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Introduction
Artificial intelligence (AI) and applications from the subfield 
of deep learning have rapidly entered the medical arena. 
Especially image analysis using convolutional neural networks 
(CNNs) was shown to have the potential for increasing practi-
tioners’ reliability and accuracy. CNNs learn the statistical pat-
terns inherent in imagery by repeatedly digesting pairs of 
images and image labels (e.g., “this image contains a certain 
pathology”), with labels usually provided by medical experts, 
and are eventually able to assess unseen data (LeCun et al. 
2015). For detecting caries lesions, we found a CNN to yield 
diagnostic accuracies superior to individual dentists in a diag-
nostic accuracy study (Cantu et al. 2020) and confirmed this in 
a randomized controlled trial (Mertens et al. 2021).

The detection of a pathology like a caries lesion itself does 
not transport any tangible value to patients or the health care 
system. Instead, health benefits (and further costs) emanate 
from the subsequent (correctly or incorrectly assigned) treat-
ment. For caries detection on radiographs, a CNN has been 
found cost-effective in a modeling study, where a Markov 
model was used to follow detected (or nondetected) and treated 
(or untreated) lesions over the patients’ lifetime (Schwendicke 

et al. 2020). However, we also demonstrated the uncertainty 
involved in this cost-effectiveness.

Quantifying uncertainty is relevant for decision makers: cli-
nicians want to know the risks of falsely relying on one instead 
of the other possible treatment option, in our case, using AI 
versus not using AI for caries detection. Health care payers 
may want to assess the chances of saving money when incen-
tivizing one option over the other. Researchers desire to under-
stand the required efforts to reduce this uncertainty. Eventually, 
all parties are interested in the value of information (VOI).
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Abstract
If increasing practitioners’ diagnostic accuracy, medical artificial intelligence (AI) may lead to better treatment decisions at lower costs, 
while uncertainty remains around the resulting cost-effectiveness. In the present study, we assessed how enlarging the data set used for 
training an AI for caries detection on bitewings affects cost-effectiveness and also determined the value of information by reducing the 
uncertainty around other input parameters (namely, the costs of AI and the population’s caries risk profile). We employed a convolutional 
neural network and trained it on 10%, 25%, 50%, or 100% of a labeled data set containing 29,011 teeth without and 19,760 teeth with 
caries lesions stemming from bitewing radiographs. We employed an established health economic modeling and analytical framework to 
quantify cost-effectiveness and value of information. We adopted a mixed public–private payer perspective in German health care; the 
health outcome was tooth retention years. A Markov model, allowing to follow posterior teeth over the lifetime of an initially 12-y-old 
individual, and Monte Carlo microsimulations were employed. With an increasing amount of data used to train the AI sensitivity and 
specificity increased nonlinearly, increasing the data set from 10% to 25% had the largest impact on accuracy and, consequently, cost-
effectiveness. In the base-case scenario, AI was more effective (tooth retention for a mean [2.5%–97.5%] 62.8 [59.2–65.5] y) and less 
costly (378 [284–499] euros) than dentists without AI (60.4 [55.8–64.4] y; 419 [270–593] euros), with considerable uncertainty. The 
economic value of reducing the uncertainty around AI’s accuracy or costs was limited, while information on the population’s risk profile 
was more relevant. When developing dental AI, informed choices about the data set size may be recommended, and research toward 
individualized application of AI for caries detection seems warranted to optimize cost-effectiveness.
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VOI analyses quantify the costs of making the wrong deci-
sion (more money spent than required and/or lower health ben-
efit than possible) due to uncertainty (Ford et al. 2012), that is, 
they translate uncertainty into monetary value and allow to 
quantify the value of further information to reduce this uncer-
tainty. For AI applications, one primary source of uncertainty 
stems from its diagnostic performance. Further sources are 
uncertain costs or the risk profile of the specific target popula-
tion, for example.

Increasing the amount of data an AI model is trained on 
tends to increase its diagnostic performance, while in parallel, 
one would expect this to reduce uncertainty around the perfor-
mance estimate. Assuming that the performance gains and 
uncertainty reductions are not linear, the monetary value of 
increasing the data set would not be linear, too. Moreover, 
these effects can be assumed to be different in different risk 
groups or associated with other uncertain parameters (like the 
costs of AI, which may grow if training is more resource 
intense). We aimed to quantify the value of data used to train an 
AI for caries detection on dental radiographs and also to assess 
the VOI of knowing the precise costs of the AI as well as the 
target population’s caries risk profile.

Methods

Study Design

In a previous model-based cost-effectiveness evaluation 
(Schwendicke et al. 2020) building on a diagnostic accuracy 
study (Cantu et al. 2020), we showed that using a CNN to 
detect caries lesions on bitewing radiographs had a high chance 
of being cost-effective. In the present study, we trained a CNN 
on a data set of cropped tooth images stemming from 3,826 
bitewing radiographs and employed this health economic mod-
eling framework for the described analyses. Reporting of this 
study follows the Consolidated Health Economic Evaluation 
Reporting Standards (CHEERS) (Husereau et al. 2013).

Data Input

To vary the amount of training data and valuate their contribu-
tion to performance gains and certainty and, indirectly, mone-
tary benefit, we used the imagery data set employed in our 
previous diagnostic accuracy study where we had trained a 
CNN for caries detection (Cantu et al. 2020), consisting of a 
total of 3,686 and 140 retrospectively collected bitewings, 
respectively. For the present study, each image in the training 
data set had been cropped tooth-wise (showing 1 tooth only) by 
a previously developed deep learning segmentation model, 
yielding 29,011 tooth crops without caries lesions and 19,760 
tooth crops with caries lesions, respectively. The size of the 
tooth determined the size of the crop. Similarly, the test data set 
contained 692 tooth crops without caries lesions and 401 tooth 
crops with caries. Data collection had been ethically approved 
(ethics committee of Charité Berlin, EA4/080/18). Images had 
been labeled by 3 expert dentists, as well as reviewed and 

revised by a fourth expert. The reference test was constructed 
by the union of all labels.

Model Training and Testing

To assess the impact of using more training data on perfor-
mance and cost-effectiveness, the number of tooth crops 
employed for training/validation was incrementally increased 
from 10% of the total data set to 25%, 50%, and 100%, respec-
tively, resulting in 4 different models, whose classification 
accuracy (true and false positive or negative findings) was 
employed to inform the health economic model (see below). 
We performed 5-fold cross-validation where the validation 
data set was a random sample from the training data. We used 
the Resnet-18 architecture pretrained on the ImageNet data set 
as a feature extraction module and a classification head with 2 
output neurons followed by the Softmax function. Further 
details can be found in the Appendix.

Testing was performed on the overall test data set and on 
subgroups of different lesion depths (E2: lesions into the inner 
enamel half, D1: lesions into the outer third of dentin; D2–D3: 
lesions into the middle or inner third of dentin, assessed by 2 
examiners in agreement).

Setting, Perspective, Population, Horizon

We adopted a mixed public–private payer perspective in 
German health care (see Appendix). A population of posterior 
permanent teeth in initially 12-y-old individuals was modeled 
(TreeAge Pro 2019 R1.1; TreeAge Software). The initial age 
determined the horizon via the remaining lifetime of the indi-
vidual (see below). The horizon was not varied across 
simulations.

We assumed the teeth’s proximal surfaces to start the simu-
lation at a 1) sound, 2) initially carious (E2, D1), or 3) advanced 
carious status (D2–D3); the prevalence for these states had 
been estimated before (Schwendicke, Paris, and Stolpe 2015; 
Schwendicke et al. 2020) and was independent from the preva-
lence of lesions in our image data set used for model develop-
ment. Only 1 lesion per tooth was modeled.

Besides the uncertainty stemming from the performance  
of the model, the caries risk profile of the population the AI  
is applied in has been found to introduce uncertainty 
(Schwendicke et al. 2020). We modeled 2 populations: 1 with 
low risk (low prevalence of caries lesions) and 1 with high risk 
(high prevalence). In the base-case analysis, we did not specify 
in which of these the AI was employed (i.e., introduced maxi-
mum uncertainty and quantified the VOI of reducing this 
uncertainty). The construction of both cohorts is described in 
the Appendix.

Comparators

Similar to the original health economic study (Schwendicke  
et al. 2020), we compared dentists’ diagnostic accuracy when 
using biannual visual-tactile caries detection plus radiographic 
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caries detection on bitewings every 2 y with that of biannual 
visual-tactile caries detection plus CNN-based AI for radio-
graphic caries detection. As both dentists and AI may show 
different accuracy depending on the lesion stage, we used 
lesion depth–specific accuracies for E2, D1, and D2–D3 
lesions. While visual-tactile means allowed to detect advanced 
(D2–D3) lesions with some accuracy, leading to restorative 
care (Schwendicke, Paris, and Stolpe 2015), initial lesions 
(E2–D1) were assumed to be only detectable using radio-
graphs. The accuracy of dentists was built on a meta-analysis 
(Schwendicke, Tzschoppe, and Paris 2015), while as described, 
the accuracy (and the associated uncertainty) of the AI ema-
nated from training on data sets of different size, leading to 
different accuracy and uncertainty and, subsequently, treat-
ment decisions and costs.

Cost-Effectiveness Model and Assumptions

We used a Markov simulation model, modeling posterior teeth 
and their proximal surfaces over their lifetime. E2–D1 were 
assumed be detected only radiographically and managed using 
microinvasive care (caries infiltration) to arrest them. If unde-
tected or unarrested, these lesions could progress to D2–D3 
lesions, which would at some point be restored using a com-
posite restoration. Restorations could fail and be replaced or 
repaired, and after repeated failure, a crown was to be placed, 
which again could fail and be replaced once. In parallel, end-
odontic complications could occur, which would be treated 
using root canal treatment, which was also assumed to fail with 
some chance and then required nonsurgical and eventually sur-
gical retreatment. If no further treatment options remained, an 
extraction was assumed, with teeth being replaced with 
implant-supported single crowns. Simulation was performed 
in discrete annual cycles. The transition probabilities between 
these different health states are shown in Appendix Table 1. 
The model is summarized in Appendix Figure 1.

Input Variables

Further input variables (see Appendix) were largely built on 
data from large cohort studies or systematic reviews and had 
been validated in various health economic evaluations before 
(Schwendicke et al. 2013; Schwendicke, Meyer-Lueckel, et al. 
2014; Schwendicke, Paris, and Stolpe 2015; Schwendicke, 
Stolpe, et al. 2015).

Health Outcomes, Costs, and Discounting

Our health outcome was the time a tooth was retained (in 
years), mainly as valid data to assign valuations to other health 
states of retained teeth (e.g., nonrestored, filled, crowned tooth) 
are not common, while increasing research in this field may 
allow for more detailed consideration of cost-utility (instead of 
only cost-effectiveness) in the future (Hettiarachchi et al. 
2018). Costs were estimated using the German public and pri-
vate dental fee catalogues, Bewertungsmaßstab (BEMA) and 

Gebührenordnung für Zahnärzte (GOZ), and included sub-
groups of costs for diagnostics and treatments, as well as costs 
covered by insurances or out-of-pocket expenses. Costs of AI 
were assumed to vary between 4 and 12 euros per application 
(see Appendix). Costs occurring over the lifetime (i.e., in the 
future) were discounted at 3% per annum (IQWiG 2017).

Analytical Methods

We first performed cost-effectiveness analysis using Monte 
Carlo microsimulations, with 1,000 independent teeth being 
followed over the mean expected lifetime (which was 66 y) 
(statista 2022) in annual cycles. We randomly sampled transi-
tion probabilities from uniform or triangular distributions 
(Briggs et al. 2002), as outlined in the Appendix. The probability 
that a strategy was acceptable to payers at different willingness-
to-pay ceiling thresholds was also explored. In addition, we 
performed a range of sensitivity analyses.

Cost-effectiveness analyses indicate which strategies may 
be most cost-effective but accept the involved uncertainties. 
Reducing these uncertainties could lead to health gains or cost 
reductions from improved resource allocation (Claxton 1999). 
VOI allows to assess the foregone benefits and costs emanat-
ing from imperfect information. The VOI is estimated using 
the net monetary benefit (NMB), calculated as

NMB = λ × De – Dc, 

with λ denoting the ceiling threshold of willingness to pay, that 
is, the additional costs (c) a decision maker is willing to bear 
for gaining an additional unit of effectiveness (e) (Drummond 
et al. 2005). For our analyses, we assumed the NMB to be λ = 0 
as there are no agreed-on paying thresholds defined for an 
additional year of tooth retention, but also as this threshold 
seemed justifiable from a payer’s perspective.

VOI was then estimated as NMBperfect information –  
NMBimperfect information. To estimate how perfect knowledge 
would change the NMB, one can identify the strategy with the 
highest NMB at each simulation and compare the average NMB 
of these “ideal” strategies with the NMB under imperfect infor-
mation. We estimated the VOI of having perfect information on 
all uncertain parameters (expected value of information, EVPI), 
as well as the VOI for reducing uncertainty in specific parame-
ters (expected value of partial perfect information, EVPPI), 
namely, the AI’s accuracy (amount of training data), the costs of 
AI, and the population’s risk profile (Ford et al. 2012). The 
EVPI estimates the value of simultaneously eliminating all 
uncertainty in an analysis, while the EVPPI can assess which 
parameters contribute most to the overall uncertainty.

Results

Study Parameters and Performance of the CNN

The input parameters for our study are shown in Appendix 
Table 1. With an increasing amount of data used to train the AI, 
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both sensitivity and specificity increased. Notably, this increase 
was not linear; the increase was largest when increasing the 
data set from 10% to 25%, and limited afterwards (see Table 2 
in Appendix). The resulting percentages of true-negative (for 
sound surfaces) and true-positive (for carious ones) findings 
are displayed in Figure 1.

Base-Case Scenario

In the base-case scenario (uncertain accuracy of the AI, uncer-
tain risk profile of the population, uncertain costs of AI), AI 
was more effective (tooth retention for a mean [2.5%–97.5%] 
62.8 [59.2–65.5] y) and less costly (378 [284–499] euros) than 
dentists without AI (60.4 [55.8–64.4] y; 419 [270–593] euros). 
Figure 2 shows the cost-effectiveness plane (Fig. 2A), with AI 
being more effective and less costly in most simulations. This 
was also reflected in the incremental cost-effectiveness plane 
(Fig. 2B). The high cost-effectiveness acceptability was found 
regardless of a payer’s willingness to pay exceeding (Fig. 2C).

Sensitivity Analyses

A range of sensitivity analyses was performed (Table 1). In 
low-risk populations, the cost-effectiveness of AI was lower 
compared with the base case (and vice versa for high-risk pop-
ulations). The amount of data used for training showed a rele-
vant effect on costs; in low-risk populations, AI was more 
effective but also more costly when only 10% or 25% of the 
data were used for training, while if more data were used for 
training, it was both more effective and less costly. In high-risk 
populations, AI was more effective and less costly regardless 
of the amount of data. The impact of varying the costs of AI 
was limited. Discounting at different rates changed the overall 
costs but did not change the ranking of strategies.

Value of Information

The EVPI and the EVPPI at different willingness-to-pay 
thresholds of a payer are shown in Figure 3. Both EVPI and 
EVPPI decreased with increasing willingness to pay. The EVPI 
at a threshold of 0 euros was 12.40 euros and decreased to a 
lower plateau of 5.60 euros at a higher willingness to pay. The 

A

C

B

Figure 2. Cost-effectiveness and acceptability of the base case. 
(A) Cost-effectiveness plane. The costs and effectiveness of artificial 
intelligence (AI) versus no AI are plotted for 1,000 sampled individuals 
in each group. (B) Incremental cost-effectiveness. Incremental costs and 
effectiveness of AI compared with no AI are plotted. Quadrants indicate 
comparative cost-effectiveness (e.g., lower right: lower costs and higher 
effectiveness). Inserted cross-tabulation: Percentage of samples lying in 
different quadrants. (C) Cost-effectiveness acceptability. We plotted 
the probability of comparators being acceptable in terms of their cost-
effectiveness depending on the willingness-to-pay threshold of a payer. 
The range of willingness to pay was expanded from 0 to 100 euros and 
did not considerably change beyond this threshold.

Figure 1. Mean true-positive (TP) and true-negative (TN) rates (in %, 
y-axis) for sound and carious surfaces (lines) and standard deviations 
(shaded areas) of artificial intelligence models trained on different 
proportions of the overall data set (x-axis).
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EVPPI of training the AI with more data (affecting perfor-
mance and uncertainty) was 0.87 euros at a threshold of 0 euros 
and flattened out to 0 euros; that of the risk profile (caries prev-
alence) of the population was 6.61 euros at a threshold of 0 
euros and also decreased toward 0 euros at higher willingness 
to pay. The EVPPI of the costs of AI was 0 euros regardless of 
the threshold (and is hence not shown in Fig. 3).

Discussion
While studies on the accuracy of AI applications for medical 
purposes are widespread, there are only few health economic 

evaluations of medical AI, and most of these suffer from meth-
odological shortcomings (Wolff et al. 2020). In oral and dental 
research, a similar increase in studies on AI is notable, while 
assessments of the value of AI for dental patients, providers, or 
payers are scarce. Cost-effectiveness models allow to deter-
mine the potential long-term health effects and resulting costs 
and thereby translate accuracy into tangible value.

The present study assessed the value of enlarging the train-
ing data set used for developing an AI and, indirectly, the 
resulting accuracy gains (which may be nonlinear and also dif-
fer for sensitivity and specificity or different lesion stages) and 
uncertainty reductions. We further assess the value of knowing 
the costs of the AI and the population’s risk profile. In high-
risk (high-prevalence) populations, even moderate sensitivity 
gains of AI may lead to considerable cost-effectiveness, while 
in low-risk populations, false-positive detections (i.e., specific-
ity) will be more relevant.

In the present study, we showed that the benefit of more 
training data was not linearly increasing but saturated after 
limited increases in data and that in certain (high-risk) popula-
tions, AI was also cost-effective when only minimal amounts 
of data were used for training. It is recommendable that instead 
of increasing data sets on a noninformed (random) basis, 
researchers should identify data points that contribute to the 
heterogeneity of the data set and thereby increase accuracy and 
generalizability more efficiently. Moreover, it needs highlight-
ing that as expected, gains in sensitivity and specificity were 
not identical and were further lesion stage specific, all of which 
had a joint impact on cost-effectiveness.

We further explored the value of reducing these (and other) 
uncertainties in our analysis. At 12.40 euros per individual, 
however, the monetary impact of eliminating all parameter 
uncertainty (EVPI) was limited compared with the observed 
lifetime costs. Moreover, and against our expectations, we 
showed that the value of knowing what accuracy gains are gen-
erated by which training data set size was small and that uncer-
tainty around the costs of AI was also irrelevant. Instead, the 

Figure 3. Value-of-information analysis. The overall expected value 
of perfect information (EVPI) and the expected value of partial perfect 
information (EVPPI) for specific parameters were plotted against the 
willingness-to-pay threshold of a payer. The EVPI and EVPPI indicate 
the monetary value of being able to make better decisions (avoid more 
costly or less effective decisions) based on better overall or partial 
information. EVPPI was estimated for the available data for training the 
artificial intelligence (AI) (affecting accuracy and its uncertainty), the 
risk profile (caries prevalence) of the population of interest, and the 
costs of AI (4–12 euros per application). For the latter, the EVPPI was 
0 euros regardless of the threshold and hence not shown. The range of 
willingness to pay was expanded from 0 to 100 euros.

Table. Cost-Effectiveness in the Base-Case and Sensitivity Analyses.

Analysis

Dentists with AI Dentists without AI

Cost (Euros) Effectiveness (y) Cost (Euros) Effectiveness (y)

Base case (uncertain accuracies, uncertain AI costs, uncertain risk) 378 (284–499) 62.8 (59.2–65.5) 419 (270–593) 60.4 (55.8–64.4)
10% training data, low risk, AI costs 8 euros 379 (309–456) 63.8 (61.5–65.8) 326 (260–392) 62.4 (60.0–64.4)
25% training data, low risk, AI costs 8 euros 333 (261–410) 63.8 (60.9–65.6) 326 (260–392) 62.4 (60.0–64.4)
50% training data, low risk, AI costs 8 euros 332 (261–413) 64.1 (61.7–65.9) 326 (260–392) 62.4 (60.0–64.4)
100% training data, low risk, AI costs 8 euros 323 (250–391) 64.1 (62.1–65.7) 326 (260–392) 62.4 (60.0–64.4)
10% training data, high risk, AI costs 8 euros 451 (370–550) 61.0 (58.1–63.8) 514 (437–609) 57.9 (54.5–60.9)
25% training data, high risk, AI costs 8 euros 425 (353–506) 61.1 (58.4–63.8) 514 (437–609) 57.9 (54.5–60.9)
50% training data, high risk, AI costs 8 euros 404 (329–483) 61.8 (59.1–64.1) 514 (437–609) 57.9 (54.5–60.9)
100% training data, high risk, AI costs 8 euros 392 (318–470) 61.9 (59.7–63.9) 514 (437–609) 57.9 (54.5–60.9)
Low costs for AI (4.00 euros/analysis) 371 (275–488) 62.8 (59.2–65.5) 419 (270–593) 60.1 (55.1–64.2)
High costs for AI (12.00 euros/analysis) 392 (284–492) 62.8 (59.2–65.5) 419 (270–593) 60.1 (55.1–64.2)
Discounting rate 1% 630 (454–856) 62.8 (59.2–65.5) 745 (468–1,050) 60.4 (55.8–64.4)
Discounting rate 5% 260 (195–333) 62.8 (59.2–65.5) 270 (177–373) 60.4 (55.8–64.4)

Mean and 2.5% to 97.5% percentiles are shown. The rationale behind modeling a lower and upper bound of artificial intelligence (AI) costs of 4.00 and 
12.00 euros is provided in the Appendix. The range of discounting rates follows recommendations for cost-effectiveness studies in our setting (IQWiG 
2017).
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population’s risk profile and a range of other joint uncertainties 
(which we did not explore in detail) were relevant. Identifying 
the economic value of increasing information on specific 
parameters helps to make informed decisions about research 
and development: for instance, knowledge on the caries preva-
lence in a specific patient pool or patients’ risk profile (e.g., by 
using caries risk assessment) may support a more targeted 
decision toward using AI or not and thereby optimize the cost-
effectiveness of AI.

This study has a number of strengths and limitations. First, 
and as a strength, this is the first study assessing the value of 
training data for dental AI applications and generally one of 
few VOI analyses in dentistry. Our study can inform research-
ers, funding agencies, and developers of AI toward which 
uncertainties have more or less impact on health and costs. 
Second, the employed Markov model and the analytic frame-
work have been validated before; they allow to extrapolate 
accuracy data into long-term health and economic outcomes. 
Third, and as a limitation, our analysis was setting specific, and 
so will be our results to some degree. Notably, cost estimation 
using German fee items has been found to closely reflect the 
true treatment costs and to yield estimates comparable with 
those from other health care settings (Schwendicke, Graetz,  
et al. 2014; Schwendicke et al. 2018). Fourth, construction of the 
reference test for training and testing the model was performed 
as described, with the chosen strategy being one (albeit fre-
quently chosen) option among others. Also, we assumed early 
lesions to be detected radiographically, not visually, while a 
number of studies found visual assessment to have moderate 
sensitivity for detecting early proximal lesions, too (Foros  
et al. 2021). Fifth, the accuracy values assumed in our control 
group (dentists without AI) stemmed from a systematic review 
that also confirmed that many of the included diagnostic accu-
racy studies suffered from bias and limited applicability. 
Notably, we have investigated the impact of different accuracy 
values in the control group in a previous cost-effectiveness 
study (Schwendicke 2020) and did not find the introduced 
variances in accuracy to change our conclusion. Moreover, we 
have assessed the cost-effectiveness of AI for this purpose  
not only against systematically reviewed and synthesized data 
but also recent data from a prospective controlled trial 
(Schwendicke et al. 2022). In the present study, our focus was 
not on the comparative cost-effectiveness but the uncertainty 
around it. Last, our simulation simplified decision making in 
practice; dentists may deviate from AI detections and apply a 
range of therapies beyond those assumed in our study. The lat-
ter point is relevant, as the assigned treatment has been shown 
to affect cost-effectiveness (Schwendicke et al. 2020).

In conclusion, and within the limitations of this study, 
increasing the amount of data for training an AI to detect caries 
lesions on bitewings improved cost-effectiveness. Notably, 
limited increases in data led to significant increases in cost-
effectiveness, and enlarging the data set even further was of 
limited benefit. There was considerable uncertainty around the 
cost-effectiveness. The economic value of reducing this uncer-
tainty, specifically around the AI’s accuracy or costs, was 

limited, though. Instead, the risk profile of the population of 
interest was more important. When developing dental AI, 
informed choices about the data set size may be recommended, 
and research toward individualized application of AI for caries 
detection seems warranted to optimize cost-effectiveness.
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