analyze whether nestin expression in astrocytes could 
be induced also by in vitro culturing we purified astrocytes 
and grew them at different densities. Astrocytes grown at 
low density showed very strong nestin-IR (Fig. 8 A). By 
contrast, denser astrocyte cultures of the same age showed 
weaker nestin-IR (Fig. 8 B). To study the direct effect of 
mechanical injury on astrocytes, we made an incision 
through the cell monolayer with a scalpel blade in conflu- 
ent astrocyte cultures. Interestingly, a gradient in the inten- 
sity of nestin-IR could be seen within the injured astro- 
cytes, such that the strongest labeling occurred in processes 
projecting towards the incision (Fig. 8 C). In contrast to 
this increase in nestin-IR by mechanical injury, no alter- 
ation in the level of GFAP-IR could be seen in double- 
labeled cultures (data not shown). 

The specific increase of nestin ~xpression after incision 
through the astrocyte culture provided an opportunity to 
'directly test if a locally high nestin concentration would re- 
pel growing neurites. To test this, D R G  neurons were 
grown on astrocyte cultures in which mechanical scars had 
been made, and which showed increased nestin-IR (data 
not shown). We found that neurites did not avoid the re- 
gions close to the scar and that many neurites traversed 
the scar (Fig. 9). This suggests that nestin expression is not 
directly associated with properties on the cell surface ex- 
erting a direct negative effect on neurite outgrowth. 

Discussion 

In this report we show that nestin expression is induced af- 
ter injury to the nervous system. The induction appears to 

Figure 6. Increased nestin-IR in optic nerve glial 
cells after injury. Immunofluorescence micro- 
graphs showing adult rat retina (left) and optic 
nerve. Regularly spaced cells in the non-injured 
adult rat optic nerve show low levels of nestin-IR 
(A). 1 wk after the optic nerve was crushed behind 
the eye (arrowheads in B and C) strongly nestin 
immunoreactive cells are abundant at the lesion 
(B). Distal to the lesion (right) in the degenerating 
optic nerve nestin-IR is very pronounced (B). The 
nestin induction in the distal portion of the injured 
optic nerve closely resembles the pattern of 
GFAP-IR in an adjacent section (C). Bar, 200 p,m. 

be specific for the CNS, since it appears after traumatic in- 
jury to the spinal cord and optic nerve but not after injury 
to the sciatic nerve. The CNS specificity is further sup- 
ported by a previous observation of nestin induction after 
grafting in cerebellum (Sotelo et al., 1994). We find that 
the induction of nestin expression occurs rapidly, is wide- 
spread and lasts for at least 13 mo. This dramatic transition 
in expression of a cytoskeletal component has ramifica- 
tions for our understanding of how the glial scar is orga- 
nized, how gene regulation is controlled after CNS injury 
and for how progenitor cells may be recruited to the site of 
injury. 

Nestin Participates in Glial Scar Formation 

It is well established that neuronal outgrowth in higher 
vertebrates occurs in the PNS but not in the CNS after in- 
jury. The reasons for this difference are largely unknown 
but the formation of glial scar tissue in astrocytes in the 
CNS may play a role (for reviews see Eng et al., 1992; Hat- 
ten et al., 1991; Reier et al., 1989). In this context, it is in- 
teresting to recall that in lower vertebrates such as gold- 
fish, the optic nerve is capable of functional regeneration, 
which correlates with a different composition of the IF 
network. The predominant intermediate filament proteins 
in the goldfish optic nerve are keratins (Giordano et al., 
1989), and there appears to be no overall upregulation of 
keratin mRNA in response to injury (Fuchs et al., 1994). 

This may suggest that the IF composition of the glial 
scar is of importance for the response to injury. The preva- 
lent view in higher vertebrates is that the glial scar after in- 
jury is composed of IF bundles generated by increased lev- 
els of GFAP and to some extent by vimentin. Our data 
however show that the composition of the scar is more 
complex and includes nestin. Nestin is strikingly ~pregu- 
lated in the astrocytes in the injury area and it is likely that 
nestin, GFAP and vimentin are actually present in the 
same filamentous structures in the astrocytes. This notion 
is supported by the finding that the patterns of nestin- and 
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Figure 8. Nestin-IR in primary astrocytes is regulated by cell 
density and mechanical injury. Primary rat astrocytes seeded at 
low density (A) show stonger nestin-IR than astrocytes of the 
same age grown at high density (B). The mechanical trauma 
caused by an incision (arrowheads) through an astrocyte mono- 
layer results in locally elevated nestin-IR in affected cells (C). 
Nestin-IR forms a gradient in the injured astrocytes and is stron- 
gest in the part of the cell closest to the injury. Bar: (A and B)100 
I~m; (C) 50 I~m. 

G F A P - I R  are indistinguishable in an immortalized CNS 
cell line which expresses both IFs (Redies et al., 1991). 
Nestin also appears to copolymerize with the class III  IFs 
vimentin and desmin in myogenic cells (Sejersen and 
Lendahl, 1993; Sjrberg et al., 1994a), and the latter two IFs 
copolymerize with G F A P  (Sharp et al., 1982; TSlle et al., 
1986). It is thus conceivable that the glial scar is built as a 
composite IF structure made from both GFAP,  vimentin 
and nestin and that the high level of  nestin expression sig- 
nificantly contributes to the formation of a dense glial scar. 
It should however be emphasized that an association be- 
tween nestin expression and the ability of  the cell to regu- 
late neuronal  outgrowth seems less likely, based on the ap- 
parent lack of repulsion of  D R G  neurites in a nestin-rich 
cellular environment. 

The high levels of nestin expression in the glial scar may 
be part of the explanation to the apparent  lack of  pheno- 
type in mice in which the G F A P  gene is functionally inac- 
tivated (Gomi et al., 1994; Pekny et al., 1995). The G F A P  
( - / - )  mice show post-traumatic reactive gliosis (Pekny et 
al., 1995), which may suggest that G F A P  is not needed for 
this process, or, alternatively, that G F A P  can be function- 
ally substituted by nestin. 

Nestin Expression as a Marker  f o r  C N S  Injury 

CNS injury represents a serious medical problem and it is 
important  to establish easily identifiable markers that can 
objectively delineate the extent of the response to injury. 
Classically, G F A P  has been the preferred marker, based 
on the increased levels of expression in the astrocytes after 
gliosis (Eng et al., 1992; Hat ten et al., 1991; Reier et al., 
1989). Our  findings suggest that nestin is a potentially use- 
ful marker. Firstly, nestin, like GFAP,  is an IF, which 
means that the encoded protein forms an easily recogniz- 
able cytoskeletal network. This is a general characteristic 
for IFs and contributes to their popularity as markers to 
diagnose various pathogenic conditions and tumors (for 
review see Osborn and Weber, 1989). Secondly, induction 
of nestin expression occurs rapidly, i.e., within 48 h, after 
injury and is found both in the area of lesion and in the 
Wallerian zone. In contrast, induction of  G F A P  is slower 
(for review see Eng et al., 1992; Hatten et al., 1991; Reier 
et al., 1989). Thirdly, nestin induction lasts for at least 13 
mo, thus leaving a longlasting molecular imprint of the in- 
jury which facilitates a retrospective analysis. Finally, in- 
duction of nestin expression is more dramatic than that of 
GFAP.  In the non-injured spinal cord and optic nerve nes- 
tin protein is expressed only at low levels, primarily in en- 

Figure 7. Expression of the endogenous nestin gene and the reporter gene lacZat the central canal after dorsal funiculus injury. The mi- 
crographs show nestin-IR in non-injured rat spinal cord (A) and at 2 d (B), 14 d (C), and 13 mo (D) after an incision in the dorsal funic- 
ulus. E and F shows X-gal histochemistry on sections from nestin promoter/lacZ transgenic mice (see Materials and Methods) 1 d (E) 
and 10 d (F) after a similar incision in the dorsal funiculus. Very low levels of nestin-IR are seen in the cells lining the central canal in the 
uninjured spinal cord (A). Shortly after an incision in the dorsal funiculus strong nestin-IR (B, 2-d postinjury) and lacZ expression (E, 1-d 
postinjury) is seen in cells close to the central canal (arrow) although this area is not directly affected by the injury. Nestin-IR and lacZ 
expression are still strong in cells residing close to the central canal 14 (C) and 10 d (F), respectively, after the injury (arrowhead). At 
these timepoints cells in the scar tissue formed at the injury and ceils between the central canal and the lesion site also exhibit nestin-IR 
and lacZ expression, respectively. 13 mo after the injury (D) nestin-IR is weak in the cells lining the central canal, but ceils in the scar tis- 
sue formed at the injury are strongly nestin immunoreactive. (G) A schematic representation of a cross section of the spinal cord, drawn 
in the same scale as A-F. The positions of the dorsal horns (dh), dorsal funiculus (df), and central canal (arrow) are indicated. Bar, 100 p~m. 
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Figure 9. Culturing of DRG neurons on astrocytes 
subjected to mechanical injury. Primary rat astro- 
cytes were seeded at low density and a mechanical 
trauma was caused as described in Fig 8. The cells 
closest to the scar showed elevated nestin-IR (data 
not shown). DRG neurons were then cultured on 
top of the astrocytes and the neurite processes vi- 
sualized by neurofilament-IR. Note that many 
neurites traverse the mechanical scar. Bar, 50 i~m. 

dothel ial  cells, while very high levels are observed in astro- 
cytes after injury. In contrast,  the G F A P  prote in  is present  
at relat ively high levels in astrocytes also before  injury 
(Landry  et al., 1990). 

Defined Nestin Regulatory Regions Mediate 
an Injury Response 

Nestin regula tory  regions controll ing the expression of the 
repor te r  gene lacZ in the early CNS have previously been  
identif ied (Z immerman  et al., 1994) and the da ta  pre- 
sented here demons t ra te  that  the same regula tory  regions 
activate the lacZ gene after CNS injury, both  in the scar 

0 days 2 days 

V 
| |  

14 days 13 months 

Figure 10. Two models for the dynamic spatiotemporal pattern 
of nestin induction in response to CNS injury. The models apply 
to the nestin expression patterns in a cross section of spinal cord 
at the site of lesion, but not to the Wallerian zone. The schematic 
representation of the nestin expression patterns in the two mod- 
els can be compared with the experimental data in Fig. 7 (A-D). 
Note that nestin-positive endothelial cells and astrocytes in the 
dorsal horns, which express nestin at all timepoints after injury, 
are not shown in the two models. (Model 1) The four upper pan- 
els display cross sections of the area from the central canal (oval 
at bottom) to the dorsal funiculus (upper part) before injury (0 
days) and at different timepoints (2 days, 14 days and 13 months) 
after lesion. The lesion is represented by a triangle in the dorsal 
funiculus. A number of cells around the central canal, in the area 

area,  a round  the central  canal and in the region of Walle-  
rian degenerat ion.  The  fact that  the same regula tory  re- 
gion is capable  of activating the repor te r  gene both during 
normal  CNS deve lopment  and after CNS injury suggests 
that  gene regulat ion may be control led  by similar mecha- 
nisms in these two situations. Fur the r  dissection of the nes- 
tin p romote r  could nar row down the region required for 
CNS injury response,  and critical e lements  most  l ikely re- 
side in the second intron of the nestin gene, which appears  
to function as an enhancer  during early normal  CNS de- 
ve lopment  (Z immerman  et al., 1994). 

Lit t le is yet  known about  factors controll ing nestin in- 
duction but  it is possible that  induction after injury is at 
least in part  caused by an increase in expression of certain 
growth factors, e.g. nerve growth factor (NGF)  (Ishikawa 
et al., 1991; L indholm et al., 1992), basic f ibroblast  growth 
factor ( b F G F )  (Frautschy et al., 1991; Ishikawa et al., 1991; 
Koshinaga et al., 1993; Logan et al., 1992), insulin-like 
growth factor-1 (Lindholm et al., 1992) and ciliary neu- 
rot rophic  factor (Ip et al., 1993). N G F  and b F G F  may be 
of part icular  interest  since synergistic exposure of these 
two factors prolongs expression of nestin in pr imary cells 
from fetal s t r ia tum (Cat taneo and McKay,  1990). Al te rna-  

between the central canal and in the dorsal funiculus are de- 
picted. In this model these cells are stationary and do not mi- 
grate. Cells expressing nestin are black and cells not expressing 
nestin are stippled. Before injury (0 days) the majority of cells are 
not expressing nestin, except for a few cells around the central ca- 
nal. In contrast, at 2-d postinjury a number of cells, both around 
the canal and in an area between the canal and the site of lesion 
have started to express nestin. The number of nestin expressing 
cells then increases and is maximal at 14 d. At 13 mo, nestin ex- 
pression is confined to a cell population in the scar area and a few 
cells around the central canal. (Model 2) The four lower panels 
represent the same area and timepoints as in model 1. In this 
model nestin expressing cells (filled in black) are migratory and 
will migrate towards the site of injury. Note that the number of 
nestin expressing cells increase between 2 and 14 d after injury, 
suggesting that proliferation takes place in the subventricular 
zone (depicted by arrows at 2 d after injury). 
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tively, nestin induction may be independent of growth fac- 
tor stimulation, since it occurs also in the Wallerian zone, 
in which the levels of growth factors do not appear to in- 
crease. Similarly, exposure of primary astrocytes to a vari- 
ety of growth factors did not result in increased nestin 
mRNA levels (data not shown). For example, changes in 
cell-cell contact patterns, perhaps via cell-adhesion mole- 
cule signaling, may be involved in nestin induction. Loss of 
cell-cell contact could also explain the rapid upregulation 
of nestin in primary astrocytes, and that the highest levels 
of nestin protein were found when the cells were cultured 
sparsely. Further evidence for the importance of cell-cell 
contact is provided by Sotelo et al. (1994), who demon- 
strated that radial glial cells in cerebellum show higher lev- 
els of nestin-IR when neurons are migrating on them. 

Nestin expression also appears to be controlled within 
the individual cell. When primary astrocytes were le- 
sioned, the region of the cell closest to the lesion expressed 
higher levels of nestin-IR than more distal parts of the cell, 
suggesting that the injured cell is able to control the as- 
sembly of the IF network locally within the cell. This may 
be achieved by subcellular localization of the nestin mRNA, 
which has previously been observed in the neural tube, in 
which nestin mRNA is more abundant in the pial endfeet 
region of the progenitor cells (Dahlstrand et al., 1995). In 
support of this idea, differential localization of GFAP and 
keratin has been observed in radial glial cells (Holder et 
al., 1990) and vimentin mRNA is intracellularly localized 
during myogenesis (Cripe et al., 1993). In conclusion, it ap- 
pears that the expression of nestin after CNS injury is sub- 
ject to different levels of control, ranging from the subcel- 
lular localization of protein to the rapid and widespread 
induction in cells at various distances from the lesion. 

Does Nestin Expression Define a Cell Population 
Migrating from the Subventricular Zone to the Site of  
Lesion in Response to CNS Injury? 

Endothelial cells and reactive astrocytes at the site of in- 
jury show a stable pattern of nestin expression at all time- 
points after injury. In contrast, the pattern of nestin ex- 
pression in cells in the region between the central canal 
and the site of injury is much more dynamic. Thus, 2 d af- 
ter injury most non-endothelial nestin expressing cells are 
found close to the central canal; two weeks after injury the 
majority of cells are found along a line between the central 
canal and the site of injury; and 13 mo after injury the ma- 
jority of nestin expressing cells are astrocytes situated at 
the area of lesion. A similar shift in the expression pattern 
was seen for lacZ positive cells in the transgenic mice after 
injury (Fig. 7). 

There are two possible explanations to this apparent 
transition in nestin expression at the site of injury, and the 
two models are schematically depicted in Fig. 10. First, it 
could be that cells are stationary and that different cell 
populations express nestin at different timepoints along a 
proximal-distal axis. Alternatively, nestin expression may 
persist in the same cell population and these cells migrate 
away from an original position around the central canal to- 
wards the site of injury. Because the number of nestin im- 
munoreactive cells increase from two to 14 d after injury, 
the second model predicts that this cell population is tran- 
siently proliferating in response to injury. There are some 

observations which may be interpreted to support the lat- 
ter view. First, the region around the central canal in the 
spinal cord is the presumed location of an adult CNS pro- 
genitor cell population, since cells in the corresponding 
region of the brain, i.e., the subventricular zone, can prolif- 
erate and differentiate to neurons and glia postnatally 
(Levison and Goldman, 1993; Lois and Alvarez-Buylla, 
1994; Morshead et al., 1994). Second, nestin expression is 
intimately associated with the progenitor cell state in 
many CNS regions during normal development (Dahl- 
strand et al., 1995; Frederiksen and McKay, 1988; Hock- 
field and McKay, 1985; Lendahl et al., 1990; Williams and 
Price, 1995) and may thus identify a similar cell type after 
CNS injury. Third, cells from adult striatum can be in- 
duced to proliferate and express nestin when cultured in 
vitro and to differentiate to neurons and glial cells when 
culture conditions are changed (Reynolds and Weis, 
1992). Similarly, the adult CNS stem cells in the subven- 
tricular zone of the lateral ventricles in the brain express 
nestin in vivo (Morshead et al., 1994). These findings sug- 
gest a general correlation between nestin expression and 
the potential to proliferate in the CNS. Finally, the mor- 
phology and distribution of the cells two weeks after injury 
may suggest that the cells are migrating. Most cells have an 
elongated morphology and are extended in the same di- 
rection, i.e., along an axis between the central canal and 
the scar, as if they were migrating along a path between 
the central canal and the scar. In keeping with this, cells 
from the subventricular zone in the brain can migrate ex- 
tensively (Lois and Alvarez-Buylla, 1994). Although by no 
means proven our data, taken together, may suggest the 
existence of a cell population endowed with progenitor or 
stem cell qualities which can be identified by virtue of nes- 
tin expression and which is recruited to the area of injury. 
Further analysis of such cells may be of interest to under- 
stand the plasticity in the adult CNS. 
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