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Paradoxical impact of sprawling 
intra-Urban Heat Islets: Reducing 
mean surface temperatures while 
enhancing local extremes
Anamika Shreevastava   1*, Saiprasanth Bhalachandran2,5, Gavan S. McGrath3,4, 
Matthew Huber   2 & P. Suresh C. Rao1

Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and 
persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution 
within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at 
various percentile-based thermal thresholds and refer to them collectively as intra-Urban Heat Islets. 
Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat 
islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and 
intensity information about heterogeneous clusters into probability distributions that can be described 
using single scaling exponents (denoted by β, Λscore, and λ, respectively). This allows for a seamless 
comparison of the heat islet characteristics across cities at varying spatial scales and improves on the 
traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size 
distributions demonstrates the emergence of two classes where the dense cities follow a Pareto 
distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a 
significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, 
analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable 
for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal 
extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth 
trajectory to mitigate the UHI.

More than 50% of the world’s population currently resides in cities, and the number continues to increase rapidly 
with a projection that 70% of the global population will be urbanized by 20501. Rapid urbanization trends are 
manifested in the expansion and densification of existing cities and the merging of small urban agglomerations to 
form megacities, particularly in South Asia and sub-Saharan Africa2. Among the numerous challenges that cities 
face, a particularly urgent problem due to climate change is that of extreme heat. Urban areas often raise the local 
temperatures relative to natural and rural surroundings leading to the phenomenon of the Urban Heat Island 
(UHI) effect. Synergistic interaction between UHIs and increasingly persistent heatwaves further exacerbates 
the extreme temperatures within cities3,4. Repercussions of extreme heat include thermal discomfort5, increased 
energy consumption6, and heat-related morbidity and mortality7,8.

The UHI is typically quantified as UHI Intensity, i.e., the difference between the air temperatures of a repre-
sentative urban area (point measurement or spatial average) and rural area. However, such an estimate is inade-
quate to address the intra-urban spatial heterogeneity. Commendable efforts to collect spatially resolved thermal 
data such as the Basel Urban Boundary Layer Experiment (BUBBLE) campaign9 are rare and often limited to a 
single city. On the other hand, earth-monitoring satellites such as Landsat and Moderate Resolution Imaging 
Spectroradiometer (MODIS) enable consistent high spatial resolution characterization across multiple cities. As 
a result, the Surface UHI (SUHI) estimated using Land Surface Temperatures (LST) has emerged as an alternative 
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approach that we adopt in this study10,11. While SUHI bears similarity in spatial patterns to UHI12, LST is more 
coupled with urban form and function, whereas air temperatures are subject to the boundary layer wind profiles 
as well. Therefore, a point-to-point correspondence can not be expected13.

The role of the spatial organization of urban form in reducing urban temperatures has been a topic of substan-
tial research spanning a multitude of spatial scales. At the micro-scale, i.e., within the urban canyon, the surface 
temperatures are extremely sensitive to the geometrical details of immediate surroundings, such as street canyon 
geometry, sky-view factor, vegetative fraction, solar access and shading14–16. At the local scale, i.e., of the order of a 
few kilometers, consistent thermal patterns emerge due to locally homogeneous patches of urban form and func-
tion17,18. However, we do not have a clear understanding of the optimal urban form and function that minimize 
the urban heat locally as well as at a city-scale. For instance, studies investigating local scale impacts19,20 report 
that high-density urban development leads to higher local temperatures. In contrast, several others note that 
sprawling urban development may result in worse thermal conditions21,22. Despite these recent advances, a com-
prehensive framework for the characterization of intra-urban thermal heterogeneity for diverse city morpholo-
gies is still lacking. Towards that, we use a multi-scale framework wherein we treat the SUHI not as a single entity, 
but as a collection of heterogeneous clusters of heat within the city. We refer to these clusters as intra-urban heat 
islets. The objective of this study is to evaluate the impact of the spatial organization of these heat islets on their 
properties, such as size and intensity, and determine if there is a favorable spatial structure for reducing surface 
temperature extremes at intra-urban spatial scales.

Urban morphology, and as a result, LST, emerges via the processes of densification and expansion, albeit 
constrained by cultural, geographic, and economic factors23,24. Different degrees and combinations of these two 
processes result in a diversity of form and function. Dense urban growth occurs when there is increased in-fill 
construction within the existing high-density built-up area. Such a process is often driven by economic and 
socio-political factors that lead to the settlement of new urban regions close to the city center25. This is akin 
to the preferential attachment phenomenon observed in complex networks where a new node is more likely 
to attach at the “hub nodes” with the highest density of edges26. We hypothesize that the densification within 
urban areas results in hot regions getting hotter and larger, thereby resulting in power law, otherwise known as a 
Pareto, size distribution27 of heat islets. Urban expansion in the form of sprawl, on the other hand, occurs at the 
periphery of urban areas in the form of growing suburban regions. We hypothesize that this would lead to the 
emergence of heat islets that are spread more evenly throughout the city, often interspersed with local heat sinks. 
This can be detected in the size distribution as a fast decaying tail, often in the form of an exponential tempering28.  
Similar effects of urban expansion and densification are observed on the power law distributions prevelant in 
several urban infrastructure systems such as roads and sewage networks29–31. Note that we don’t refer to the spa-
tial organization of urban assets such as buildings or impervious areas. Instead, we directly analyze the LST. We 
implement the framework for a set of 78 cities sampled globally. Using probabilistic models, we condense the size, 
spacing, and intensity information about heterogeneous clusters into distributions that can be described using 
single scaling exponents. This allows for a seamless comparison of the heat islet characteristics across cities that 
represent varying degrees of sprawl or densification. We then assess how the thermal spatial structure relates to 

Figure 1.  World map showing the locations of 78 cities considered in this study. The marker size is 
representative of the city size, and the colour represents their Koppen-Geiger climate classification57. 
Description of Koppen-Geiger climate types are given in Supplementary Table 1.
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the traditional lumped metric, SUHI Intensity. Lastly, we discuss implications for desirable thermal configura-
tions for cities to minimize the area and intensity of the heat islets.

Data acquisition and Clustering technique.  A set of 78 cities encompassing diverse climatological, 
geographical, and cultural backgrounds as well as different realizations of urban form and function were sam-
pled (Fig. 1). The cities selected range from megalopolises such as Guangzhou, London, and New York City with 
a population of over 10 Million and metropolitan areas up to 3000 km2, to smaller cities such as Tbilisi, Bern, 
and Oslo that span less than 100 km2. As a globally standardized dataset of urban extent, the urban land use layer 
of MODIS Land Cover product was used. The exact definition of urban boundaries and city area plays a signif-
icant role in urban scaling laws32. Therefore, a buffer of 5 km in the rural regions was taken to account for the 
peri-urban settlements. However, as the heat islets occur well within the city boundaries, the results were found 
to be independent of the buffer width.

For each city, we selected a cloud-free Landsat image, and derived the LST in the geospatial computing envi-
ronment of Google Earth Engine33 using the methodology described in Walawender et al.34. A complete list of 
Landsat imagery used for every city can be found in the Supplementary Dataset. A novel aspect of our methodol-
ogy is the clustering technique used to characterize the LST. The LST maps are treated analogously to topography 
in Digital Elevation Models (DEM), where the temperatures substitute for elevation35. As the cities belong to 
diverse climatic backgrounds (and hence, different reference temperature)36, percentile-based thermal thresh-
olds were chosen for identifying the relative hottest regions within the urban areas. The areas above each thermal 
threshold were identified, and the connected pixels were grouped into a cluster that we refer to as a heat islet. 
Supplementary Information provides code and text describing the methods in more detail.

Size distribution of Heat Islets
In an exploration of shapes of heat islets, we found consistent self-similar, fractal topography across all cities37 (See 
Supplementary Fig. 1). Here, we focus on their size distribution by building on the scaling laws known for fractal 
surfaces. According to Korčák’s law38, the size distribution of clusters in a fractal topography is expected to follow 
the Pareto distribution, at the percolation threshold39,40. This is mathematically represented as: ∝ β−N a a( )  where 
N is the number of clusters of area, a, and the scaling exponent is β. Expressed as an exceedance probability we 
can write it as:

≥ ∝ ∀ ≥β−P A a a a a( ) , (1)min
1

where, for a given area a, the probability of an islet having an area A larger than a is represented by P, the scaling 
exponent is represented by β, and the minimum area at or above which the power law is valid is represented as 
amin. We use Maximum Likelihood Estimation (MLE) to test for and fit the exceedance probability distributions41 
(See Supplementary Text 3). This process is carried out for multiple thermal thresholds (50th, 60th, …, 90th percen-
tiles). We find that the estimated exponents ranged between 1.6 to 2.2 with a mean β = .1 88. However, for the 
smaller cities ( ≤A 650 kmcity

2), the variability in exponents was much larger (Supplementary Fig. 2). One expla-
nation for this is statistical, wherein for small cities, fewer islets obtained at 90 m resolution results in higher sta-
tistical fluctuations about the mean. As the number of islets increases with city size, larger sample sets are 
obtained, which results in a convergence of the scaling exponent towards the mean. However, from an urban 
growth perspective, this behavior is consistent with several other complex systems that operate within cities31,42. 
For smaller cities, the variability due to factors unrelated to city size, such as diversity of urban form, results in 
more detectable fluctuations. As cities grow in size, the spatial patterns converge due to self-organization43. We, 
therefore, excluded the smaller cities from any further analysis and proceeded with the remaining 49 cities where 
the internal thermal structure could be reliably quantified. For the larger cities, the distributions were well 
described by Eq. 1 with the same mean exponent and a narrow variability (std. dev. = 0.026).

The Pareto size distribution is consistent at lower thresholds for all cities. However, the impact of a dense 
or sprawling spatial organization becomes apparent in how the exceedance probability distributions change as 
the threshold increases. The large metropolitan regions of Lagos and Jakarta are selected as representatives of 
dense cities, whereas Chicago and Guangzhou are chosen to represent sprawling cities (Fig. 2a,b). At 90th per-
centile threshold, Lagos and Jakarta show a pronounced aggregation of heat islets indicative of the dominance 
of a dense urban center, whereas Chicago and Guangzhou are more dispersed (Fig. 2c,d). In agreement with our 
initial hypothesis, Lagos and Jakarta, display a Pareto heat islet size distribution across all the thresholds (Fig. 2e). 
However, for Chicago and Guangzhou, the heat islet size distributions deviate significantly from the Pareto in the 
form of an exponential tempering (Fig. 2f), such that their distributions more closely follow:

≥ ∝ ⋅ ∀ ≥β− − ⋅P A a a e a a( ) , (2)c a
min

1

where c represents the exponential tempering coefficient for each thermal threshold (See Supplementary Table 3 
for the complete set).

Such behavior is explained by invoking percolation theory44,45. Percolation theory is a study of random clus-
ters and their spatial connectivity at a given threshold. The coagulation of dispersed clusters into a contiguous 
component is referred to as percolation, and the largest cluster is identified as the percolating cluster. In fractal 
landscapes, the Pareto size distribution of clusters holds within a finite range (Percolation Transition Range) of 
thresholds, i.e., until the percolating cluster retains its identity. We computed the percolation transition range by 
identifying the inflection points in the size of the largest cluster as a function of temperature threshold (Fig. 2g,h). 
The range was then normalized using the minimum and maximum temperatures for each city such that the range 
is restricted to 0 and 1. We refer to this as the Normalized Percolation Range (NPR) (Supplementary Fig. 3). In 
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the case of the aggregated cities (e.g., Jakarta and Lagos), as the temperature threshold is increased, the largest 
connected islet decreases in size gradually, and the resulting NPR is large (Fig. 2g). Conversely, in the case of 
sprawling cities (e.g., Chicago and Guangzhou), there is a much sharper decrease in the size of the percolating 
cluster (Fig. 2h) resulting in a narrow NPR (Fig. 2i,j). As the 90th percentile thresholds in these cases fall outside 
the NPR (Fig. 2j), exponential tempering is observed.

From the perspective of the size distribution of heat islets alone, fewer and smaller heat islets are captured 
as the thermal threshold is increased. Therefore, an exponential tempering presents a reduced probability of 
encountering large heat islets of higher temperatures. This suggests that a sprawling spatial structure is favorable 
for reducing the size of extreme heat islets. Thus far, we have characterized the size distribution of these islets, 

Figure 2.  Two groups of cities emerge based on the size distributions of heat islets at incremental thermal 
thresholds. Two representative cities for each group - Jakarta, Indonesia, and Lagos, Nigeria for dense cities, 
and Chicago, USA, and Guangzhou, China for sprawling cities - are shown. (a,b) Land Surface Temperature 
map (in °C), (c,d) Heat islets that emerge at the 90th percentile thermal threshold, (e,f) Exceedance probability 
plots for heat islets at several thermal thresholds (50th, …, 90th). Note the leftward shift in size distribution as the 
thresholds increase, especially the exponential tempering evident in sprawling cities, (g,h) Largest islet size, and 
(i,j) sum of remaining islets (as a % of total city area), as a function of thermal threshold. The vertical dashed 
colored lines mark the temperatures corresponding to the percentiles used in (e,f).
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not their spatial organization. We now introduce a metric to quantify and analyze the relationship between the 
spacing of the urban heat islets and the characteristics we observed in their size distributions.

Quantifying Aggregated Versus Dispersed Heat Islets: Lacunarity
A built-up patch in a city acts as a source of increased sensible heat flux, as well as anthropogenic heat flux due 
to human activities such as air-conditioning. Likewise, the colder regions between the patches (also referred to 
as spacing in this work), especially large-scale urban parks and water bodies (such as New York’s Central Park or 
London’s Hyde Park), can help dissipate the excess heat generated. Therefore, characterizing this spacing between 
the urban patches is an essential step towards ameliorating heat stress46. Particularly, the impact of the relative 
sizes and strengths of such sources and sinks on the overall thermal landscape has been relatively understudied 
and requires further investigation. Since the present study focuses on the thermal landscape characterized by LST, 
we can directly quantify the spacing between the identified heat islets. Popular metrics such as root mean square 
distances work well for Gaussian systems, but for fractal landscapes, lacunarity is a better-suited metric of spatial 
structure47.

Lacunarity (Λ) is a scale-dependent measure of the aggregation of spaces between the heat islets47,48. A ‘gliding 
box’ algorithm for the calculation of Λ as a function of box size (r), as described in Plotnick et al.49, was adopted 
here (Methods section). While the absolute values of Λ offer little insight, the appropriate way to interpret lacu-
narity is in the context of the rate of change of Λ as a function of r. If the value of Λlog r( ( )) decreases at any scale 
(quantified with log r( )), the presence of spacing corresponding to that length scale is indicated. The two extremes 
of lacunarity curvature can be best conceptualized as a chessboard-type homogeneous distribution of small-scale 
spacing, and a single contiguous cluster. Essentially, the length scales corresponding to the steepest slopes should 
be interpreted as the dominant scale of spacing.

Figure 3.  (a) Lacunarity curves of 49 cities (in grey) and the four archetype cities (in colour) shown on a log Λ( ) 
vs log(r) plot. The cities with a concave downwards shape in the upper side of the diagonal indicate larger and 
more aggregated gaps, whereas cities underneath the curve indicate a more uniform dispersed pattern of islets 
and smaller gaps. (b) Histogram of Λscore of 49 cities (mean = 0.04, s.d. = 0.38). (c) Scatter plot of percolation 
transition range and Lacunarity score. This figure illustrates the classification of cities into the 2 classes based on 
Lacunarity Score and the type of transition. (d) Scatter plot of Mean Relative Heat Islet Size (AM) versus Λscore. 
Additionally, since the islet-size distribution is heavy tailed, in addition to the AM, the largest islet size (AL, as a 
percentage of the total city area) is indicated using the marker size. The AM and AL serve to illustrate the size 
distribution of the hottest islets occupying the ten percent of the city area.
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As the differences in the spatial organization of heat islets are most apparent at higher temperature thresholds, 
here, we characterize the spatial structure obtained at the 90th percentile of LST for all cities. In other words, the 
total islet area under consideration corresponds to the hottest 10% of the total city area. Lacunarity curves for the 
four representative cities investigated in the previous section are highlighted in Fig. 3. The cities that have an 
abundance of larger spacing between the islets lay above the diagonal. Conversely, a dispersed spatial structure of 
the heat islets manifests as smaller spacing and falls under the diagonal. We assign a single score (Λscore) to the 
convexity of the curves in Fig. 3a such that positive scores indicate larger spacing and vice-versa. This is achieved 
using the following empirical equation:

Λ =



 −






Λ

log r
log r

( ( )) 1
( )

2 (3)10
10

2 score

where constants 1 and 2 are used to fix the end points of the curve at Λ =log r( ( )) 1 and =log r( ) 2, and the expo-
nent, Λscore is scale-independent measure of the shape of the lacunarity curve (See Methods section). The 49 cities 
have Λscore ranging between −0.9 to 0.6, and distributed normally (Fig. 3b; See Supplementary Table 4).

Using Λscore, we compare the relationship between the islet spacing and their NPR (and by extension, likely 
exponential tempering at higher thresholds). We find that the dense cities that are associated with an aggregated 
heat islet structure (positive Λscore) display a larger NPR (≥0.25; Fig. 3c). Whereas, sprawling and disaggregated 
cities (negative Λscore) have a smaller NPR (<0.25; Fig. 3c) and consequently an exponential tempering of the 
Pareto tail (Fig. 2f). An exception to this pattern are cities with a negative Λscore despite having an NPR ≥ 0.25 
(shown in yellow in Fig. 3c). Upon examination, we found these to have a significant river flowing through them. 
Under such a scenario, the percolating heat cluster is divided structurally into two halves by a heat sink (the river), 
irrespective of the threshold (Supplementary Fig. 4). This results in a negative Λscore due to the spacing introduced 
by the river despite an aggregation of heat islets on either side of the river. Thus, Fig. 3c serves to quantitatively 
affirm the correlation between the spatial configuration of cities (dense versus sprawling) and the two classes of 
size distributions of the heat islets.

Note that for any given size distribution, the islets can be spatially arranged in several ways. To examine the 
variability in islet size and spacing of the various cities, we define two scale-independent metrics to characterize 
size: Mean (AM) and Largest (AL) Relative Heat Islet Sizes, calculated as a percentage of the total city area. First, we 
observe that there is a weak positive correlation ( = .R 0 42 ) between AM and spacing of the heat-islets (Fig. 3d). 
This is expected because a positive Λscore as well as a high AM corresponds to dense cities, and a negative Λscore and 
low AM corresponds to sprawling cities. More noteworthy is the horizontal spread about the diagonal in Fig. 3d, 
which reflects the different spatial configurations (characterized by Λscore) that are possible for any given size dis-
tribution. This spread may be explained by AL, which increases with Λscore (illustrated using marker size in Fig. 3d; 
Supplementary Fig. 5). In the bottom-left, both AM and AL are small. This is because negative Λscore corresponds 
to sprawling cities where large clusters were absent in the islet-size distribution (as inferred from the exponential 
tempering of Pareto). In the bottom-right, however, the dominance of the largest aggregated islet results in a 
positive Λscore despite a low AM value. A schematic diagram drawn to represent each of the vertices of this plot is 
given as Supplementary Fig. 6. The phase plot of AM and Λscore may be useful for city planners to gauge the current 
spatial structure of the thermal landscape of their cities and to determine mitigation strategies to achieve a more 
desirable state.

Figure 4.  (a) Empirical pdf of ΔT for the four archetype cities shown on at their 90th percentile thermal 
thresholds, respectively. The same for all 49 cities are shown in grey in the background. Each ΔT distribution 
was well described as an exponential distribution characterized by the parameter: λ. (b) A scatter plot of mean 
SUHI Intensity, defined as the difference between mean urban and rural temperatures versus Lacunarity Score 
(Λscore), is shown. A weak positive correlation ( = .R 0 3442 ) is detected shown as dashed regression line. The 
color, as well as the size of the marker, indicates the inverse of rate parameter (λ) from Eq. 4, which is equal to 
the mean Heat Islet Intensity for each distribution. Increasing size indicates higher temperatures within the heat 
islets.
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Islet Intensity Distribution
We now focus on the heterogeneity of heat contained within the heat islets. To address this, we first use the 
well-known indicator of excess heat in urban areas, the SUHI Intensity in the traditional sense, i.e., the difference 
between the mean urban and rural temperatures50 to evaluate the average excess heat within cities. We find that 
larger Λscore values (representative of aggregated heat islets) tend to be associated with higher SUHI Intensity 
(Fig. 4b). This suggests that sprawling cities, with a larger number of heat sinks to match the heat sources, are a 
better configuration for reducing the overall SUHI Intensity. This is in agreement with our findings based on the 
size distribution of extreme heat islets as well as prior research based on the discontiguity of urban patches 
derived from the National Land Cover Dataset (NLCD) for US cities46.

Traditional estimates of the UHI Intensity that simply use the difference between the mean temperatures over 
an urban area and the surrounding non-urban environment fail to address the intra-urban heterogeneity ade-
quately. For a more comprehensive assessment of the thermal variability within cities, we introduce a novel Heat 
Islet Intensity distribution metric. First, we compute the excess heat (ΔT) for each islet as the difference between 
the mean islet temperature and the threshold temperature. We refer to this term as the Islet Intensity. We find that 
the mean and standard deviation of ΔT were equal (Supplementary Fig. 7) which, along with the shape of its 
distribution (Fig. 4a), were indicative that ΔT is exponentially distributed, i.e.:

Δ ≥ ∝ − λ−P T x e( ) 1 (4)x

where the probability of an islet intensity, ΔT, exceeding a value x is represented by an exponential distribution 
characterized by λ. By extension, 1/λ is the mean islet intensity. Lower values of λ correspond to an increased 
probability of higher temperatures within the islets. Therefore, a single metric, λ can be used as an indicator to 
capture the intra-urban thermal variability across islets. This is represented as the color bar in Fig. 4b.

We find that while cities with a higher degree of sprawl have a lower mean temperature, for the same SUHI 
(Y-axis in Fig. 4b), cities with lower Λscore also experience a higher likelihood of encountering thermal extremes. 
For example, dense cities such as Lagos and Jakarta have a steeper exponential decaying rate than Chicago and 
Guangzhou, which drastically reduces the probability of local thermal extremes within their heat islets. While the 
probability of a heat islet being hotter than their 90th percentile by 1 °C is almost zero for the first two, the likeli-
hood increases to roughly 20% for the latter two (Fig. 4a). As the larger heat islets are often associated with the 
highest islet intensity as well, this can result in significantly large areas of extreme heat, especially for megacities 
like Guangzhou and Chicago. Such a finding reveals that while mean SUHI Intensity decreases with sprawling 
cities, for the same mean, they also experience higher local thermal extremes. This can have drastic heat-related 
health impacts if these local extremes are co-located with the vulnerable populations. As a result, it is essential to 
characterize the thermal heterogeneity within the cities, therefore, in addition to the mean SUHI Intensity, the 
islet intensity distribution can be adopted as a complementary metric.

Summary and Conclusions
Cities grow through a combination of parallel and sequential episodes of expansion and densification. Depending 
on local preferences and constraints, neighborhoods are built with different spatial patterns, for example, from 
dense downtowns to sprawling suburbs. Factors like geographical topography, coastline, and intra-urban com-
muting time constrain expansion, whereas others such as local building laws limit densification. While there are 
several objective functions such as commuting travel time distribution, net carbon emissions, and 
socio-economical factors which urban form and functions are optimized for, here, we focus on the aspect of 
urban heat. More specifically, the spatial heterogeneity of extreme heat islets within urban areas. Towards that, we 
present a novel multi-scale framework that allows us to identify intra-urban heat islets for several thermal thresh-
olds. Using this framework, we evaluate the impact of spatial organization, characterized by a Lacunarity-based 
score. Λscore is calibrated to lie between −1 and 1 corresponding to sprawling and dense configurations of heat 
islets, respectively. However, we do not observe a bi-modal distribution corresponding to the two distinct classes. 
Rather, Λscore was normally distributed around a mean value close to zero, indicating that most cities display a 
balance between sprawl and dense heat islet structure. Different combinations and degrees of expansion and 
densification yield a diverse array of spatial structures between the two extremes.

We then condense the size, spacing, and intensity information about heterogeneous clusters into probabilistic 
distributions that can be described using single scaling exponents. This allows for a seamless comparison of the 
intra-urban heat islet characteristics across cities at several spatial scales ranging from 90 meters (resolution of 
input data and corresponding to several urban blocks) up to a few thousand sq. Km (total area of large cities). We 
implement this framework for 78 globally representative cities to answer the following key questions. First, how 
many and how big are the emergent heat islets at multiple thermal thresholds? Second, how much hotter than the 
threshold are these heat islets? From the size distribution analysis, we demonstrate that islet sizes in dense cities 
follow and maintain a Pareto distribution across all temperature thresholds. In contrast, the sprawling cities show 
an exponential tempering of tails at higher thresholds. Such a tempering is favorable as it indicates a reduced 
emergence of large heat islets in the sprawling and dispersed spatial configurations. Additionally, a dispersed 
configuration results in lower mean SUHI Intensity over the city. On the other hand, from the islet intensity 
distribution analysis, we find that heat islet intensities (ΔT) can be modeled as exponential distributions, where 
dispersed configurations result in higher rate parameters (λ). This implies a significantly higher probability of 
encountering extreme temperatures within the islets. In other words, while a sprawling configuration is favorable 
for reducing the mean temperature of a city, for the same mean SUHI intensity, it results in higher local thermal 
extremes. The implications of this from a design perspective are: (i) While designing sprawling cities, higher 
intra-urban variability should be expected. (ii) With changes in urban morphology, we can attempt to control 
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the precise spatial location of the extreme temperatures such that the intense heat islets do not occur where most 
vulnerable populations reside, such as densely populated downtowns, or areas without access to air-conditioning 
such as urban slums.

Note that LSTs are sensitive to seasonal and diurnal variabilities, as well as observational limitations such as 
time of Landsat overpass. As our methodology simply reflects the organization of LSTs, the metrics are sensitive 
to the variability in LST observations by extension (Supplementary Fig. 8). Furthermore, while the spatial char-
acterization of temperature is informative for urban heat assessments, it does not inform the overall risk to the 
concerned population. Risk is a combination of hazard (i.e., extreme heat-stress in this case, a combination of air 
temperature and humidity51), the time period of exposure to heat stress, and vulnerability. Prior research shows 
that in the absence of hydrological processes, the changes in radiative flux, determined by LST, contribute more 
to the near-surface air temperature changes than the turbulent heat flux52. The developed methodology can be 
extended to air temperature and relative humidity (and by extension, heat stress) datasets as well for improved 
characterization of heat exposure. Similarly, vulnerability assessments will require further input variables describ-
ing demographic factors such as old age, low educational attainment, high poverty levels, poor health, and lack 
of air conditioning8,53,54. An investigation of the spatio-temporal dynamics of risk to extreme heat is beyond the 
scope of the present study, but it certainly warrants further research.

Lastly, our analysis here is limited to the structural heterogeneity of heat sources and sinks, wherein the sizes 
of heat islets are indicative of the strength of the sources, and the length-scale of spacing is indicative of the sink 
strengths. However, as heat capacity, as well as thermal conductivities, are highly heterogeneous in urban areas, 
consideration of the functional heterogeneity will require that we incorporate these variables as well. This could 
be made possible using models such as Weather Research Forecast (WRF)55,56. In such a scenario, instead of LST, 
heat fluxes can be treated as DEM for such an analysis. It may also then be beneficial to study the spatial correla-
tion between source strength and sink strength to evaluate thermal dissipation. To conclude, our work presents 
the first steps toward a multi-scale characterization of the complex intra-urban thermal landscape, and we hope 
that it opens new vistas for future investigations.

Methods
Study area and data sources.  Land surface temperature (LST) data were derived using a Single Channel 
Algorithm as detailed in34 from Landsat 8 at a resolution of 90 m. The geospatial analysis environment of Google 
Earth Engine (GEE) was used to collect data for representative cloud-free days33. R was used for all subsequent 
geospatial analyses. See Supplementary Text S1 and S2 for algorithms and Table S1 for a list of cities and informa-
tion on Landsat scenes used. For coastal cities, the Large Scale International Boundary (LSIB) dataset provided by 
the United States Office of the Geographer was used to crop out the oceans and delineate urban boundaries within 
the GEE environment. The urban areas were estimated using MODIS’s Land Cover Type dataset - MCD12Q1.

Statistical modeling of size and intensity distributions.  For fitting probability distribution func-
tions (pdfs) to cluster size and intensity distributions, a combination of maximum-likelihood estimation (MLE) 
with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios were used41. See 
Supplementary Text S3 for details and Table S2 for results.

Lacunarity.  First, the landscape was sliced at a thermal threshold, and an islets map was obtained. For each 
box size ( < <r A1 city), the number of occupied pixels (islets) was measured. The number of occupied sites was 
referred to as the box mass. The box was then moved one column to the right, and the box mass was again 
counted. This process was repeated over all rows and columns, producing a frequency distribution of the box 
masses. The number of boxes of size r containing S occupied sites were designated by n(S,r) and the total number 
of boxes of size r by N(r). This frequency distribution was converted into a probability distribution: 

=Q S r( , ) n S r
N r
( , )

( )
. Lacunarity is a measure of variability in the calculated occupancy for each box size.

Λ = +r Variance Q S r
Mean Q S r

( ) [ ( , )]
[ ( , )]

1
(5)2

For all cities, the Lacunarity score was calculated only for the 90th percentile thermal threshold. As a result, 
90% of the total area in all cases comprised of spaces, and the Λ r( ) value for box size = 1 was the same for all cities. 
The largest box size taken under consideration was normalized from 0 to 100 to account for the variable sizes of 
cities. Note that the curvature of the Lacunarity curve was unaffected by these transformations.
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