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Abstract

Streptococcus mutans is the leading cause of dental caries worldwide by accumulating a

glycogen-like internal polysaccharide (IPS) that contributes to cariogenicity when sugars

are in excess. Sodium monofluorophosphate (MFP) is an active anticariogenic compound in

toothpastes. Herein, we show that MFP inhibits (with an I0.5 of 1.5 mM) the S. mutans ADP-

glucose pyrophosphorylase (EC 2.7.7.27), which catalyzes the key step in IPS biosynthesis.

Enzyme inhibition by MFP is similar to orthophosphate (Pi), except that the effect caused by

MFP is not reverted by fructose-1,6-bisP, as occurs with Pi. Inhibition was correlated with a

decrease in acidogenesis and IPS accumulation in S. mutans cells cultured with 2 mM

sodium MFP. These effects were not mimicked by sodium fluoride. Considering that glyco-

gen synthesis occurs by different pathways in mammals and bacteria, ADP-glucose pyro-

phosphorylase could be visualized as a molecular target for controlling S. mutans virulence.

Our results strongly suggest that MFP is a suitable compound to affect such a target, induc-

ing an anticariogenic effect primarily by inhibiting a key step in IPS synthesis.

Introduction

It has been demonstrated that S. mutans, a resident of the normal flora of the oral cavity, is the

main etiologic agent of dental caries [1–3]. Cariogenicity relies on the capacity of the bacte-

rium to: (i) build up biofilm, (ii) acidify the extracellular milieu, and (iii) persist in an adverse

environment, three uncommon feasibilities in other bacteria. These capabilities are related to

the accumulation of a glycogen-like internal polysaccharide (IPS), whose attributed role is to

provide a carbon source during periods of shortage with the concomitant production of acidity

[4]. The role of sugars on the pathogenesis of dental biofilm formation determining cariogeni-

city has been established in good detail [5]; and a direct relationship has been evidenced

between the capacity to accumulate IPS and the in vivo cariogenic potential of S. mutans [6].
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Besides, the biosynthesis and catabolism of glycogen in prokaryotes have been identified to be

critical for virulence and ability of bacteria to build up biofilm [7,8].

The pathways for synthesis of glycogen in prokaryotes and mammals are remarkably differ-

ent [7–10]. Indeed, the respective enzymes are not homologous and the glucosyl donor used to

elongate the α-1,4-glucan is either UDP-Glc (eukaryotes) or ADP-Glc (bacteria). In addition,

their regulations are different. In bacteria, the synthesis of ADP-Glc is controlled, but in

eukaryotes the regulatory step is the glucan elongation [9]. In prokaryotes, production of

ADP-Glc (a metabolite that is not found in mammals) takes place by the reaction catalyzed by

ADP-Glc pyrophosphorylase (EC 2.7.7.27; ADP-Glc PPase): ATP + Glc-1P$ADP-Glc + PPi.

ADP-Glc PPases are enzymes finely regulated by metabolites with the characteristic that, even

when varying according to the source, the activator is a key intermediate in the major carbon

assimilatory pathway in the respective organism [9,10]. Distinctively from other bacteria, the

ADP-Glc PPase from Firmicutes is composed by subunits GlgC and GlgD that give rise differ-

ent oligomeric forms of the protein [11–13]. This is the case for the enzyme from S. mutans,
which has been recombinantly produced in the GlgC (having low activity), the GlgD (inactive)

and the GlgC/GlgD (fully active) forms. GlgC and GlgC/GlgD were found distinctively regu-

lated by metabolites, being the latter (supposedly the functional enzyme found in S. mutans)
inhibited by phosphoenolpyruvate (PEP) and orthophosphate (Pi), in a way that is overcome

by fructose-1,6-bis-phosphate (Fru-1,6-bisP) [11].

Several compounds have been assayed to control the cariogenic process, including many

fluoride agents [14]. Among them, sodium monofluorophosphate (MFP) was found to be

effective and is thus included in the formulation of toothpastes. Nevertheless, the use of MFP

is empirical, as a particular mechanism for its action has never been described. Recently [15],

the importance of classical compounds used to treat the caries process has been reviewed

and has enumerated several molecules with specific enzymatic targets. Generally, the target

enzymes are glycosyltransferases involved in the biosynthesis of exo-polysaccharides for bacte-

rial adhesion and biofilm formation. In this work, we report the inhibitory effect of MFP on

the ADP-Glc PPase of S. mutans, which induces a reduction in IPS biosynthesis and correlates

with changes in the physiological features of the microorganism. Because as above detailed,

glycogen synthesis takes place by different pathways in mammals and bacteria; we conclude

that ADP-Glc PPase represents a key target for MFP to control S. mutans virulence.

Methods

Chemicals

All protein standards, antibiotics, isopropyl—thiogalactoside (IPTG), nalidixic acid and other

chemicals were of the highest quality available obtained from Sigma-Aldrich or similar.

Cultures and in vivo assays

S. mutans ATCC 25175 planktonic cultures were incubated at 37˚C in LAPTg medium, (10 g/l

yeast extract, 10 g/l trypteine, 15 g/l meat peptone, 10 g/l glucose, 1% v/v Tween 80, pH 6.5) in

a 3% CO2 atmosphere without stirring. The inoculum consisted of a 12 h culture adjusted to

OD600 0.10. The factor for correlating OD600 and cellular dry mass (CDW) was determined.

All cultures were conducted in triplicate. Acidification was measured using a pH-meter.

The minimal inhibitory concentration (MIC, the lowest compound concentration analyzed

that prevents visible growth) for MFP and sodium fluoride (NaF) was determined following

the broth and agar dilution method, according to reported protocols [16]. Briefly, serial two-

fold dilutions of MFP or NaF (in a 0.5–64 mM range) were assayed in planktonic S. mutans
ATCC 25175 cultures. After 24 h, the culture turbidity at OD600 was determined to check the
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growth, which was further confirmed by plating in LAPTg-AGAR (LAPTg medium plus 2%

agar).

Protein methods

The hetero-tetrameric S. mutans ADP-Glc PPase (the GlgC/GlgD conformation) was recombi-

nantly produced and purified as previously described [11]. The protein concentration was

determined by the modified Bradford assay [17] using BSA as a standard.

Enzyme assays

ADP-Glc PPase was measured following the synthesis of ADP-[14C]Glc from [14C]Glc1P and

ATP, according to reported protocols [18]. The standard reaction mixture contained 100 mM

MOPS buffer (pH 8.0), 10 mM MgCl2, 1 mM [14C]Glc-1P (100–1000 cpm/nmol), 3 mM ATP,

0.5 mU/μl inorganic pyrophosphatase, and 0.2 mg/ml bovine serum albumin plus enzyme in a

total volume of 0.2 ml. Reactions were incubated for 10 min at 37˚C and terminated by heating

in a boiling-water bath for 1 min. The ADP-[14C]Glc formed during the reaction was then

converted to [14C]glycogen by E. coli glycogen synthase. Then, glycogen was precipitated with

0.1 M KCl (in methanol 75% v/v), washed with the same solution and resuspended in distilled

water. Radioactivity was measured by a scintillation counter. One unit (U) of enzyme activity

is equal to 1 μmol of product formed per minute under the conditions specified above.

Calculation of kinetic constants

MFP curves were performed by assaying enzymatic activity at saturating levels of substrates.

The experimental data were plotted as relative enzyme activity versus MFP concentration, and

the kinetic constants were determined by fitting the data to the Hill equation, as described else-

where [19]. Fitting was performed with the Levenberg-Marquardt nonlinear least-squares

algorithm provided by the computer program Origin™. The kinetic constant I0.5 corresponds

to the concentration that gives 50% maximal inhibition. All kinetic constants are the mean of

at least three sets of reproducible data within ± 10%.

Extraction and determination of intracellular polysaccharides

Polysaccharide extraction was achieved by a previously described alkali treatment protocol

[20–22]. Briefly, samples from S. mutans cultures were collected by centrifugation, washed

with ice-cold water and centrifuged again. Cells were resuspended to OD600 5.0 and boiled for

5 min. Then, 0.3 ml 30% w/v KOH was added per ml of cell suspension, and samples were

boiled for 90 min. After cooling, solutions were neutralized with acetic acid, and polysaccha-

rides were precipitated at 0˚C with 3 volumes of 97% v/v ethanol. After centrifugation, poly-

saccharides were dissolved in 0.1 ml water, and a 30 μl aliquot was digested with 2 U of

amyloglucosidase from Aspergillus niger in 100 mM acetate buffer pH 4.5 for 2 h at 55˚C in a

final volume of 100 μl. The released glucose was determined by the specific glucose oxidase

method [23], and the amount of monosaccharide was taken as a measure of the glycogen

content.

Results

In vivo studies

First, we analyzed the effect of NaF and MFP on the growth of S. mutans ATCC 25175, deter-

mining MIC values of 2 mM and 4 mM, respectively. Taking into account the values of MICs,

we decided to analyze the MFP effect by supplementing LAPTg medium with 2 mM MFP as
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well as by adding 1 mM NaF to establish a comparative analysis, as described below. As shown

in Fig 1, a culture of S. mutans ATCC 25175 lowered the pH of the medium from 6.50 to 4.00

after 24 h (control). On the other hand, when S. mutans was grown in identical conditions, but

with the addition of MFP (2 mM), it lowered the pH of the medium only to 5.29. When 1 mM

NaF was added to the control, the pH lowered to 5.80. For this reason, this experiment indi-

cated that both NaF and MFP reduced the acidogenesis ability of the bacterium. In agreement

with previous reports, when S. mutans was grown in the presence of 2 mM Pi, the cells behaved

identically to control cultures (data not shown) [24].

Cultures with and without MFP were analyzed with regard to their IPS content at three

points of growth (8, 12 and 16 h). Cultures with NaF were included to compare with previously

reported S. mutans behavior [25]. As shown in Fig 2, IPS accumulation was strongly affected

in the presence of 2 mM MFP. Towards the end of the exponential phase (8 h samples), the

IPS level was one-third that of the control. Entering the stationary phase (12 h), IPS accumula-

tion was approximately 4-fold lower than control cultures. Additionally, less IPS accumulation

was observed in control cultures when the advanced stationary phase was reached. Neverthe-

less, the ratio (4 to 1) between the IPS content in control and MFP cultures was sustained. In

addition, the effect of MFP on IPS accumulation was similar to that exerted by NaF, which is

in accordance with previous reports on the effect of NaF on S. mutans cultures [25]. It is note-

worthy that the presence of 2 mM Pi [same concentration as MFP] affected neither growth of

S. mutans cells nor IPS accumulation (data not shown).

Enzymatic studies

Previously [11], we characterized both active S. mutans ADP-Glc PPase conformations, GlgC

and GlgC/GlgD, and demonstrated that this enzyme catalyzes the key step in IPS synthesis,

known to be a major cariogenic factor [4,6,26–28]. In addition, we showed that S. mutans

Fig 1. pH reduction from S. mutans ATCC 25175 planktonic cultures in the presence of 2 mM MFP

(circles) or 1 mM NaF (triangles). Cultures with no MFP or NaF are shown in squares.

doi:10.1371/journal.pone.0170483.g001
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ADP-Glc PPase activity is allosterically regulated by metabolites from the glycolytic pathway,

such as PEP, Fru-1,6-bisP and Pi. Additionally, GlgC/GlgD was sensitive to salt ions, although

NaF (up to 25 mM) exhibited no effect [11].

Because of the structural analogy it exhibits with Pi, we analyzed whether the S. mutans
ADP-Glc PPase is sensitive to MFP. We found that MFP inhibits the hetero-tetrameric

GlgC/GlgD (the form with physiologic relevance) enzyme. As it has been reported for the

effect of Pi [11], MFP produced somehow complex effect, with a near 2-fold activation at low

concentrations followed by a marked inhibitory effect, where enzymatic activity decreased

more than 10-fold with an I0.5 of 1.5 mM (Fig 3). The curves were also conducted at four

Fig 2. Glycogen content from S. mutans ATCC 25175 planktonic cultures in the presence of 2 mM

MFP (black bars) or 1 mM NaF (white bars). Cultures with no MFP or NaF are shown in plaid bars.

doi:10.1371/journal.pone.0170483.g002

Fig 3. S. mutans ADP-Glc PPase inhibition when Pi (empty circles) or MFP (filled circles) are present

in the reaction mixture. Curves were obtained from reactions conducted at 1 mM Glc-1P, 2 mM ATP and 10

mM Mg2+.

doi:10.1371/journal.pone.0170483.g003
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different ATP concentrations (1, 3, 5 and 10 mM; see Fig 4). As shown, in all the cases the

pattern complexity of the effect was similar. Dixon plots [29] of the data obtained in the

inhibitory range indicate that the major effect of MFP is not competitive with ATP. Line

intercepts suggest that the effect is non-competitive or slightly mixed with an apparent KI in

the range of 5–7 mM (Fig 4, inset). Fig 4 shows that I0.5 values for MFP do not strongly

depend on ATP concentration. In general, MFP inhibition resembles the effect reported for

Pi [11] (see also Fig 3), although the latter has a slightly smaller I0.5 values. This similarity

may be due to the geometry shared by both compounds. However, a difference between the

inhibition caused by MFP or Pi is that the latter is slightly reverted by Fru-1,6-bisP, while

that of MFP is not (Table 1). In addition, PEP, a highly sensitive inhibitor of GlgC/GlgD (I0.5

0.08 mM), is also reverted by Fru-1,6-bisP [11].

In the above context, MFP arises as an inhibitor of IPS synthesis with ADP-Glc PPase as its

target, which is the key step in bacterial glycogen synthesis, particularly the cariogenic IPS

accumulation in S. mutans. MFP primarily behaves as an inhibitor of the enzyme because of its

analogous structure to the physiological effector Pi, although for the former (contrarily to Pi),

the inhibitory effect is not reverted by the regulatory metabolite Fru-1,6-bisP and thus might

remain independent of changes in the cellular metabolism. Altogether, the results presented in

this work constitute an important mechanistic link for the role of MFP, as S. mutans with

Fig 4. S. mutans ADP-Glc PPase inhibition curves by MFP at different concentrations (▼-1 mM, &-3 mM,●-5

mM and4-10mM) of ATP. In the inset, the data represented according Dixon plots (1/v vs MFP concentration) are

shown to estimate the inhibition constant.

doi:10.1371/journal.pone.0170483.g004
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reduced IPS accumulation are less cariogenic and are more quickly removed from the oral

microflora [4], opposing those hypercariogenic strains that over-produce IPS [6].

Discussion

The use of fluoride as an anticariogenic agent has been widely established, and its efficacy

involves a complex sum of factors affecting microbial physiology due to the effects of HF or

fluoride ions (F-) [30]. The latter targets the enzyme enolase (EC 4.2.1.11) in S. mutans [31,32],

decreasing the glycolytic rate and consequently acid production thus diminishing cariogenic

effects [30,33]. MFP has been used in toothpaste formulations, but the precise anti-caries

mechanism, i.e., whether MFP itself is an anti-caries agent or whether it is a source of fluoride

ion, is not known with certainty [34–36]. Moreover, a specific molecular target for MFP action

has never been described and its proven cariostatic effect in clinical trials is comparable to that

of NaF. Although there is some uncertainty, it has been suggested that its mode of action stems

from MFP being a source of fluoride ions [36].

Results reported herein support the action of MFP through its inhibitory effect on the key

enzyme in the biosynthesis of bacterial glycogen. Under comparable conditions, NaF does not

exert such an effect, whereby it is shown that the MFP molecule is responsible for inhibition,

rather than F- ions that could be generated by hydrolysis. We found that MFP decreases the

IPS content of S. mutans, even in conditions (late exponential phase) where the supply of ATP

and Glc-1P (ADP-Glc PPase substrates) are guaranteed. In addition, as we discussed else-

where, the amount of IPS and acidification capacity correlate with levels of ADP-Glc PPase

activity during the exponential growth of S. mutans [11]. Interestingly we found that in vitro,

MFP inhibits the key enzyme in polyglucan biosynthesis, a particular feature that distinguishes

it from other anticariogenic agents tested, such as NaF. Moreover, the inhibition by MFP

exhibits as a critical characteristic that is not reversed by Fru-1,6-bisP, a metabolite indicating

sugar utilization; which contrasts with inhibition caused by the physiological inhibitors Pi and

PEP (both reversed by Fru-1,6-bisP [11]). In addition, the effect of MFP takes at a metabolic

step that is not inhibited by NaF. Many glycosyltransferases were identified as targets for the

action of the specific molecules utilized in classical anti-caries compounds [15], although the

respective interfering mechanisms (i.e., ligand-protein interaction, effect on kinetics, or oth-

ers) remain largely unknown. The identification of ADP-Glc PPase as a specific molecular

point of inhibition by MFP represents a contribution towards a better understanding of the

action of active compounds on the carbohydrate metabolism of oral bacteria. Importantly, illu-

minating these interactions and specific molecular targets is critical for optimizing and/or

designing new treatments for the control of caries.

Table 1. Inhibition of the S. mutans ADP-Glc PPase activity by Pi or MFP in the absence or presence of

Fru-1,6-bisP.

10 mM Fru-1,6-bisP 1 mM Fru-1,6-bisP No Fru-1,6-bisP

Inhibitor Activity (% remaining activity)

Pi 0 mM 100 ± 8 99 ± 7 100 ± 8

0.5 mM 67 ± 5 61 ± 7 51 ± 6

2.5 mM 38 ± 6 31 ± 4 15 ± 2

MFP 0 mM 99 ± 9 99 ± 8 100 ± 9

5 mM 61 ± 7 65 ± 6 67± 8

10 mM 42 ± 5 39 ± 5 41 ± 4

doi:10.1371/journal.pone.0170483.t001
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Concluding Remarks

MFP affects the capacity of S. mutans to acidify the medium as well as to accumulate IPS. We

found a correlation between in vivo and in vitro studies, as we determined an enzymatic MFP

target (ADP-Glc PPase), thus providing a useful tool for caries control.
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