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Abstract
Purpose: Over the last 2 years, the artificial intelligence (AI) community has pre-
sented several automatic screening tools for coronavirus disease 2019 (COVID-
19) based on chest radiography (CXR),with reported accuracies often well over
90%.However, it has been noted that many of these studies have likely suffered
from dataset bias, leading to overly optimistic results. The purpose of this study
was to thoroughly investigate to what extent biases have influenced the perfor-
mance of a range of previously proposed and promising convolutional neural
networks (CNNs), and to determine what performance can be expected with
current CNNs on a realistic and unbiased dataset.
Methods: Five CNNs for COVID-19 positive/negative classification were imple-
mented for evaluation, namely VGG19, ResNet50, InceptionV3, DenseNet201,
and COVID-Net. To perform both internal and cross-dataset evaluations, four
datasets were created. The first dataset Valencian Region Medical Image Bank
(BIMCV) followed strict reverse transcriptase-polymerase chain reaction (RT-
PCR) test criteria and was created from a single reliable open access data-
bank,while the second dataset (COVIDxB8) was created through a combination
of six online CXR repositories. The third and fourth datasets were created by
combining the opposing classes from the BIMCV and COVIDxB8 datasets. To
decrease inter-dataset variability,a pre-processing workflow of resizing,normal-
ization, and histogram equalization were applied to all datasets. Classification
performance was evaluated on unseen test sets using precision and recall. A
qualitative sanity check was performed by evaluating saliency maps displaying
the top 5%,10%,and 20% most salient segments in the input CXRs, to evaluate
whether the CNNs were using relevant information for decision making. In an
additional experiment and to further investigate the origin of potential dataset
bias, all pixel values outside the lungs were set to zero through automatic lung
segmentation before training and testing.
Results: When trained and evaluated on the single online source dataset
(BIMCV), the performance of all CNNs is relatively low (precision: 0.65–0.72,
recall: 0.59–0.71), but remains relatively consistent during external evaluation
(precision:0.58–0.82, recall:0.57–0.72).On the contrary,when trained and inter-
nally evaluated on the combinatory datasets,all CNNs performed well across all
metrics (precision: 0.94–1.00, recall: 0.77–1.00). However, when subsequently
evaluated cross-dataset, results dropped substantially (precision: 0.10–0.61,
recall: 0.04–0.80). For all datasets, saliency maps revealed the CNNs rarely
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focus on areas inside the lungs for their decision-making. However, even when
setting all pixel values outside the lungs to zero,classification performance does
not change and dataset bias remains.
Conclusions: Results in this study confirm that when trained on a combinatory
dataset, CNNs tend to learn the origin of the CXRs rather than the presence or
absence of disease, a behavior known as short-cut learning. The bias is shown
to originate from differences in overall pixel values rather than embedded text or
symbols, despite consistent image pre-processing. When trained on a reliable,
and realistic single-source dataset in which non-lung pixels have been masked,
CNNs currently show limited sensitivity (<70%) for COVID-19 infection in CXR,
questioning their use as a reliable automatic screening tool.
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1 INTRODUCTION

While vaccination programs are being rolled out, coro-
navirus disease 2019 (COVID-19) maintains a strong
grip on society worldwide.1 To limit the infection rate
and avoid overburdening health care facilities, fast and
effective screening and diagnosis remain critical in the
fight against the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2).2

Next to reverse transcriptase-polymerase chain reac-
tion (RT-PCR) testing - the current gold standard for
diagnostic confirmation, both planar chest radiography
(CXR) and computed tomography (CT) have been pro-
posed as diagnostic solutions.3–7 Although the Euro-
pean Society of Radiology and European Society of
Thoracic Imaging strongly advised against the use of
CXR as a first-line diagnostic technique, several early
studies found that patients do present with abnormal-
ities in CXR characteristic of COVID-19.8–10 Together
with the other benefits of this imaging modality, that is,
relatively low cost and radiation dose, wide availability,
speed and portability, these studies have led to the sug-
gestion that CXR might be an ideal candidate for triaging
patients presenting to hospitals, especially in epidemic
areas.11

CXR for COVID-19 diagnosis however still requires
expert radiologists (>10 years of experience) to inter-
pret the images with high specificity, a bottleneck in the
workflow that is both time consuming and costly.12,13 To
overcome this issue, the artificial intelligence (AI) com-
munity has presented numerous machine – and deep
learning (DL)-based image analysis tools that are able
to automatically differentiate between COVID-19 posi-
tive and negative patients based on a single CXR, with
reported accuracies and sensitivities often well over
90%.14–33 One of the first of such networks was COVID-
Net, reaching 93.3% accuracy on the test set of their
publicly available dataset termed COVIDx.34

As large single hospital CXR datasets of both
COVID-19 positive and negative patients are scarce,
researchers looking into these DL methods have often

made use of a combination of publicly available
repositories.35–37 However, this approach can increase
the risk of hidden biases that may lead to overly opti-
mistic results.38–44 The likelihood of such a bias is par-
ticularly high when the data per class originates from
different sources, such as different countries, hospitals,
or imaging systems.45,46 In these cases, underlying dif-
ferences in the image data distributions,due to for exam-
ple a difference in image acquisition parameters, post-
processing operations, or overall patient characteristics
unrelated to COVID-19, might create spurious correla-
tions. Especially when these differences are more obvi-
ous than the COVID-19 disease features, they are likely
to be exploited by the neural network (NN). This phe-
nomenon is known as short-cut learning and hampers
the NNs’ generalization capabilities significantly.47,48

Jabbour et al. for example showed that NNs can
accurately identify patient attributes in CXRs such as
sex and age, and the NNs tend to exploit correlations
between these attributes and the outcome label when
learning to predict a diagnosis, leading to poor per-
formance when such correlations do not hold in the
test population.46 In a study by Kim et al., underlying
differences in dataset distributions of commonly used
COVID-19 CXR datasets were visualized through prin-
cipal component analysis and t-distributed stochastic
neighbor embedding.48 Excellent performance during
internal validation and poor performance in external vali-
dation showed these differences were likely exploited by
the NNs during training. In the same context but by using
state-of -the-art techniques in explainable AI, DeGrave
et al. also showed that NNs are more likely to rely on
confounding factors rather than relevant pathology.47

The aim of this study was to qualitatively and quanti-
tatively investigate to what extent possible dataset bias
has influenced the performance of a range of promis-
ing deep convolutional NNs (CNNs) that were previously
proposed for COVID-19 diagnosis in CXRs. In addi-
tion, through the creation of saliency maps and addi-
tional pre-processing, we aimed to define what exactly
caused the dataset bias in a widely used COVID-19
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CXR dataset, to support the development of bias elim-
ination methods. Finally, we determined what perfor-
mance can be expected with current CNN architectures
on a reliable dataset that carries a low risk of dataset
bias and is publicly available.

2 MATERIALS AND METHODS

Five deep CNNs that were previously proposed
for automatic COVID-19 positive/negative clas-
sification were implemented for evaluation: (1)
VGG19,17,19,49 (2) ResNet50,15,50 (3) InceptionV3,51–53

(4) DenseNet20154–56, and (5) COVID-Net.34 As can be
seen in Table S1, these CNNs cover a broad range of
layers and number of trainable parameters, while also
differing in topology (e.g., skip connections in ResNet50,
parallel connections in InceptionV3, or multiple direct
connections from previous layers in DenseNet201).

Of these five CNNs, only COVID-Net was specifically
designed for COVID-19 detection on CXRs. COVID-
Net was developed as an open-source initiative and
several versions are publicly available including a
binary (COVID-19 positive/negative) and multi-class
(no pneumonia/non-COVID-19 pneumonia/COVID-19
pneumonia) classification network.57 Pre-trained mod-
els are available online, together with several scripts
to pre-process the corresponding dataset and train
and test the network. In this study, COVID-Net for
binary classification was implemented as provided
online without any modifications and the latest pre-
trained model weights (‘COVID-Net-CXR-2′, released
on 20 March 20 2021) were downloaded. CNNs 1–4
were applied as implemented in Keras using the Tensor-
flow backend.58,59 All four networks were pre-trained on
ImageNet and further trained (all layers) on the datasets
described in the next paragraphs. Hyper-parameters
were optimized for each dataset using 20% of the train-
ing sets as validation and early stopping based on the
validation loss was applied.For reproducibility,a detailed
overview of all hyper-parameters is given in Table S1.

To perform both internal and cross-dataset (i.e., mim-
icking external) evaluations to quantify generalizability
and to evaluate the influence of multiple sources in a sin-
gle dataset, four COVID-19 positive/negative datasets
were created as illustrated in Figure 1: (1) Valencian
Region Medical Image Bank (BIMCV), (2) COVIDxB8,
(3) BIMCV+/COVIDx–, and (4) COVIDx+/BIMCV–. The
original datasets from which BIMCV and COVIDxB8
were created represent two of the largest publicly avail-
able datasets of COVID-19 medical images and are
therefore often used in studies investigating DL for auto-
matic COVID-19 diagnosis.

BIMCV was created from a single online source of
CXRs, namely the Medical Imaging Databank in the
BIMCV-COVID-19 dataset which contains both CXRs
as well as CT data.35 CXRs in this dataset originate
from 11 medical centers in the Valencian region (Spain)

and were acquired in the period between 26 February
26 and 18 April 2020. To ensure reliable labeling, only
those CXRs that could be linked to a positive or negative
RT-PCR test performed on the same day, as reported in
the accompanying metadata, were included. Of note is
that the COVID-19 negative class contains both normal
CXRs as well as CXRs of confirmed bacterial or non-
COVID-19 viral pneumonia. Of the BIMCV dataset, 300
COVID-19 positive and 300 negative CXRs (randomly
selected) were set aside for testing, ensuring all images
per patient belonged to a single set.

COVIDxB8 is the latest version of COVIDx; a pub-
licly available dataset created specifically for the devel-
opment of COVID-Net.34 COVIDx is an open-access
benchmark dataset created through the combination
and modification of six online open access data repos-
itories containing CXRs of varying sources. Of note is
that all COVID-19 negative images originate from the
RSNA Pneumonia Detection Challenge, including both
normal, bacterial, and non-COVID-19 viral pneumonia,
while the COVID-19 positive images are collected from
five other online repositories.37 In the latter, both the ori-
gin and how the ground truth label was established are
unspecified for most CXRs. Using the dataset creation
and pre-processing scripts provided on the COVID-Net
project GitHub page, the latest version of the COVIDx
binary dataset was created (both training and test set).57

To avoid class imbalance and to increase the test set
size,200 COVID-19 negative and 26 positive CXRs were
randomly selected from the training set and added to the
test set, resulting in 300 CXRs per class.

The third (BIMCV+/COVIDx–) and fourth
(COVIDx+/BIMCV–) datasets with mixed sources
were created by combining the opposing classes from
the BIMCV and COVIDxB8 datasets, see Figure 1.
Corresponding test sets were created by combining the
respective test set classes.

Both BIMCV and COVIDxB8 contain CXRs in non-
medical image formats (.png and .jpg), different sizes
and different data types (uint8 and uint16). To decrease
inter-dataset variability,all CXRs were pre-processed by
resizing to 512× 512 pixels (smallest image size present
in the original datasets), normalization between 0 and
1, histogram equalization, and conversion to uint8.60

Images were not converted from RGB to grayscale as
all CNNs require 3-channel input. Figure S1 illustrates
the different datasets after pre-processing.

Evaluation of the classification performance of each
CNN was performed internally (i.e., test set with the
same origin as the training set) and cross-dataset (i.e.,
test set with different origin as the training set), as illus-
trated in Figure 1. To quantify the classification perfor-
mance, precision (= positive predictive value) and recall
(= sensitivity) at a fixed classification threshold of 50%
probability were calculated. Further, as high sensitivity
for COVID-19 infection is desirable in a screening sce-
nario, precision at 90% recall was also determined for
each dataset for CNNs 1–4.
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F IGURE 1 Illustration of the four different datasets with chest radiography (CXRs) of coronavirus disease 2019 (COVID-19)-positive
(COVID +) and -negative (COVID–) patients, including the number of CXRs per class used for training and testing (left), together with a
schematic overview of the methodology (right)

Lastly, to increase the understanding of the CNNs
decision-making, saliency maps that link the CNN clas-
sification outcome to the areas in the input image that
had the most impact on that outcome were created.61–64

Through this attribution method, a qualitative sanity
check can be performed by evaluating whether the
high-impact areas correspond to relevant areas inside
the lung as opposed to improper information in the
images (e.g., areas outside the lung, embedded sym-
bols, etc.). XRAI, a region-based attribution method
based on Integrated Gradients was applied and saliency
maps showing the most salient segments (top 5%, 10%,
and 20%) of each CXR were visualized and qualitatively
evaluated.65,66 Further, in an additional experiment, the
pixel values outside the lungs were set to zero through
automatic lung segmentation, using a U-Net CNN, on
all CXRs before training and testing. As such, the CNNs
were forced to use only relevant parts of the anatomy
and could not rely on embedded text or symbols which
are typically present outside the lungs. This is to further
investigate the source of possible dataset bias and a
potential solution.

3 RESULTS

Table 1 displays the performance of each CNN for all
datasets and both the internal and cross-dataset eval-
uations. When trained and tested on BIMCV, precision,
and recall of all the CNNs are relatively low,ranging from
0.65 to 0.72 and from 0.59 to 0.71, respectively. This

performance varies slightly in the cross-dataset evalu-
ation on the test set of COVIDxB8, with precision and
recall ranging from 0.58 to 0.82 and from 0.57 to 0.72,
respectively. When trained and tested on COVIDxB8, all
CNNs reached the highest precision (≥0.96) and rela-
tively high sensitivity (range: 0.77–0.85). However, when
subsequently evaluated cross-dataset on the test set of
BIMCV, precision, and recall of all the CNNs decreased
substantially ranging from 0.55 to 0.61 and from 0.41 to
0.55, respectively.

Similar results to those obtained with COVIDxB8 were
obtained for all CNNs when trained on one of the
other combinatory datasets (e.g., BIMCV+/COVIDx–
and COVIDx+/BIMCV–). Moreover, it can be observed
that when a CNN is trained on BIMCV+/COVIDx– and
evaluated cross-dataset on COVIDx+/BIMCV– (or vice
versa), that is, when the origin of the two classes is
switched between training and testing, CNNs perform
worse than if classification would have occurred at ran-
dom, with sensitivities ranging only from 0.04 to 0.08
(indicated in bold in Table 1).These results strongly sug-
gest that when trained on a dataset in which the classes
originate from different (online) sources, the CNNs learn
confounding factors related to the data source rather
than medically relevant pathology in the CXRs.

Table S2 lists the classification precision that will
be obtained with CNNs 1–4 when 90% sensitivity for
COVID-19 positive detection is required. A similar trend
in results as with the previous metrics can be observed
across the different datasets and for all CNNs.Large dis-
crepancies exist between the internal and cross-dataset
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TABLE 1 Coronavirus disease 2019 (COVID-19) positive precision/recall obtained on the unseen test set of each dataset in both the
internal (grey shading) and cross-dataset evaluation. BIMCV+/COVIDx– and COVIDx+/BIMCV– were created by combining the opposing
classes from the Valencian Region Medical Image Bank (BIMCV) and COVIDxB8 datasets. Numbers in bold indicate the particularly poor
performance when the origin of the two classes is reversed between training and testing

Training set
Test set
BIMCV COVIDxB8

BIMCV+
/COVIDx–

COVIDx+
/BIMCV–

1. VGG19 BIMCV 0.72/0.71 0.58/0.72 – –

COVIDxB8 0.56/0.44 0.98/0.85 – –

BIMCV+/COVIDx-
– – 0.98/0.99 0.30/0.42

COVIDx+/BIMCV-
– – 0.10/0.05 1.00/0.94

2. ResNet50 BIMCV 0.74/0.66 0.58/0.62 – –

COVIDxB8 0.61/0.48 0.98/0.77 – –

BIMCV+/COVIDx-
– – 0.96/0.98 0.38/0.58

COVIDx+/BIMCV-
– – 0.32/0.08 0.98/0.85

3. InceptionV3 BIMCV 0.65/0.65 0.63/0.63 – –

COVIDxB8 0.60/0.55 0.98/0.84 – –

BIMCV+/COVIDx-
– – 0.95/0.98 0.40/0.65

COVIDx+/BIMCV-
– – 0.16/0.04 0.99/0.84

4. DenseNet201 BIMCV 0.76/0.59 0.82/0.57 – –

COVIDxB8 0.58/0.55 0.96/0.87 – –

BIMCV+/COVIDx-
– – 0.94/1.00 0.44/0.80

COVIDx+/BIMCV-
– – 0.13/0.04 1.00/0.84

5. COVID-Net COVIDxB8 0.55/0.41 0.99/0.77 – –

evaluations when CNNs are trained on a combina-
tory dataset, while more consistent results are obtained
when trained on BIMCV. However, as precision values
range between 0.51 and 0.58 in the cross-dataset eval-
uation, the automatic screening performance currently
seems below clinical utility.

Next to the quantitative results, a qualitative sanity
check was performed by visualizing saliency maps that
link the CNNs classification outcome to the most impact-
ful segments in the input CXR. Figures 2 (BIMCV) and 3
(COVIDxB8) visualize the top 10% most salient seg-
ments for four representative examples from the internal
test sets. Other examples of the top 5% and 20% most
salient segments can be found in Figures S2–S5.

For both BIMCV and COVIDxB8, it can be observed
that often the most impactful regions used for decision

making do not correspond with COVID-19 lesions and
are frequently located outside the lungs. Further, areas,
where embedded text and/or symbols can be present,
are often part of the top salient segments. Figures 2
and 3 also show that despite similar numerical results,
large discrepancies exist in the most salient segments
between the different CNNs.

When CXR pixels outside the lungs are masked
before training and testing, the classification perfor-
mance of CNNs 1–4 when trained on COVIDxB8
does not change (Table 2 vs. Table 1). This indicates
the dataset bias remains and is due to differences
in overall intensities (e.g., contrast, noise, etc.), rather
than embedded symbols or text. For BIMCV and all
evaluated CNNs, masking irrelevant parts of the CXRs
led to more consistent results between internal and
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F IGURE 2 Four representative examples (two coronavirus disease 2019 [COVID-19] positive, two COVID-19 negative) of the saliency
maps obtained for convolutional neural network (CNN) 1–4 trained on the Valencian Region Medical Image Bank (BIMCV) dataset, showing the
most salient segments (top 10%, in green). All images originate from the BIMCV test set. Chest radiography (CXRs) delineated in red were
misclassified

cross-dataset evaluation, but performance remains
relatively low (cross-dataset sensitivity <0.70).

4 DISCUSSION

The evaluation of five distinct CNNs that were previously
proposed for automatic COVID-19 diagnosis on CXR
showed quantitative results that were highly dependent
on the applied dataset (Table 1). Moreover, all CNNs
failed a qualitative sanity check on all datasets, despite
consistent performance between internal and external
evaluation when trained on the single-source dataset
(Figures 2 and 3).

The five CNNs evaluated in this study were selected to
represent a broad range of trainable parameters, num-
ber of layers,and topologies (Table S1).However,before
discussing the results it should be noted that there is
no certainty the results obtained with these models are
representative of all NN architectures. Similarly, the two
datasets selected for this study,while representing some
of the most used publicly available datasets on the topic,
might not be representative for all datasets.

Quantitatively, all CNNs showed similar performance
(Table 1). However, an extensive evaluation of COVID-
Net is limited as only pre-trained models are avail-
able. While the network performs well when trained and
tested on the COVIDxB8 dataset, the quality of the lat-
ter is questionable. Large discrepancies between inter-
nal and cross-dataset evaluations,seen with each of the
five CNNs, indicate the CNNs are able to learn other pat-
terns in the dataset that distinguishes the two classes,
but that is not related to the presence of COVID-19
infection. These results persist even when pixels out-
side the lungs are masked before training and testing,
despite an identical pre-processing workflow in which
the image intensities are normalized and spread out
homogeneously over a fixed intensity interval through
histogram equalization.

Tartaglione et al. previously warned for possible hid-
den bias when combining different datasets, noting
that NNs might find spurious correlations in different
imaging parameters between datasets instead of look-
ing at the actual disease.40 The latter was also con-
firmed by Maguolo and Nanni, who showed deep NNs
could still identify the origin of the CXRs while the lung
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F IGURE 3 Four representative examples (two coronavirus disease 2019 [COVID-19] positive and two COVID-19 negative) of the saliency
maps obtained for convolutional neural network (CNN) 1–4 trained on the COVIDxB8 dataset, showing the most salient segments (top 10%, in
green). All images originate from the COVIDxB8 test set and were correctly classified by each network

TABLE 2 Coronavirus disease 2019 (COVID-19) positive
precision/recall obtained on the unseen test set of each dataset, in
both the internal (grey shading) and cross-dataset evaluation, when
pixels outside the lungs are masked before training and testing

Test set

Training set BIMCV COVIDxB8

1. VGG19 BIMCV 0.68/0.65 0.68/0.69

COVIDxB8 0.61/0.43 0.97/0.80

2. ResNet50 BIMCV 0.67/0.71 0.67/0.64

COVIDxB8 0.63/0.64 0.97/0.87

3. InceptionV3 BIMCV 0.65 / 0.64 0.66/0.60

COVIDxB8 0.61/0.51 0.98/0.80

4. DenseNet201 BIMCV 0.69/0.56 0.82/0.57

COVIDxB8 0.63/0.71 0.95/0.86

Abbreviation: BIMCV, Valencian Region Medical Image Bank.

regions were excluded from the images.67 Of interest,
the dataset of CXRs used by Maguolo and Nanni is
included in COVIDxB8. The presence of a hidden bias
is further confirmed by the cross-dataset evaluation of

datasets 3 and 4 in this study, showing that the CNNs
continue to classify images according to the dataset
they belong to, instead of the presence or absence of
disease (Table 1, numbers in bold). A qualitative sanity
check through the use of saliency maps also confirms
the CNNs decision-making is largely based on regions
outside the lung, including but not limited to embed-
ded text and/or symbols, instead of COVID-19 lesions
or healthy lung tissue (Figures 2 and 3).

Although the authors of COVID-Net have also used an
explainability approach and their qualitative results indi-
cated COVID-Net often used relevant areas in the CXR
for decision making, results in the current study indicate
a quantitative external validation remains crucial.68,69 It
is therefore recommended to limit the use of COVIDx
and other combinatory datasets in their current form -
pending novel pre-processing techniques that are able
to robustly eliminate dataset bias and to interpret the
results of models trained on such datasets with care.70

By creating a relatively large dataset from a single
online source,the aim of the BIMCV dataset was to elim-
inate this bias and obtain more realistic results. Further,



AUTOMATIC COVID-19 DIAGNOSIS BASED ON CHEST RADIOGRAPHY AND DEEP LEARNING 985

by adhering to a strict RT-PCR ground-truth for each
CXR, a dataset with highly reliable labels was created.
However, it has to be taken into account that the RT-
PCR test has high specificity but a moderate sensitivity
rate, and so an unknown percentage of false negatives
might still be present in the final dataset.71,72 The latter
represents an almost unavoidable obstacle in the (semi-
)automatic creation of very large COVID-19 datasets
required for DL unless a reliable amount of additional
and structured metadata is available on the patient’s
symptoms and follow-up tests.73

Further, by adhering only to RT-PCR criteria, the
BIMCV dataset likely contains a percentage of mild
COVID-19 positive cases with limited symptoms and
no radiological signs.74 This might partly explain the
lower COVID-19 classification performance obtained in
this study on BIMCV compared to similar studies on
other datasets. However, we believe BIMCV represents
a clinically realistic scenario when applying CXR for
screening and diagnosis, as not all patients will present
with severe COVID-19 pneumonia. This however also
implies that automatic COVID-19 diagnosis using CXR
and DL has limited sensitivity (range:0.59–0.71), in com-
bination with low specificity (range: 0.56–0.76). Further-
more, a qualitative sanity check revealed the NNs do
not focus on relevant information in the CXRs. These
results indicate that a quantitative external validation
alone might not be sufficient to ensure a NN relies
on medically relevant pathology, as also concluded by
DeGrave et al.47 By segmenting the lung regions as an
additional pre-processing step before feeding the CXRs
to the classification networks, CNNs were forced to look
at relevant parts of the anatomy only and generaliz-
ability improved slightly. However, COVID-19 sensitiv-
ity and precision remained below 70%. As the BIMCV
dataset is publicly available, the pre-processing steps
mentioned in this study, including lung segmentation,
can be followed to create a relatively large and reli-
able dataset with a low risk of bias for further CNN
development.

Improvements can be expected through a number of
approaches such as the optimization of NN architec-
tures and/or the incorporation of clinical patient fea-
tures such as COVID-19 specific symptoms in the final
NN decision making.75,76 Additional improvements can
be expected from the availability of more standardized,
large-scale, and qualitative datasets, provided in med-
ical image standards such as DICOM so differences
in overall intensity values (e.g., contrast, noise, etc.)
can be eliminated. In addition, novel data augmentation
techniques such as those using generative adversar-
ial networks to simulate pathology in existing CXRs or
render completely synthetic CXRs could create larger
and more balanced datasets.77–79 Another approach is
presented by Ahmed et al., who propose fine-tuning
on unseen data to improve the performance at a new
site.80

5 CONCLUSIONS

Over the last 2 years, the AI community has presented
several automatic screening tools for COVID-19 based
on CXR, with reported accuracies often well over 90%.
However, it has been noted that many of these studies
have likely suffered from dataset bias, leading to overly
optimistic results. This study confirms that when trained
on a combinatory dataset, CNNs tend to learn the ori-
gin of the CXRs rather than the presence or absence
of disease, a behavior known as short-cut learning.
The bias is shown to originate from differences in over-
all pixel values rather than embedded text or symbols,
despite consistent image pre-processing. When trained
on a reliable,and realistic single-source dataset in which
non-lung pixels have been masked, CNNs currently
show limited sensitivity (<70%) for COVID-19 infection
in CXR.

ACKNOWLEDGMENT
This research was funded by Health–Holland, Top Sec-
tor Life Sciences & Health (grant TKI-LSH-T2019-
SmART-DETeCT).

CONFL ICT OF INTEREST
The authors declare that they have no conflict of interest.

DATA AVAILABIL ITY STATEMENT
The data that support the findings of this study are avail-
able in the following repositories in the public domain:

BIMCV-COVID19: https://bimcv.cipf.es/bimcv-
projects/bimcv-covid19/

COVIDx: https://github.com/lindawangg/COVID-Net/
blob/master/docs/COVIDx.md

REFERENCES
1. World Health Organization. Coronavirus disease (COVID-19)

weekly epidemiological update and weekly operational update.
Coronavirus disease (COVID-2019) situation reports 2020.
Accessed February 29, 2020. https://www.who.int/emergencies/
diseases/novel-coronavirus-2019/situation-reports

2. Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagno-
sis and management: a comprehensive review. J Intern Med.
2020;288:192-206.

3. Tang YW,Schmitz JE,Persing DH,Stratton CW.Laboratory diag-
nosis of COVID-19: current issues and challenges. J Clin Micro-
biol. 2020;58:6.

4. Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID-
19: comparison to RT-PCR. Radiology. 2020;296:2.

5. Cleverley J, Piper J, Jones MM. The role of chest radiography in
confirming covid-19 pneumonia. BMJ. 2020;370:m2426.

6. Kanne JP, Bai H, Bernheim A, et al. COVID-19 imaging: what we
know now and what remains unknown. Radiology. 2021;299:3.

7. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for
typical coronavirus disease 2019 (COVID-19) pneumonia: rela-
tionship to negative RT-PCR testing. Radiology. 2020;296:2.

8. Revel MP, Parkar AP, Prosch H, et al. COVID-19 patients and
the radiology department – advice from the European Society of
Radiology (ESR) and the European Society of Thoracic Imaging
(ESTI). Eur Radiol. 2020;30:4903-4909.

https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports


986 AUTOMATIC COVID-19 DIAGNOSIS BASED ON CHEST RADIOGRAPHY AND DEEP LEARNING

9. Hui TCH,Khoo HW,Young BE,et al.Clinical utility of chest radiog-
raphy for severe COVID-19. Quant Imaging Med Surg. 2020;10:7.

10. Wong HYF,Lam HYS,Fong AHT,et al.Frequency and distribution
of chest radiographic findings in patients positive for COVID-19.
Radiology. 2020;296:2.

11. Roy Choudhury SH, Shahi PK, Sharma S, Dhar R. Utility of
chest radiography on admission for initial triaging of COVID-
19 in symptomatic patients. ERJ Open Res. 2020;6:00357-
02020.

12. Stogiannos N, Fotopoulos D, Woznitza N, Malamateniou C.
COVID-19 in the radiology department:what radiographers need
to know. Radiography. 2020;26:254-263.

13. Cozzi A, Schiaffino S, Arpaia F, et al. Chest X-ray in the COVID-
19 pandemic: radiologists’ real-world reader performance. Eur J
Radiol.

14. Hemdan EED, Shouman MA, Karar ME. COVIDX-Net: a frame-
work of deep learning classifiers to diagnose COVID-19 in X-ray
images. arXiv. Published online March 24, 2020.

15. Farooq M, Hafeez A. COVID-ResNet: a deep learning framework
for screening of COVID19 from radiographs. arXiv. Published
online March 31, 2020.

16. Zhang R, Guo Z, Sun Y, et al. COVID19XrayNet: a two-step
transfer learning model for the COVID-19 detecting problem
based on a limited number of chest X-ray images. Interdiscip Sci.
2020;12:555-565.

17. Heidari M, Mirniaharikandehei S, Khuzani AZ, Danala G, Qiu Y,
Zheng B. Improving the performance of CNN to predict the likeli-
hood of COVID-19 using chest X-ray images with preprocessing
algorithms. Int J Med Inform. 2020;144:104284.

18. Kana EBG, Kana MGZ, Kana AFD, Kenfack RHA. A web-based
diagnostic tool for COVID-19 using machine learning on chest
radiographs (CXR). medRxiv. Published online April 24, 2020.
https://doi.org/10.1101/2020.04.21.20063263

19. Zokaeinikoo M,Kazemian P,Mitra P,Kumara S.AIDCOV:an inter-
pretable artificial intelligence model for detection of COVID-19
from chest radiography images. medRxiv. Published online June
29, 2020. https://doi.org/10.1101/2020.05.24.20111922

20. Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA,
Mahbub ZB, Islam KR, Khan MS, Iqbal A, Emadi NA, Reaz MBI,
Islam MT. Can AI Help in Screening Viral and COVID-19 Pneu-
monia? IEEE Access. 2020;8:132665-132676. https://doi.org/10.
1109/access.2020.3010287

21. Karim MR,Dohmen T,Cochez M,Beyan O,Rebholz-Schuhmann
D, Decker S. DeepCOVIDExplainer: explainable COVID-19 diag-
nosis from chest X-ray images: Proceedings of 2020 IEEE Inter-
national Conference on Bioinformatics and Biomedicine, Seoul,
Korea, 16–19 December 2020. IEEE; 2020. https://doi.org/10.
1109/BIBM49941.2020.9313304

22. de Moura J, García LR, Lizancos Vidal PF, et al. Deep convo-
lutional approaches for the analysis of Covid-19 using chest X-
ray images from portable devices. IEEE Access. 2020;8:195594-
195607.

23. Li X, Zhu D. COVID-Xpert: an AI powered population screen-
ing of COVID-19 cases using chest radiography images
arXiv. Published online April 6, 2020. https://doi.org/arXiv/2004
.03042v3

24. Apostolopoulos ID,Mpesiana TA.COVID-19:automatic detection
from X-ray images utilizing transfer learning with convolutional
neural networks. Phys Eng Sci Med. 2020;43:635-640.

25. Yasar H, Ceylan M. A new deep learning pipeline to detect
COVID-19 on chest X-ray images using local binary pattern, dual
tree complex wavelet transform and convolutional neural net-
works. Appl Intell. 2021;51:2740-2763.

26. Mahmud T, MdA Rahman, Fattah SA. CovXNet: a multi-dilation
convolutional neural network for automatic COVID-19 and other
pneumonia detection from chest X-ray images with transfer-
able multi-receptive feature optimization. Comput Biol Med.
2020;122:103869.

27. Khan AI, Shah JL, Bhat MM. CoroNet: a deep neural network for
detection and diagnosis of COVID-19 from chest X-ray images.
Comput Methods Programs Biomed. 2020;196:105581.

28. Toraman S, Alakus TB, Turkoglu I. Convolutional capsnet: a novel
artificial neural network approach to detect COVID-19 disease
from X-ray images using capsule networks. Chaos Solitons Frac-
tals. 2020;140:110122.

29. Tuncer T, Dogan S, Ozyurt F. An automated residual exem-
plar local binary pattern and iterative relief based corona detec-
tion method using lung X-ray image. Chemom Intell Lab Syst.
2020;203:104054.

30. Elaziz MA, Hosny KM, Salah A, et al. New machine learning
method for image based diagnosis of COVID-19. PLoS ONE.
2020;15(6):e0235187.

31. Ozturk T, Talo M, Yildrim EA, et al. Automated detection of
COVID-19 cases using deep neural networks with X-ray images.
Comput Biol Med. 2020;121:103792.

32. Vaid S, Kalantar R, Bhandari M. Deep learning COVID-19 detec-
tion bias: accuracy through artificial intelligence. Int Orthop.
2020;44:1539-1542.

33. Panwar H, Gupta PK, Siddiqui MK, et al. Application of deep
learning for fast detection of COVID-19 in X-rays using nCOV-
net. Chaos Solitons Fractals. 2020;138:109944.

34. Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep con-
volutional neural network design for detection of COVID-
19 cases from chest X-ray images. Sci Rep. 2020;10:
19549.

35. Vayá M de la I, Saborit JM, Montell JA, et al. BIMCV COVID-19+:
a large annotated dataset of RX and CT images from COVID-
19 patients. arXiv. Published online June 1, 2020. https://doi.org/
arXiv:2006.01174v3

36. Tsai EB, Simpson S, Lungren MP, et al. The RSNA interna-
tional COVID-19 open radiology database (RICORD). Radiology.
2021;299(1):E204-E213.

37. Mooney P. Chest X-ray images (pneumonia). Kaggle. March 22,
2018. https://www.kaggle.com/paultimothymooney/chest-xray-
pneumonia

38. Tommasi T, Patricia N, Caputo B, Tuytelaars T. A deeper look at
dataset bias. In: Csurka G, ed. Domain Adaptation in Computer
Vision Applications. Springer; 2017:37-55.

39. Torralba A, Efros AA. Unbiased look at dataset bias: Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Colorado Springs, Colorado, 20–
25 June 2011. IEEE Computer Society; 2011. https://doi.org/10.
1109/CVPR.2011.5995347

40. Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto
M. Unveiling COVID-19 from chest X-ray with deep learning: a
hurdles race with small data. Int J Environ Res Public Health.
2020;17(18):6933.

41. Roberts M,Driggs D,Thorpe M,et al.Common pitfalls and recom-
mendations for using machine learning to detect and prognosti-
cate for COVID-19 using chest radiographs and CT scans. Nat
Mach Intell. 2021;3:199-217.

42. Wynants L, Van Calster B, Collins GS, et al. Prediction models
for diagnosis and prognosis of covid-19: systematic review and
critical appraisal. BMJ. 2020:369:m1328

43. Garcia B, Cruz S, Nicolás Bossa M, Sölter J, Husch AD.
Public COVID-19 X-ray datasets and their impact on model
bias - a systematic review of a significant problem. medRxiv.
2021;74:102225.

44. Tizhoosh HR, Fratesi J. COVID-19, AI enthusiasts, and
toy datasets: radiology without radiologists. Eur Radiol.
2021;31:3553-3554. bib>

45. Geirhos R, Jacobsen JH, Michaelis C, et al. Shortcut learning in
deep neural networks. NatMach Intell. 2020;2:665-673.bib>

46. Jabbour S, Fouhey D, Kazerooni E, Sjoding MW, Wiens J. Deep
learning applied to chest X-rays: exploiting and preventing short-
cuts. In: Doshi-Velez F, Fackler J, Jung K, eds. Proceedings of

https://doi.org/10.1101/2020.04.21.20063263
https://doi.org/10.1101/2020.05.24.20111922
https://doi.org/10.1109/access.2020.3010287
https://doi.org/10.1109/access.2020.3010287
https://doi.org/10.1109/BIBM49941.2020.9313304
https://doi.org/10.1109/BIBM49941.2020.9313304
https://arXiv/2004.03042v3
https://arXiv/2004.03042v3
https://arXiv.org/2006.01174v3
https://arXiv.org/2006.01174v3
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.1109/CVPR.2011.5995347


AUTOMATIC COVID-19 DIAGNOSIS BASED ON CHEST RADIOGRAPHY AND DEEP LEARNING 987

the 5th Machine Learning for Healthcare Conference. . PMLR;
2020:750-782.

47. DeGrave AJ, Janizek JD, Lee SI. AI for radiographic COVID-
19 detection selects shortcuts over signal. Nat Mach Intell.
2021;3:610-619.

48. Kim GY, Kim JY, Kim CH, Kim SM. Evaluation of deep learning
for COVID-19 diagnosis: impact of image dataset organization. J
Appl Clin Med Phys. 2021;22(7):297-305.

49. Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition: 3rd International Conference on
Learning Representations,San Diego,7–9 May 2015.ICLR;2015.

50. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition: Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, Las Vegas,
NV,27–30 June 2016. IEEE;2016.https://doi.org/10.1109/CVPR.
2016.90

51. Asif S,Wenhui Y,Jin H,Jinhai S.Classification of COVID-19 from
chest X-ray images using deep convolutional neural network:
2020 IEEE 6th International Conference on Computer and Com-
munications, Chengdu, China, 11–14th December 2020. IEEE;
2020. https://doi.org/10.1109/ICCC51575.2020.9344870

52. Das D, Santosh KC, Pal U. Truncated inception net: cOVID-
19 outbreak screening using chest X-rays. Phys Eng Sci Med.
2020;43:915-925.

53. Jain R, Gupta M, Taneja S, Hemanth DJ. Deep learning based
detection and analysis of COVID-19 on chest X-ray images.Appl
Intell. 2021;51:1690-1700.

54. Minaee S, Kafieh R, Sonka M, Yazdani S, Jamalipour Soufi G.
Deep-COVID: predicting COVID-19 from chest X-ray images
using deep transfer learning. Med Image Anal. 2020;65:
101794.

55. Feng Y, Qiu D, Cao H, Zhang J, Xin Z, Liu J. Research on coro-
navirus disease 2019 (COVID-19) detection method based on
depthwise separable DenseNet in chest X-ray images.Sheng Wu
Yi Xue Gong Cheng Xue Za Zhi. 2020;37(4):557-565.

56. Montalbo FJP. Diagnosing COVID-19 chest x-rays with a
lightweight truncated DenseNet with partial layer freezing and
feature fusion. Biomed Signal Process Control. 2021;8:101408.

57. Wang L,Lin ZQ,Wong A.COVID-Net.Published online November
11, 2020. https://github.com/lindawangg/COVID-Net

58. Abadi M, Barham P, Chen J, et al. TensorFlow: a system for
large-scale machine learning: Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation,
Savannah, GA, 2–4 November 2016. USENIX Association; 2016.

59. Chollet F. Keras: the Python deep learning library. Astrophysics
Source Code Library; 2015.

60. Bradski G. The OpenCV Library. Dr Dobb’s J Softw Tools.
2000;11:120-123.

61. Zeiler MD, Fergus R. Visualizing and understanding convolu-
tional networks. In: Norman G, Sanders WH, Vicario E, eds. Lec-
ture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics). Springer-Verlag; 2014:818-833.

62. Ancona M, Ceolini E, Öztireli C, Gross M. Towards better under-
standing of gradient-based attribution methods for deep neural
networks: 6th International Conference on Learning Represen-
tations, ICLR 2018 - Conference Track Proceedings, Vancouver,
BC, 30 April–3 May 2018. IEEE; 2018.

63. Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K,
Müller KR. How to explain individual classification decisions. J
Mach Learn Res. 2010;11:1803-1831.

64. Kindermans PJ, Hooker S, Adebayo J, et al. The (Un)reliability of
saliency methods. In: Samek W, Montavon G, Vedaldi A, Hansen
LK, Müller K-R, eds. Lecture Notes in Computer Science (Includ-
ing Subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). Springer International Publishing;
2019.

65. Kapishnikov A, Bolukbasi T, Viegas F, Terry M. XRAI: better attri-
butions through regions: Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Korea, 27–28 October
2019. IEEE; 2019. https://doi.org/10.1109/ICCV.2019.00505

66. Sundararajan M,Taly A,Yan Q.Axiomatic attribution for deep net-
works: 34th International Conference on Machine Learning, Syd-
ney, Australia, 6–11 August 2017. JMLR; 2017.

67. Maguolo G,Nanni L.A critic evaluation of methods for COVID-19
automatic detection from X-ray images. Inf Fusion. 2021;76:1–7.

68. Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability
for artificial intelligence in healthcare:a multidisciplinary perspec-
tive. BMC Med Inform Decis Mak. 2020;20(1):310.

69. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causabil-
ity and explainability of artificial intelligence in medicine. Wiley
Interdiscip Rev Data Min Knowl Discov. 2019;9(4):e1312.

70. Robinson C, Trivedi A, Blazes M, et al. Deep learning models for
COVID-19 chest x-ray classification:preventing shortcut learning
using feature disentanglement.medRxiv.Published online Febru-
ary 13, 2021. https://doi.org/10.1101/2021.02.11.20196766

71. Kim H, Hong H, Ho Yoon S. Diagnostic performance of ct and
reverse transcriptase polymerase chain reaction for coronavirus
disease 2019: a meta-analysis. Radiology. 2020;96:3.

72. Padhye NS. Reconstructed diagnostic sensitivity and specificity
of the RT-PCR test for COVID-19. medRxiv. Published online
April 29, 2020. https://doi.org/10.1101/2020.04.24.20078949

73. Naudé W. Artificial intelligence vs COVID-19: limitations, con-
straints and pitfalls. AI Soc. 2020;35:761-765.

74. de Farias Lde PG, Fonseca EKUN, Strabelli DG, et al. Imaging
findings in COVID-19 pneumonia. Clinics. 2020;75:e2027.

75. Xia Y, Chen W, Ren H, et al. A rapid screening classifier for diag-
nosing COVID-19. Int J Biol Sci. 2021;17(2):539-548.

76. Chen X, Tang Y, Mo Y, et al. A diagnostic model for coronavirus
disease 2019 (COVID-19) based on radiological semantic and
clinical features: a multi-center study. Eur Radiol. 2020;30:4893-
4902.

77. Salehinejad H,Colak E,Dowdell T,Barfett J,Valaee S.Synthesiz-
ing chest X-ray pathology for training deep convolutional neural
networks. IEEE Trans Med Imaging. 2019;38:1197-1206.

78. Bhagat V,Bhaumik S,Data augmentation using generative adver-
sarial networks for pneumonia classification in chest X-rays: Pro-
ceedings of the 2019 Fifth International Conference on Image
Information Processing, Shimla, India, 15-17 November 2019.
IEEE; 2019. https://doi.org/10.1109/ICIIP47207.2019.8985892

79. Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro
PR.CovidGAN:data augmentation using auxiliary classifier GAN
for improved COVID-19 detection. IEEE Access. 2020;8:91916-
91923.

80. Ahmed KB, Goldgof GM, Paul R, et al. Discovery of a general-
ization gap of convolution neural networks on COVID-19 X-rays
classification. IEEE Access. 2021;9:72970-72979.

SUPPORTI NG I NFORMATI ON
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Dhont J, Wolfs C,
Verhaegen F. Automatic COVID-19 diagnosis
based on chest radiography and deep learning –
Success story or dataset bias? Med Phys.
2022;49:978-987.
https://doi.org/10.1002/mp.15419

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCC51575.2020.9344870
https://github.com/lindawangg/COVID-Net
https://doi.org/10.1109/ICCV.2019.00505
https://doi.org/10.1101/2021.02.11.20196766
https://doi.org/10.1101/2020.04.24.20078949
https://doi.org/10.1109/ICIIP47207.2019.8985892
https://doi.org/10.1002/mp.15419

	Automatic coronavirus disease 2019 diagnosis based on chest radiography and deep learning - Success story or dataset bias?
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	3 | RESULTS
	4 | DISCUSSION
	5 | CONCLUSIONS
	ACKNOWLEDGMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES
	SUPPORTING INFORMATION


