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Abstract: Extracellular vesicles (EVs) are a heterogeneous group of membrane-limited 
vesicles and multi-signal messengers loaded with biomolecules. Exosomes and ectosomes 
are two different types of EVs generated by all cell types. Their formation depends on local 
microdomains assembled in endocytic membranes for exosomes and in the plasma mem-
brane for ectosomes. Further, EV release is a fundamental process required for intercellular 
communication in both normal physiology and pathological conditions to transmit/exchange 
bioactive molecules to recipient cells and the extracellular environment. The unique structure 
and composition of EVs enable them to serve as natural nanocarriers, and their physico-
chemical properties and biological functions can be used to develop next-generation nano 
and precision medicine. Knowledge of the cellular processes that govern EVs biology and 
membrane trafficking is essential for their clinical applications. However, in this rapidly 
expanding field, much remains unknown regarding EV origin, biogenesis, cargo sorting, and 
secretion, as well as EV-based theranostic platform generation. Hence, we present 
a comprehensive overview of the recent advances in biogenesis, membrane trafficking, and 
functions of EVs, highlighting the impact of nanoparticles and oxidative stress on EVs 
biogenesis and release and finally emphasizing the role of EVs as nanotherapeutic agents. 
Keywords: extracellular vesicle, membrane trafficking, vesicle formation, cargo sorting and 
fusion, nanotherapeutics

Introduction
Extracellular vesicles (EVs) are derived either from the endosomal compartment or 
as a result of shedding from the plasma membrane. EVs carry a variety of cargo, 
including RNAs, proteins, lipids, bioactive enzymes, molecules, molecular infor-
mation, and DNA, and are released from all types of cells, including prokaryotic 
and eukaryotic cells1,2 The ISEV consensus recommendation on nomenclature is to 
use “extracellular vesicle” as the “generic term for particles naturally released from 
the cell that are delimited by a lipid bilayer and cannot replicate” and to modify 
“EV” based on clear, measurable characteristics.3,4 EVs plays vital role in cell to 
cell communication in normal and pathological conditions, theranostic applications 
and disease detection.5–11 EV secretion is found in almost all bodily fluids and the 
secretion of EVs is a process that appears to be conserved throughout evolution.12 

EVs are classified into different types based on their origin, size, nature, biogenesis, 
and functions—namely, exosomes, microparticles, microvesicles (MVs), apoptotic 
bodies, ectosomes, and oncosomes.13 The term exosome was initially used to name 
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vesicles ranging from 40 to 1000 nm released by various 
cultured cells14 but was later adopted for vesicles ranging 
from 30 to 100 nm in size.15 The size and origin of 
exosomes from endosomes were first confirmed in 
B lymphocytes and dendritic cells.16,17 EVs are released 
by “donor” cells either through the outward budding of the 
plasma membrane or inward budding of the endosomal 
membrane by shedding MVs or ectosomes,18 which results 
in the formation of multivesicular bodies (MVBs); exo-
somes are then released by fusion of the outer MVB 
membrane to the plasma membrane.10,19 EV biogenesis 
is mainly dependent on members of the endosomal sorting 
complex required for transport (ESCRT) pathway.20 

Jeppesen et al employed high-resolution density gradient 
fractionation and direct immunoaffinity capture to pre-
cisely characterize the RNA, DNA, and protein constitu-
ents of exosomes and other non-vesicle material.21

Genetic studies have demonstrated that biogenesis and 
secretion of EVs are controlled by specific proteins such as 
GTPases and lipids. The Rab family of small GTPases 
plays a critical role in intracellular trafficking, and several 
Rabs play a significant role in EVs release, including 
Rab27a, Rab27b, Rab35, and Rab11.22–28 EVs production 
and release can be altered or regulated and may be inhib-
ited or stimulated by internal cellular processes or external 
stimuli. Studies have demonstrated that cancer cells pro-
duce greater numbers of EVs than non-transformed 
healthy cells.29,30 Cell stress is a possible factor increasing 
EVs production through the modulation of intracellular 
calcium levels in cancer cells.31 Cargo selection, packa-
ging, and compartmentalization are inevitable processes 
regulated at multiple levels. The ESCRT-dependent path-
way is involved in the selection and distribution of pro-
teins within exosomes.32 CD63 is involved in sorting EVs 
cargo;33 ADP ribosylation factor 6 (ARF6)- and it directs 
cargo selection in MVs.34 These specific cargo mechan-
isms suggest that ubiquitin-dependent ESCRT sorting 
mechanisms.35

Recently, EVs have received much interest owing to 
their unique role in early detection and diagnosis for the 
improvement of treatment outcomes in cancer.36 

Accumulating evidence suggests that the cargo molecules 
carried by EVs originating from cancer cells facilitate the 
identification of specific biomarkers for diagnosing cancer 
and predicting therapeutic outcomes.37 Nanotechnology 
provides enormous opportunities to develop novel nano-
materials to revolutionize our ways of living, especially 
nanomedicine. Exosomes are a subset of EVs and are 

small membrane vesicles of endocytic origin that function 
as signalosomes and transmit amounts of bioactive mole-
cules to specific recipient cells for intercellular commu-
nication, thus playing critical roles in various diseases.38 

Exosome nanotechnology plays a major role in under-
standing the interdependent relationships between exo-
somes and their underlying biology, chemistry, and 
pharmacy. The cell-derived hierarchical nanoarchitecture 
enables exosomes to serve as natural nanocarriers with 
excellent biocompatibility and bioavailability compared 
with traditional synthetic nanocarriers.39 The combination 
of exosomes and nanotechnology can facilitate the devel-
opment of next-generation theranostic nanoplatforms.

Recently, a type of small (<50 nm), non-membranous 
nanoparticle, extracellular nanoparticle with no known 
biological function, termed exomere shows immense 
interest.40 Biological macromolecules such as proteins, 
nucleic acids and lipids are selectively secreted in exo-
meres. Exomeres are having cargoes such as the β- 
galactoside α 2,6-sialyltransferase 1 (ST6Gal-I) and 
amphiregulin (AREG). In this review, we present 
a comprehensive overview of the recent advances in bio-
genesis, cargo sorting, membrane trafficking, and func-
tions of EVs, as well as the application of EVs as 
nanotherapeutic agents.41

Biogenesis of EVs
EVs are secreted by all cells, enabling cell-to-cell commu-
nication at close or distant sites. A single cell can secrete 
more than one type of EVs and can often display hetero-
geneity within the EVs subtype.12,42 Based on their origin, 
EVs can be divided into several types, including exo-
somes, ectosomes, MVs, and apoptotic bodies (Figure 1). 
The mechanisms underlying the biogenesis of different 
EVs subtypes and the sorting of these molecules remain 
elusive. In the following section, we discuss some of the 
mechanisms of biogenesis of the different subsets of EVs.

Isolation and Purification of EVs
The most common and gold standard method used to 
isolate EVs is ultracentrifugation from cell culture condi-
tioned medium43 and different body fluids including 
plasma,44 serum45 saliva46 amniotic fluid,47 breast milk,48 

and urine.49 Recently, several alternative methods were 
introduced and utilized for isolation and purification of 
EVs including differential ultra centrifugation (dUC), 
Ultrafiltration (UF), and microfluidics50–55 Brennan et al 
reported that a comparative account of isolation and 
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separation of extracellular vesicles from protein and lipid 
particles in human serum.56 Recently, Liangsupree et al 
described that a detailed account of isolation and separa-
tion techniques based on size-, charge-, and affinity.57

Biogenesis of Exosomes
Exosomes are secreted by various cell types including 
immune cells, in which exosomes are involved in novel 
intercellular mechanisms.58,59 Mammalian cells, includ-
ing tumor cells, secrete EVs in the form of 
a heterogeneous group of membrane vesicles, including 
both exosomes and MVs.60–62 EVs are nanosized 
bilayered proteolipids present in most biological fluids 
and help regulate multiple physiological and pathological 
processes.63 Exosomes are one of the best characterized 
EV subsets and are generated by the internal budding of 
endosomes, thereby producing multivesicular bodies 
(MVBs) and subsequently generating intraluminal vesi-
cles (ILVs). ILVs fuse with the plasma membrane, releas-
ing them into the extracellular space as exosomes.64 EVs 
are classified into exosomes, MVs, or apoptotic bodies 

based on their mechanism of formation, mode of release 
from the cells, and size.65 ALG-2-interacting protein 
X (ALIX) and the tumor susceptibility gene 101 
(TSG101) play an important role in the formation of 
ILVs.66 Exosomes range from 50 to 150 nm in size, are 
secreted by almost all cell types, and exhibit 
a characteristic cup-shaped morphology or appear as 
round vesicles. MVs originate from direct blebbing of 
the outward plasma membrane and are released into the 
extracellular matrix. The biogenesis of exosomes is con-
trolled by several factors, including activation of cell- 
specific receptors and signaling pathways. The fusion of 
primary endocytic vesicles is the first step in the early 
endosome formation mediated by clathrin- or caveolin- 
dependent or independent pathways.67–69 Rab5 is a key 
regulator of EVs-to-LE conversion in the plasma mem-
brane along with its associate effector VPS34/p150.69 

Apoptotic bodies are another EVs type formed during 
cellular blebbing and fragmentation upon apoptosis.65 

Cancer exosomes are significantly involved in the devel-
opment and progression of cancer.

Figure 1 Schematic presentation of various subtypes of extracellular vesicles such as exosomes, ectosomes and apoptotic bodies, are released into the extracellular 
environment during physiological and pathological processes.
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The biogenesis and release of exosomes are regulated 
by endocytic proteins and lipids. The initial process starts 
with the budding of the inner membrane of an early endo-
some, followed by maturation of the MVBs. After matura-
tion, MVBs can be directed for degradation by various 
enzymes available in the lumen of lysosomes or can travel 
back to and fuse with the plasma membrane.70 The fusion 
of MVBs with lysosomes is governed by various proteins, 
including protein tyrosine phosphatase (HD-PTP), the 
HOP complex (HSP70-HSP90 proteins), the GTPase Ras- 
related protein Rab7A, and the members of the soluble 
N-ethylmaleimide-sensitive factor attachment protein 
receptor (SNARE) complex (Ca2+-regulated vesicle- 
associated membrane protein 7 (VAMP7), STX7 syntaxin 
7 (STX7), and syntaxin 8 (STX8)), which are considered 
necessary for MVB fusion with the plasma membrane in 

leukemic cells.71–73 The recycling of MVBs is integrated 
with the endosomal recycling system and regulated by Rab 
guanosine triphosphate (GTPases) control, which includes 
Rab7A, Rab11, Rab27A, Rab27B, and Rab35.74 The 
SNARE complex drives membrane fusion and exosome 
secretion. The accumulated MVBs dock with the plasma 
membrane through the trans-SNARE complex, which con-
sists of V-SNARE and T-SNARE on endosomes and 
plasma membranes, respectively, leading to the release of 
EVs into the extracellular environment.75,76 Furthermore, 
the generation of exosomes is regulated in an ESCRT- 
dependent and-independent manner, and ceramide can 
trigger budding of exosome vesicles into multivesicular 
endosomes (Figure 2).77 The ESCRT is responsible for 
the accumulation and sorting of molecules channeled into 
ILVs.78,79 The main and critical ESCRT complexes such as 

Figure 2 Biogenesis of exosomes by ESCRT dependent mechanism and independent mechanism involved with accessory proteins and lipid dependent pathway.

https://doi.org/10.2147/IJN.S310357                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2021:16 3360

Gurunathan et al                                                                                                                                                    Dovepress

https://www.dovepress.com
https://www.dovepress.com


ESCRT-0, -I, -II, and-III are responsible for the final 
delivery of ubiquitinated proteins to the degradation 
machinery. Exosome protein content and exosome release 
rate in cancer cells can be altered by the absence of 
specific ESCRT family members. For example, blocking 
the expression of ALIX leads to impaired secretion of 
exosomes in dendritic or muscle cells.25,80 The ESCRT 
machinery comprises four different types of multiprotein 
subcomplexes: ESCRT-0, ESCRT-I, ESCRT-II, and 
ESCRT-III, all of which play a significant role in facilitat-
ing MVB formation, vesicle budding, and protein cargo 
sorting [38]. ESCRT complexes are regulated by additional 
proteins such as ATPase, ALIX, or vacuolar protein sort-
ing-associated protein (VPS4).77 ALIX is a marker protein 
of exosomes that binds to ESCRT-III and delivers un- 
ubiquitinated cargoes to the ILVs.81 Baietti et al82 reported 
that ALIX can directly interact with syntenin (syndecan 
adaptor) via three LYPX L motifs, thereby aiding the 
budding of the endosomal membrane. The independent 
mechanism of ESCRT occurs in melanosomes, which are 
lysosome/endosome-related organelles in melanocytes. 
For example, PMEL17 is a melanosomal protein that 
engages its luminal domains along with lipids to contribute 
to ILV formation. PMEL17 is independent of the ESCRT 
machinery and exists in clathrin-coated early endosomes, 
whereas tetraspanin CD63 mediates melanosome mem-
brane invagination in an ESCRT- and ceramide- 
independent manner.33,83 Gurunathan et al76 reported that 
genes encoding dynamin-related protein (VPS1) and cla-
thrin heavy chain (CHC1) are required for producing low- 
and high-density (LHDSV, HDSV) classes of vesicles. 
Deletion of these genes in yeast as a model system inhib-
ited HDSV production, yielding LDSVs that contained 
secreted cargos.

Sphingomyelinases, phospholipase D2 (PLD2), and 
ARF6 play critical roles in orchestrating the ESCRT- 
independent pathway, and several other proteins such as 
Rab27a, Rab27b, and syndecan-syntenin are involved in 
the formation and secretion of exosomes.84–86 Although 
ESCRT machinery is involved in ILV cargo sorting and 
formation, other ESCRT-independent processes are 
involved in exosome biogenesis.87 Protein sorting of 
ILVs is a highly regulated process that is dependent on 
the ESCRT machinery. Cargo delivery by ESCRT is deter-
mined by the ubiquitin checkpoint. ESCRT-0 is responsi-
ble for recognizing mono-ubiquitinated proteins via an 
HRS heterodimer and STAM1/2.88–90 Association between 
ESCRT-I, ESCRT-II, and ESCRT-0 creates a strong 

recognition domain with high affinity to the ubiquitinated 
substrates on the part of the endosomal membrane.81 

ESCRT-III, by joining with the other ESCRT proteins, is 
responsible for pinching off the membrane and releasing 
the buds into the endosomes, eventually transferring them 
to lysosomes for degradation via recognition of de- 
ubiquitination of cargoes by deubiquitylating 
enzymes.91,92 Finally, the complex is dissociated by the 
ATPase VPS4 and its co-factor VTA.89 Ceramide-enriched 
endosomes are highly prone to inward budding and sphin-
gomyelinase (SMase or SMPD2) defection, leading to 
suppression of ILV formation.22

Experimental evidence suggests that purified exosomes 
contain a rich amount of sphingomyelinase, and inhibition 
of sphingomyelinase activity leads to the reduction of EV 
release; in particular, cholesterol and phosphatidic acid 
play a critical role in exosome formation.77,93 Syntenin 
increases the level of formation of exosomes associated 
with the GTP-binding protein, ARF6 and its effector phos-
pholipase (PLD2).82,94 The Rab family of small GTPases 
potentially regulates vesicle trafficking and plasma mem-
brane fusion, subsequently influencing exosome release. 
Hence, impairment of Rab family members, such as Rab7, 
Rab11, Rab27a/b, and Rab35, affects exosome 
release.22,23,82,95–98 Rab27a plays significant and specific 
functions of regulating exosome release from metastatic 
tumor cells. The shedding of vesicles regulated by these 
GTPases depends on cell type.99 Purified exosomes con-
tain functional microRNAs (miRNAs) and small RNAs, 
including the class 22–25 nucleotide regulatory miRNAs, 
which can transfer between circulating cells in humans.100 

System approaches describe that EVs are composed of 
many vesicular proteins and that the functional interrela-
tionships and the mechanisms of EVs biogenesis in human 
colorectal cancer comprised 1491 interactions between 
957 vesicular proteins. All these cellular proteins are 
involved in protein sorting during EVs formation. 
Specifically, SRC signaling plays a major role in EVs 
biogenesis, and inhibition of SRC kinase decreased the 
intracellular biogenesis and cell surface release of 
EVs.101 Several external factors influence the quantity, 
content, and release of exosomes through different mole-
cular mechanisms, including cell culture conditions. For 
example, culture of N2a neuroblastoma cells in serum-free 
(OptiMEM) conditions greatly increased the quantity of 
isolated EVs but did not yield EVs with significant bio-
physical or size differences compared to those from cells 
cultured in serum-containing media. Notably, different 
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culture conditions induce differential expression of genes 
and factors involved in EVs biogenesis.102 For example, 
one study addressed the proliferative capacity and self- 
renewal properties of chloride intracellular channel-1 
(CLIC1) by silencing and overexpressing this gene in 
cancer stem cells isolated from patients with glioblastoma. 
The modulation of CLIC1 seems to have no direct role in 
EV structure, biogenesis, and secretion.103 Yang et al104 

reported that physical stimulation, such as low-intensity 
ultrasound, increases the expression level of EV/exosome 
biogenesis and docking mediators in immunosuppressor 
cells, including myeloid-derived suppressor cells, 
mesenchymal stem cells (MSCs), B1-B cells, and regula-
tory T cells. Extracellular heat shock protein-90alpha 
(eHSP90α) plays an essential role in tumor invasion and 
metastasis. The level of plasma eHSP90α determines the 
conditions of patients with cancer; eHSP90α accounts for 
approximately 1% of the total cellular HSP90α and is 
associated with tumor-secreted exosomes. To determine 
the effect of HSP90α on exosome biogenesis, the expres-
sion of Hsp90α was inhibited by CRISPR-cas9 knockout. 
Knockout of Hsp90α did not affect the overall distribution 
and quantity of secreted exosomes but increased the 
expression level of exosome-associated CD9 and 
decreased the expression level of exosome-associated 
TSG101, ALIX, and CD63.105

Leptin regulates the mechanisms of biogenesis and 
release of exosomes and also increased the number of 
MVBs and release of MVBs in the cytoplasm of breast 
cancer cells.106 Hitomi et al reported that DNA damage 
activates the ceramide synthetic pathway leading to an 
increase in senescence-associated EVs (SA-EV) 
biogenesis107 The EVs biogenesis pathway, which is asso-
ciated with the autophagy-mediated degradation pathway, 
leads to inhibition of apoptosis. The SA-EV pathway may 
play a significant role in cellular homeostasis, particularly 
in senescent cells. Stress conditions such as hypoxia, 
serum starvation, acidosis, different cell types, and nano-
particle exposure induce various levels of exosome bio-
genesis and release in cancer cells. Recently, Gurunathan 
et al discussed the various factors involved in biogenesis, 
functions, therapeutic and clinical implications of 
exosomes.108–110

Biogenesis of Microvesicles (MVs)
Biogenesis of MVs is directly derived from the plasma 
membrane and shares many of the same proteins involved 
in exosome biogenesis.2,111,112 MVs are involved in 

various physiological functions, including altering the 
extracellular environment, intercellular signaling, and 
facilitating cell invasion through cell-independent matrix 
proteolysis.34,65,113 Furthermore, MVs play a critical role 
in various aspects of physiology, including tumor invasion 
and angiogenesis. MVs can transfer bioactive molecules, 
including proteins, DNA, mRNA, and miRNA, and can 
thereby modify the extracellular milieu and proximal and 
distal recipient cells.43,70 The biogenesis and release of 
MVs is different from that of exosomes and is regulated 
by multiple mechanisms. MVs are generated from sites of 
high membrane blebbing, and their formation is stimulated 
in cells invading through compliant matrices.65,114–116 The 
vertical distribution of MVs is attributed to changes in 
plasma membrane components. MV formation is 
a unique mechanism of EVs formation compared with 
that of exosomes and regulated by ARF6 and RHOA- 
dependent rearrangement of the actin cytoskeleton.117 

MV biogenesis comprises vertical trafficking of molecular 
cargo to the plasma membrane, a redistribution of mem-
brane lipids, and the use of contractile machinery at the 
surface to allow vesicle pinching.65 Shed MVs are distinct 
from other populations of cell-derived EVs, including 
exosomes. The two populations differ in size, cargo, and 
mechanism of formation, and the size of MVs can cover 
several microns. The ESCRT complex is involved in MV 
biogenesis. ARF-6 plays a critical role in the trafficking of 
cargo to the cell surface in MVs.118 MV release is aided by 
several proteins, including TSG101, ALIX, and ARRDC1, 
and cytokinetic abscission is performed using ESCRT-III 
and ALIX.119 For instance, MV stimulation and release are 
facilitated by the activation of A-SMase (acid sphingo-
myelinase) in astrocytes and glial cells, and ceramide and 
cholesterol play significant roles in MV formation.120 The 
extracellular concentration of calcium plays a significant 
role in MV structure, whereas an increased level of cal-
cium induces membrane phospholipid scrambling and 
improves the formation of MVs by increasing the level 
of vesiculation121,122 and also increases MV formation in 
erythrocytes and platelets.123 G-protein coupled receptor 
30 (GRP30) stimulates the formation of extracellular 
matrix metalloproteinase inducer (EMMPRIN)-containing 
MVs from uterine cells.124 The prominent plasma mem-
brane lipid cholesterol plays a critical role in MV forma-
tion, whereas a lack of cholesterol leads to reduced levels 
of MV formation.125 Ceramide, a cone-shaped lipid, is 
known to play a vital role in the genesis of EVs, including 
MVs, and is responsible for enhancing membrane bending 
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for the formation of MVs.126 Once the MVs are loaded 
with cargo and pinched by acto-myosin contraction, which 
is a tightly regulated process, it is necessary to enhance 
and inhibit the process of blebbing and pinching. These 
processes are regulated and governed by Rho family 
GTPases.114,117 MV formation is promoted by RhoA activ-
ity through the downstream kinases ROCK, ERK, and 
cofilin phosphorylation.114,117 Hypoxia promotes MV for-
mation via cellular processes mediated by hypoxia- 
inducible factors and Rab22a.127 Large oncosome (LO) 
formation was enhanced by suppression of the actin- 
nucleator diaphanous-related formin 3 (DIAPH3), the acti-
vation of EGFR, overexpression of membrane-targeted 
Akt1 caveolin-1, and stimulation with heparin-binding 
EGF-like growth factor combined with p38MAPK 
inhibition.128,129

Stachowiak et al suggested that another mechanism of 
MV formation due to membrane curvature results in bend-
ing of the plasma membrane caused by overcrowding at the 
cell periphery; lateral pressure generated through protein- 
protein interactions also contributed to membrane shape 
changes, which may play a role in de novo MV 
formation.130 The membrane curvature is significantly con-
trolled by phospholipids to induce a discrete membrane 
curvature. Furthermore, aminophospholipid translocase 
(flippase and floppase) recruitment facilitates the formation 
of membrane curvature during MV formation.131 Further 
studies demonstrated that the accumulation of extraneous 
membrane at microvillar tips acts as a source of MVs shed 
into the gut lumen in a myosin-1a dependent fashion, and 
increased production of hyaluronan can lead to the release 
of MVs from the ends of long, microvilli-like 
projections.132,133 All these studies demonstrate that under 
certain conditions, pinching of microvilli or other cell pro-
trusions may be another mechanism for MV release. Global 
proteomic analysis revealed that purified MV from human 
colorectal cancer cells contains 547 MV proteins, 49 of 
which, including annexins, ADP-ribosylation factors, and 
Rab proteins, are involved in the biogenesis of MV, with 28 
proteins involved in tumorigenesis via promotion of migra-
tion, invasion, and growth of tumor cells, immune modula-
tion, metastasis, and angiogenesis.134 The delivery of MV 
cargo, such as the membrane-type 1 matrix metalloprotease 
(MT1-MMP) to shedding MVs was regulated by v-SNARE 
and VAMP3. Hepatocellular carcinoma cells shed more 
MVs than normal hepatocytes. miR-200a was able to inhibit 
MV formation and regulation of secretion by targeting 
gelsolin and altering the cytoskeleton. Furthermore, miR- 

200a inhibits the proliferation of adjacent cells by inhibiting 
the release of MVs. These findings suggest that miR-200a 
governs MV biogenesis in hepatocellular carcinoma 
progression.135 Calcium concentration plays a significant 
role in EV biogenesis For example, the efficacy of vesicula-
tion is significantly enhanced in malignant MCF-7 cells 
compared with that in non-malignant hCMEC-D3 cells 
due to increased levels of free cytosolic Ca2+. Store- 
operated calcium entry plays an essential role in the main-
tenance of EV biogenesis after depletion of stored Ca2+.136

Biogenesis of Apoptotic Bodies
Apoptotic bodies are a class of EVs with various sizes 
between 1000 and 5000 nm, formed exclusively during 
programmed cell death.137 Morphological changes such as 
membrane blebbing, membrane protrusion, and release of 
apoptotic bodies are characteristic features of apoptotic cells 
undergoing apoptosis.138 The number of apoptotic bodies 
produced per cell is different from that produced by EVs; the 
average number of apoptotic bodies was found to be 12.87 ± 
3.23/h and EVs by MSCs were found to be in the range of 
2900 per cell.139,140 The membrane of apoptotic bodies 
reflects the main changes occurring on the cell surface of 
apoptotic cells. In particular, apoptotic cells express markers 
that promote their removal by surrounding cells or macro-
phages before cell membrane rupture.141 CD47 plays critical 
role in apoptotic bodies formation, for example, calreticulin, 
an “eat me” ligand is physiologically silenced by the CD47 
“don’t eat me” ligand; and only expressed by cells and 
ApoBDs when CD47 is down regulated.142

Apoptotic bodies enable the removal of apoptotic cells 
by phagocytes and modulate the immune system.138,143 

Apoptotic bodies contain typical characteristic markers of 
apoptotic bodies, such as phosphatidylserine.144 The apop-
totic volume decrease (AVD) is associated with membrane 
blebbing, which is a critical and primary event in apoptotic 
body formation.145 AVD starts within 0.5–2 h after apoptosis 
induction accompanied by caspase activation and mitochon-
drial dysfunction.146 The efflux of osmolytes, mainly ions, 
via transporters and channels is an indispensable process in 
AVD.147 AVD occurs in two different processes, including 
cytochrome C release from the mitochondria and cytoskele-
ton organization. The cargo of apoptotic bodies contains 
chromatin, small numbers of glycosylated proteins, large 
amounts of low molecular weight RNA, and intact orga-
nelles such as mitochondria, as well as nuclear fragments, 
microRNAs, RNA, and DNA.15,148,149 The diversity of the 
cargo content of apoptotic bodies influences their 
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physiological properties. Furthermore, apoptotic bodies are 
subdivided into two groups: DNA-carrying apoptotic bodies 
and cytoplasm-carrying apoptotic bodies. In particular, DNA 
carrying apoptotic bodies contains 5-phosphorylated blunt- 
ended DNA.150 The characteristic feature of apoptotic 
bodies is the presence of externalized phosphatidylserine 
and a permeable membrane, which express phagocytosis- 
promoting signals such as calreticulin142 and calnexin.151 

Apoptotic bodies are used to express chemokines and adhe-
sion molecules such as CX3CL1/fractalkine and ICAM3. 
The expression of MHC class II molecules facilitates direct 
antigen presentation to CD4+ T cells and activation of 
immunological memory.138

Biogenesis of Ectosomes
The biogenesis of ectosomes (diameter 50–500 nm) is dif-
ferent from other EVs; however, the difference between 
exosomes and ectosomes is not unique. Ectosomes are gen-
erated by almost all cell types and play a role in intercellular 
communication. The secretion of cargoes by ectosomes 
occurs by the accumulation of cargo at the cytosolic surface 
of the plasma membrane. Ectosomes are then secreted 
through the budding of the outward cell membrane and are 
released into the extracellular matrix.152 The formation of 
ectosomes depends on local microdomains assembled in the 
plasma membrane of ectosomes. The surface and luminal 

cargoes are heterogeneous when comparing vesicles 
released by different cell types or by single cells in different 
functional states. The lumen and cytosol of ectosomes con-
tain similar levels of heat shock proteins and several 
enzymes, and the interactions between the specific proteins 
and the ectosome lumen are mediated through the presence 
of protein anchoring, palmitoylation, myristylation, sumoy-
lation, and high-order polymerization. Biogenesis of ecto-
somes is due to the rearrangement of the asymmetric 
membrane consisting of a phospholipid layer153,154 (Figure 
3). Secretion and control of cargo assembly of ectosomes 
regulated by the small GTPase ARF6 and the small GTPase 
act through the contraction of cortical actin under the plasma 
membrane.114 The membrane of ectosomes contains high 
levels of cholesterol, sphingomyelin, and ceramide.112,155 

However, membrane reorganization can be influenced by 
Ca2+-dependent enzymes, and ectosomes consist of other 
proteins.156 Ectosome structures contain abundant levels of 
various cargoes, including miRNAs, mRNAs, and non- 
coding RNAs.148

Biogenesis of Oncosomes
Oncosomes are 100–400 nm vesicles are formed by bleb-
bing off the plasma membrane of tumor cells and can form 
large or small vesicles.129,157 Large oncosome vesicles are 
usually larger than MVs and are typically associated with 

Figure 3 Mechanism of biogenesis of ectosomes. Increased level of accumulation of Ca2+ at the plasma membrane and involvement of translocase enzymes and proteins 
such as ADP-ribosylation factor 6 (ARF6), extracellular signal regulated kinases (ERK) and phosphorylation of myosin light chain kinase (MLCK). (A) Extensive accumulation 
of Ca2+ at the PM region causes the imbalance of the phospholipids orientation. (B) Role of flippase and floppase to maintains the phospholipids symmetry. (C) ARF6 
activates ERK followed by the phosphorylation of myosin light chain which stimulates the budding of ectosomes from the PM.
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cell motility and the release was regulated by various 
structural proteins promotes extrusion and scission of the 
plasma membrane.18,24,138,158,159 Tumor cells sponta-
neously release oncosomes that contain metalloproteinases 
with proinvasive properties.34,128 The release of onco-
somes, and other EVs, is induced by stimuli, leading to 
an increase in intracellular calcium and cytoskeleton 
remodeling.160 In some cases, large oncosomes, typically 
1–10 μm in size can be formed.161 Di Vizio et al129 

reported that amoeboid migration of metastatic prostate 
cancer cells triggered the production of gigantic EVs (-
1000–10,000 nm), which emanate from large protrusions 
of the cellular plasma membrane. These large vesicle for-
mations were dependent on cellular transformation, 
including the activation of AKT1 and EGFR pathways, 
and were associated with abnormal assembly of molecular 
cargo, such as proteins and nucleic acids, and were subse-
quently called “large oncosomes” (LOs). Oncosomes are 
byproducts of non-apoptotic cells when a large portion of 
the cellular membrane is shed from the outward membrane 
during blebbing events.162 The shedding process is 
induced by silencing of the cytoskeletal regulator diapha-
nous-related formin-3 (DIAPH3) protein, by the overex-
pression of oncoproteins caveolin-1 (CAV-1_, heparin- 
binding epidermal growth factor (HB-EGF), myristylated 
Akt1 (MyrAkt1), or activation of the EGFR and AKT1 
pathways.18,161,163–165 Depolymerization of the actin 
cytoskeleton by overexpression of the small GTPase 
ARF634 and/or loss of the actin-nucleating DIAPH3 play 
critical roles in efficient production of large PM-derived 
oncosomes from tumor cells.129 ARF6 appears to be 
involved in targeting pre-miRNAs to oncosomes along 
with miRNA processing machinery.159 These oncosomes 
serve as carriers for bioactive molecules and abnormal and 
transforming macromolecules, including mRNAs, 
microRNAs, lipids, and biologically active proteins. 
Oncosomes contain increased levels of potential biomar-
kers, such as membrane-localized cytokeratin-18 and 
lower levels of tetraspanins CD9, CD63, and CD81. 
Cytokeratin can be used as a marker to distinguish tumor- 
derived oncosomes, which are completely different from 
other EVs.18 The unique composition of oncosomes facil-
itates the transfer of signals to specific target cells, mod-
ulates the primary and secondary tumor 
microenvironments, and serves as a master regulator of 
tumor growth, inflammation, extracellular matrix remodel-
ing, angiogenesis, and inhibition of innate and adaptive 

immune responses.166 Oncosomes control tumor progres-
sion by degrading the extracellular matrix and promoting 
intravasation via endothelial permeabilization factors.128 

Oncosomes are able to transfer RNA and alter epigenetic, 
reprogramming, and migration in endothelial cells. Tumor- 
derived oncosomes induce extravasation and colonization 
by endothelial leakage and can export specific oncogenic 
cargo to other tumor or stromal cells. LOs derived from 
DU145 cells with DU145R80 suggests that αV-integrin on 
the LO surface increases adhesion and invasion of recipi-
ent cells via AKT.167

Cargoes Sorting and Membrane 
Trafficking of EVs
Membrane trafficking is an essential process that includes 
vesicle formation, cargo sorting, and fusion. The mechanism 
of cargoes sorting involved various post translation modifi-
cation processes can sort proteins into EVs (Figure 4). 
Vesicle formation and fission are critical for specific cargo 
cap structures and transport. The compartmentalization of the 
cytoplasm into distinct membranes is a unique and distinct 
feature of eukaryotic cells compared to prokaryotic cells and 
is an essential process for cellular processes in eukaryotic 
cells. The release of cargo from EVs into recipient cells 
consists of various mechanisms, including fusion with the 
plasma membrane,168,169 kiss and run fusion with the endo-
plasmic reticulum,170 fusion with the endosome 
membrane171 and endosomal rupture.2,125,171 The regulation 
of these membrane-mediated processes involves a complex 
array of protein and lipid interactions. For example, mem-
brane-bound EVs play a critical role in intercellular commu-
nication and potential biomarkers because of the presence of 
a variety of cargoes, including annexin II, heat shock pro-
teins, and heteromeric G protein Gi2α in the exosome lumen 
as well as membrane proteins, such as MHC class II com-
plexes, integrins, and tetraspanins.172 Furthermore, EVs con-
tain various types of lipids such as ceramide, PS, 
sphingomyelin, gangliosides, desaturated lipids, and PC; 
however, their specificity and abundance depends on the 
cell of origin.173,174 In addition, EV RNA, glycans, particu-
larly α-2,6-sialic acid, complex N-linked glycans, polylacto-
samine, and mannose also act as EV markers.175–177

Although several studies have focused on cargo sorting, 
the specific EV cargo sorting mechanisms are still 
unclear.11,178 Generally, two major mechanisms have been 
proposed to sort proteins into EVs: ubiquitin-dependent 
ESCRT sorting and tetraspanin-enriched microdomains.35,179 
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EVs consist of a wide range of biomolecules, and all these 
cargoes are sorted into EVs by different pathways, including 
ESCRT-, tetraspanin-, and lipid-dependent mechanisms; the 
functional aspects and destination of cargo of EVs depends on 
the loaded components. The ESCRT complex (ESCRT-0/-I/-II 
/-III) machinery plays a vital role in sorting ubiquitinated 
proteins into vesicles180 and self-associates at the membrane 
of endosomes by interacting with its subunit hepatocyte 
growth factor-regulated tyrosine kinase substrate. The c four 
multi-protein ESCRT complex and additional accessory pro-
teins are involved in ubiquitinated cargo sorting. In the first 
stage, the Hrs compartment interacts with TSG101, which 
facilitates the formation of ESCRT-II through VPS28 
(ESCRT-I)–VPS36 (ESCRT-II) interaction.181–183 In the late 
stage, the ESCRT-III complex is recruited and activated by 
VPS25 (ESCRT-II)–Vps20 (ESCRT-III) interaction.184 

ESCRT-III plays a significant role in EV formation by initiat-
ing membrane deformation and inward budding.185,186 ALIX 
is also a crucial aspect of the ESCRT complex machinery and 
is recruited by charged multivesicular body protein 4a 
(CHMP4), which is involved in the stabilization of the com-
plex. ALIX can act as an adaptor protein that recruits cargo 
into developing EVs in a ubiquitin-independent manner.187,188 

Furthermore, ALIX is also involved in miRNA recruitment by 
interacting with the Argonaute 2 (AGO2) protein complex.189 

Lysobisphosphatidic acid is involved in the initiator of an 
additional recruitment pathway by interacting with syntenin, 
the cytoplasmic adaptor protein through membrane deforma-
tion. Syntenin binds syndecan and other proteins via its PDZ 
domain The ALIX-syntenin-syndecan complex can sort spe-
cific cargo into EVs.82,190 The syndecan heparin sulfate 
domain seems to be involved in the sorting and formation 
process and is cleaved and activated by the modulator-enzyme 
heparanase.191 ILV formation within MVB not only depends 
on ESCRT components, but also on the ESCRT-independent 
mechanism via tetraspanin-dependence. Interestingly, the 
ESCRT-independent mechanism produces smaller vesicles 
than that of the ESCRT-dependent mechanism. For instance, 
a lack of CD63 causes a decrease in smaller vesicles of less 
than 40 nm.192,193 Another mechanism of EV release and 
protein recruitment is also influenced by posttranslational 
modifications by ubiquitin-like proteins. For instance, post- 
translational modification of ISGylation by interferon- 
stimulated gene 15 (ISG15) is induced by interferons (IFN 
causes the accumulation and degradation of TSG101), result-
ing in impaired exosome secretion and subsequent alterations 

Figure 4 Sorting of cargoes into EVs. Proteins and RNA can be packaged into the EVs by various mechanisms including ubiquitination, phosphorylation, myristoylation, 
glycosylation and sumoylation.
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in EV cargo.194,195 Although the sorting and recruitment of 
proteins is passive in MVs, they are still controlled by the 
ESCRT-associated ATPase VPS4, as well as TSG101 through 
interaction with arrestin domain-containing protein 1 
(ARRDC1), which is responsible for the relocation of 
TSG101 via ubiquitin E2 variant (UEV)-motif recognition 
from the endosomal membrane.196 According to ExoCarta 
and Vesiclepedia, EVs contain more than 10,000 unique pro-
teins from human cells, tissues, and bodily fluids.197 Although 
ESCRT is involved in protein sorting, some proteins are 
packaged during biogenesis. For example, ALIX and 
TSG101 are selectively packaged into EVs.198 The selective 
mechanism of protein cargo sorting is controlled by post- 
translational modifications, including ubiquitination, 
SUMOylation, NEDDylation, and ISGylation (Figure 4). 
ESCRT complexes are responsible for sorting monoubiquiti-
nated transmembrane cargos into ILVs.199,200 ESCRT-0, 
ESCRT-1, and ESCRT-II interact with appropriate ubiquiti-
nated cargos in a tightly coordinated manner and recruit them 
to the late endosomal membranes/MVBs. ESCRT-III, along 
with its accessory proteins, promotes membrane 
scission.200,201 The assembly of the ESCRT-0 protein Hrs 
with phosphatidylinositol 3-phosphate (PI(3)P) allows Hrs to 
begin the membrane recruitment process. Ubiquitinated Hrs 
and STAM1/2 enhance cargo sorting into endosomes The 
ubiquitinated Nedd4 family proteins not only regulate the 
early steps of EV biogenesis via ubiquitination but are also 
recruited and released via EVs.202 To prove the importance of 
ubiquitination in cargo sorting, studies have reported that 
ubiquitination of divalent metal ion transporter (DMT1) by 
ARRDC1 regulates arrestin-dependent cargo sorting into EVs 
and subsequent release of EVs.203,204 However, ubiquitins, 
such as mahogunin, ubiquitinate TSG101 and thus regulate 
endosomal trafficking.205,206 The ESCRT-independent 
mechanism of protein sorting involves mono-and poly ubiqui-
tinated proteins in MVBs.207 ISGylation plays an important 
role in cargo sorting into EVs. For example, ISGylation of 
TSG101 promotes aggregation and degradation and attenuates 
EV secretion.194,208

Sorting of RNAs into EVs
The biogenesis and sorting of EVs from various types of 
cells exhibit distinct RNA profiles, comprising messenger 
RNAs and non-coding RNAs (ncRNAs). In particular, 
ncRNAs play a significant role in the tumor microenviron-
ment and premetastatic niches. Recent studies have indi-
cated that EV-RNAs are responsible for essential functional 
cargoes in modulating hallmarks of cancers.209 Sorting of 

RNAs into EVs regulated by particular sorting machineries 
involves RNA binding proteins (RBPs) and their associated 
partners, which can target RNAs to the site of EVs genera-
tion and protect them from degradation.210,211 The lack of 
Dicer enzyme has an inhibitory effect on miRNA levels in 
the exosomes rather than in the producer cells. 
Overexpression of miRNA increases the levels of miRNA 
in exosomes; hence, the expression level of miRNAs is the 
first layer of regulation of miRNA sorting into exosomes.212 

AGO2 may serve as an important transferring machinery 
and control the sorting of specific miRNAs for EV- 
miRNAs. For example, AGO2 knockout reduces the load-
ing of several preferentially secreted miRNAs into EVs, 
such as miR-451 and miR-150, and also decreases the 
exosomal content of small RNAs.213,214 The release of 
exosomal miRNAs such as miR-146a and miR-155 is 
highly influenced by the knockdown of GW182. Inhibition 
of ALIX expression leads to a decrease in the level loading 
efficacy of secreted miRNAs into EVs, but not the release 
of EVs.189 Similarly, VPS4A controls the release of onco-
genic miRNAs in exosomes.215 RBPs are involved in 
miRNA sorting by recognizing specific RNA motifs. 
Villarroya-Beltri et al216 demonstrated that hnRNPA2B1 
controls exosomal sorting with the GGAG motif. Post- 
translational modification of hnRNPA2B1 increases the 
sumoylation of hnRNPA2B1 and the rate of binding with 
miRNAs and localization into exosomes. CAV-1 forms 
a complex with hnRNPA2B1 and induces hnRNPA2B1 
OGlcNAcylation via tyrosine-14 phosphorylation, thereby 
directing hnRNPA2B1-bound miR-17/93 into MVs; 
hnRNPA2B1 thus enhances its binding to specific 
miRNAs and incorporation into MVs.217 SYNCRIP dis-
plays the GGCU-motif-specific exosomal sorting capacity 
of miRNAs.218 The presence of Ca2+ influences sorting of 
miRNAs into EVs in a sequence-independent manner.219 

A study reported that inhibition of nSMase2 prevents the 
sorting of multiple miRNAs such as miR-451a, miR-122, 
and miR-146a into EVs and that inhibition of sphingosine 
kinase 2 (SPHK2) reduces exosomal loading of miRNA- 
21.220–223 Another study found that miRNAs regulate 
mRNA targeting into EVs by specifically binding to zip-
code RNA sequence motifs. For example, miR-1289 
directly binds to the inserted zipcode on EGFP mRNA 
and enhances the efficiency of zipcode-mediated EGFP 
mRNA sorting into MVs.224 The RNA content of EVs is 
influenced by several factors, including the subpopulation 
of EVs, cell type, and the physiological or pathological state 
of producing cells as well as their received stimuli. RNA 
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loading into EVs can occur either by active or passive 
mechanisms and also depends on RBPs and their partners 
as well as RNA motifs and modifications, with a combined 
effect on stabilization and/or subcellular localization of EV- 
RNAs. Post-translational modification of RBPs increases 
their affinity towards MVs and RNAs, which are major 
regulators of exosomal sorting, and RBP-mediated RNA 
incorporation into EVs depends on ceramide generation. 
Furthermore, specific motifs and structures of RNAs play 
important roles in EV-RNA secretion by mediating RNA- 
RBP and RNA-RNA interactions.209

The packaging of certain RNAs is sorted into subsets of 
EVs; for instance, the larger the EV, the more likely it is to 
incorporate a given cytoplasmic entity, whereas small EV 
(sEV) content is more likely to be restricted to molecules in 
close proximity to membranes. Data from studies suggest that 
large EVs (lEVs) and their parent cells have highly correlated 
RNA expression profiles, whereas the RNA expression of 
sEVs differs significantly from that of the source cell.225,226 

Similarly, larger cargo, such as full-length mRNAs with 
associated proteins, can be easily sorted into larger vesicles 
and smaller cargoes sorted into sEVs without efficient packa-
ging mechanisms. Exosomes secreted from cancer cells are 
involved in tumor progression; one strategy is to decrease 
exosomal miRNA secretion. To demonstrate this concept, the 
authors designed small interfering RNA (siRNA)-loaded 
nanoparticles to silence the SPHK2 gene using nanoparticles 
such as lipid (2E)-4-(dioleostearin)-amino-4-carbonyl- 

2-butenoic (DC) and chitosan and introduced these into 
hepatocellular carcinoma cells. Nanoparticle-mediated silen-
cing of the SPHK2 gene reduced miRNA-21 sorting into 
exosomes, contributing to the inhibition of tumor cell migra-
tion and tumorigenic function of exosomes to normal liver 
cells as well as in a xenograft mouse model.220 The Figure 5 
shows various steps involved in the process of isolation of 
extracellular vesicles from condition medium and isolated 
EVs depicted various types of cargos packaged into EVs. 
CD31+ extracellular vesicles from patients with type 2 dia-
betes of blood circulating miRNAs signature serving as tool 
to detect T2DM complications. Extracellular vesicle (EV)- 
shuttled miRNAs were isolated using immunomagnetic bead- 
based method, which are considered to be a CD31+ EVs were 
also positive for a range of markers typical of both platelets 
and activated endothelial cells.227

Impact of Post-Translation 
Modification on Cargoes Sorting
Proteomic analysis revealed that phosphorylation is not 
only involved in selective cargo sorting, but also protects 
against degradation. Phosphorylation of the proline-rich 
domain and mono-ubiquitination of FasL results in the 
phosphorylated protein being potentially sorted into 
EVs.228 Similarly, phosphorylated Tau at Thr-1801 is 
packed and sorted into EVs, and phosphorylated annexin 
A2 is protected from endosomal degradation, which facil-
itates its incorporation into the EV membrane.229,230, 

Figure 5 Schematic representation of isolation of EVs from conditioned medium using various centrifugation steps and isolated EVs displayed packaging of cargoes DNA, 
proteins, miRNA, antibodies, tetraspanins, histone, actin and tubulin.
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Carbohydrate modification of VIP36 polyLacNac and high 
mannose expedites sorting of the modified protein into 
Golgi-derived vesicles.177,231,232 Citrullination is also 
involved in sorting of various types of protein cargo into 
EVs.233,234 Myristylation of the yeast cytoplasmic protein 
Tya results in this being packaged into EVs, which plays 
a highly efficacious role in the formation of ectosomes.235 

The oxidation process is also involved in the sorting of 
cargo into EVs. Oxidized γ-synuclein is found in exo-
somes and is released into the extracellular 
environment.236 The role of the WW domain in sorting 
of cargoes into EVs was confirmed by location of NEDD4 
family proteins, such as NEDD4, NEDD4–2, and ITCH, 
into EVs by fusion of the WW domain with proteins 
targeted to EVs.202,237 Similarly, proteins found in EVs 
contain a significant level of coiled coil domain in 
LIM1215 colorectal cancer cell-derived EVs.238

Inhibition of EVs Release
EVs are major players in several pathophysiological con-
ditions and are also involved in disease development and 
progression.18,239,240 For instance, many pharmacological 
agents are known to inhibit the release of EVs, which is 
a recent development in therapeutic approaches. Inhibitors 
of the secretion of cancer exosomes promote cancer pro-
gression and metastasis.241 The best approach is to identify 
particular inhibitors that can selectively affect EVs 
involved in pathology, but not those that perform neces-
sary physiological roles.242 These inhibitors could provide 
an avenue for targeted therapy. Im et al241 reported that 
sulfisoxazole inhibits the secretion of sEVs from breast 
cancer cells by interfering with endothelin receptor 
A (ETA). A chemical inhibitor, GW4869, potentially inhi-
bits ceramide-induced secretion of exosomes, and 
a specific siRNA resulted in reduced secretion of 
miRNAs.243 Wei et al244 reported the direct correlation 
between inhibition of exosome release suppressing prolif-
eration of human breast cancer cells. For example, a breast 
cancer cell line (MCF-7) treated with shikonin decreased 
the level of secreted exosomes and inhibited cell prolifera-
tion. Sodium nitrite (NaNO2) reduced hypoxia (1% O2)- 
induced production of EVs in endothelial (HECV) cells 
compared with that from cells exposed to normoxia or 
hypoxia.245 Overmiller et al246 reported that EV release 
is modulated by the C-terminal fragment of desmoglein 2 
(DSG2). Evidence suggests that overexpression of DSG2 
increases EV release and mitogenic content, including 
EGFR and c-SRC. Inhibiting ectodomain shedding of 

DSG2 with the matrix metalloproteinase inhibitor 
GM6001 resulted in the accumulation of full-length 
DSG2 in EVs and reduced EV release. When human 
prostate cancer (PC3) cells and MCF-7 cells were exposed 
to potential exosome and MV (EMV) biogenesis inhibi-
tors, EMV release was inhibited.247 The effect of MMP 
inhibitors on the release and proteolytic activity of mono-
cyte/macrophage-derived microparticles in peripheral 
blood mononuclear cells was demonstrated by stimulation 
with the calcium ionophore A23187. The findings revealed 
that MMP inhibitors significantly prevented MP shedding 
in a concentration-dependent manner by reducing intracel-
lular Ca2+ levels.248

Promotion of EVs Release
Low pH conditions influence exosome release and uptake 
by cancer cells. At low pH conditions, exosome release 
and uptake were higher than in buffered conditions, and 
exosome uptake by melanoma cells occurred by fusion.168 

Additional factors, such as detachment of adherent cells 
from various substrata, can induce rapid and substantial 
secretion of exosomes. Methyl-beta-cyclodextrin inhibits 
the internalization of exosomes by disrupting lipid rafts.249 

Overexpression of hyaluronan synthase 3 (HAS3) in 
Madin-Darby canine kidney (MDCK) cells cultured in 
a 3-D matrix as epithelial cysts released large amounts of 
HAS- and hyaluronan-positive vesicles from their basal 
surfaces into the extracellular matrix. Hence, hyaluronan 
synthesis is one of the first molecular mechanisms to 
stimulate the production of MVs.133 Emam et al exposed 
four different cell lines, colon 26 (C26) murine colorectal 
cancer cell line, B16BL6 murine melanoma cell line, 
MKN45 human gastric cancer cell line, and DLD-1 
human colorectal cancer cell line exposed to neutral, catio-
nic-bare, and PEGylated liposomes. Both neutral and 
cationic bare liposomes enhanced exosome secretion in 
a dose-dependent manner, and among neutral and cationic 
liposomes, fluid cationic liposomes exhibited the strongest 
stimulation.250 Hypoxia plays a significant role in cancer 
progression, angiogenesis, and metastasis through exo-
some-mediated signaling. To check the effect of hypoxia, 
King et al exposed three different breast cancer cell lines 
to moderate (1% O2) and severe (0.1% O2) hypoxia con-
ditions. As a result of exposure, the level of exosome 
secretion and release significantly increased in conditioned 
media.251 Hannafon et al treated MCF7 and MDA-MB 
-231 breast cancer cells treated with DHA, which 
increased exosome secretion and exosome microRNA 
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content. Interestingly, miRNA-containing exosomes were 
increased in other breast cancer lines, such as MDA-MB 
-231, ZR751, and BT20, whereas there was no increase in 
normal breast cells (MCF10A).252 The HDAC6 inhibitor 
tubacin was used by Caho et al to selectively induce the 
release of CD133+ EVs from cancer cells. This effect was 
not observed with another selective HDAC6 inhibitor, 
ACY-1215, the pan-HDAC inhibitor trichostatin 
A (TSA), or knockdown of HDAC6. Tubacin-induced 
EV release is associated with changes in cellular lipid 
composition, loss of clonogenic capacity, and decreased 
ability to form multicellular aggregates.253 Liver kinase B1 
(LKB1) regulates multicellular functions including cell 
polarity, energy metabolism, and cell growth by targeting 
multiple signaling pathways such as AMPK/mTOR and 
p53. Zhang et al introduced LKB1 into H460 and A549 
lung cancer cells that were endogenously deficient in 
LKB1 expression and enhanced the release of 
exosomes.254 Oxidative stress induces DNA damage, 
which in turn activates the ceramide synthesis pathway 
leading to an increase in senescence-associated EV (SA- 
EV) biogenesis.107 Latent membrane protein 1 (LMP1) is 
a viral protein that contributes to the modification of EV 
content and remodeling of the tumor microenvironment. 
LMP1 enhances EV production by utilizing LMP1- 
interacting proteins, including Hrs, Syntenin-1, and the 
ESCRT-III complex.255 Glutamine deprivation induces 
the release of Rab11-positive exosomes from cancer cells 
by reducing the growth regulatory Akt/mechanistic target 
of rapamycin complex 1 (mTORC1) signaling.256

Impact of Cellular, Heat, and 
Oxidative Stress on Biogenesis and 
Release of EVs
External factors such as cellular stress (endoplasmic reti-
culum), heat, and oxidative stress play critical roles in the 
biogenesis and release of EVs (Figure 6). Cellular stress 
and damage caused by molecular targeted therapeutic 
stress,257,258 anticancer therapeutic DNA damage stress, 
or HSS259,260 induce co-release of heat shock proteins 
and vesicles. Furthermore, tissue damage releases damage- 
associated molecular patterns (DAMPs).261 Atienzar- 
Aroca et al demonstrated the involvement of oxidative 
stress in the release of EVs from retinal pigment epithelial 
cells.262 Oxidative stress induces a higher amount of exo-
some release than controls, with a higher expression of 
vascular endothelial growth factor receptor (VEGFR) in 

the membrane and enclosed an extra cargo of VEGFR 
mRNA. For example, heat stress induces EV release263 

through DNA damage and apoptosis associated with 
decreased cell viability. Heat-stressed cells were more 
likely to survive a subsequent heat shock, which is an 
adaptive response and become resistant to hyperthermia 
therapies. Heat stress induces EV release and stress and 
generates more soluble NKG2D ligands, aggravating the 
impairment of the cytotoxic response.264 Heat stress facili-
tated the release of EVs carrying doxorubicin (DOX) into 
MCF-7 cells. DOX-containing EVs inhibited MCF-7 cell 
proliferation and induced apoptosis. Severe ER stress 
induces the release of EVs carrying proinflammatory 
DAMP molecules from BeWo choriocarcinoma cells.265 

Oxidative stress induces MV formation by complex pro-
cesses including Hb oxidation, band 3 clustering, cytoske-
leton reorganization, increase in intracellular calcium 
concentrations, and other alterations in red blood cell 
cellular organization.266 Microenvironmental stresses 
such as cytostatic, heat, and oxidative stress induce the 
release of sEVs in melanoma cells, and melanoma-derived 
sEVs elicited by oxidative stress increased Ki-67 expres-
sion in MSCs; sEVs resulting from cytostatic facilitated 
melanoma cell migration.267 Oxidative stress plays an 
important role in apoptosis and autophagy in retinal astro-
cytes. Exosomes released from normal and oxidative stress 
conditions have differential effects on endothelial cell 
function.268 Recently, we reported that oxidative stress 
and ceramide pathway plays significant role in biogenesis 
and release of exosomes. For example, human lung epithe-
lial adenocarcinoma cancer cells (A549) treated with pla-
tinum nanoparticles increases exosome release.269

EVs Function as Nanotherapeutic 
Agents
Recent developments in the field of exosome nanotechnol-
ogy have provided extraordinary opportunities for the 
development of exosome-based nanotherapeutics. The 
unique features of the structure, anatomical composition, 
and morphological characteristics of exosomes make these 
attractive as natural nanocarriers and next-generation 
nanoplatforms. Exosomes serve as superior platforms as 
nanocarriers for robust delivery because of their trans-
membrane and membrane-anchored proteins that may 
enhance endocytosis, thus promoting the delivery of their 
internal contents.270 For example, Sun et al271 developed 
curcumin-loaded exosomes for enhanced anti- 
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inflammatory activity, and DOX-loaded exosomes have 
also been used for cancer therapy.272 Exosome-based 
active-targeted cancer therapy was developed using 
donor cells that were chemically labeled with dual ligands, 
such as biotin and avidin, on the surface of the cytoplas-
mic membrane, and then DOX was encapsulated in the 
cytoplasm. These chemically programmed exosomes dis-
played high targeting efficiency and desirable therapeutic 
performance in cancer therapy.273 Furthermore, the authors 
engineered exosome-based nanotherapy with RGD, folic 
acid (FA), DOX, and gold nanorods for actively targeted 
chemo/photothermal synergistic cancer therapy.274 

Exosomes are used as delivery agents for combination 
therapeutic agents, such as PH20 hyaluronidase and 

DOX, for enhanced tumor penetration and antitumor 
efficacy.275

Nucleic acid components play a significant role in gene 
therapy. Nucleic acid delivery was first reported for exo-
some-based nanoplatforms delivery of siRNA to the 
mouse brain by systemic injection of targeted 
exosomes.276 Exosome-based engineering was used to 
enable dendritic cells to act as donor cells to express 
LAMP2B for the treatment of Alzheimer’s disease.277,278 

Bellavia et al developed exosomes loaded with BCR-ABL 
siRNA that targeted chronic myeloid leukemia cells and 
inhibited cancer cell growth.277,278 Furthermore, these 
authors developed a combination therapy containing ima-
tinib chemotherapy and siRNAs within exosomes for 

Figure 6 Various sources of oxidative agents responsible for oxidative stress such as anticancer drug, serum deprivation, nanoparticles, thermal stress, hypoxia, genotoxic 
drugs and protease inhibitors induce biogenesis and release of EVs.

International Journal of Nanomedicine 2021:16                                                                                   https://doi.org/10.2147/IJN.S310357                                                                                                                                                                                                                       

DovePress                                                                                                                       
3371

Dovepress                                                                                                                                                    Gurunathan et al

https://www.dovepress.com
https://www.dovepress.com


a synergistic approach.278 RNA-based nanotechnology 
plays a significant role in gene therapy. Kojima et al279 

reported that new strategic achievements for Parkinson’s 
disease by implanting reprogrammed HEK-293T cells in 
patients that secreted therapeutic exosomes loaded with 
biopharmaceutical-encoding mRNAs. These engineered 
cells have the potential to enhance efficiency, enabling 
specific mRNA packaging and exosomal mRNA delivery 
to recipient cells.

These techniques facilitate enhanced therapeutic out-
comes and are free from intrinsic limitations in transla-
tional research. EVs have been utilized as vehicles for 
anti-cancer drugs, small RNAs, and anti-inflammatory 
agents because of their potential ability to cross tissue 
barriers and deliver their contents to the target cells. The 
development of EV-based drug delivery systems can 
enhance the efficacy of drugs by altering their physical 
and biological properties to reach the target recipient cells 
and deliver their content. For example, small EVs asso-
ciated with adeno-associated virus vectors partially res-
cued hearing in mice by the use of direct cochlear 
injection with high efficiency and could also cross the 
blood-brain barrier.280 Pathogen-specific antigens contain-
ing EVs can be used as tools for the development of new 
vaccines for infectious diseases in humans and animals. 
Barbosa et al281 reported the potential features of parasite- 
derived EVs that can influence the profile of inflammatory 
mediators in the intestine of a preclinical mouse model, 
including cytokines and signaling molecules. EVs secreted 
by helminths could also promote expression of proinflam-
matory cytokines.282,283

Exosomes are not only carrier molecules for DNA and 
RNA but can also deliver proteins. Protein-related 
nanotherapy has attracted much attention owing to the 
unique specificity of the proteins involved. As 
a nanoplatform, exosomes contain numerous amounts 
and varieties of proteins both on the surface and in the 
inner cytosol providing considerable binding sites for 
combinations with specific ligands on the surface of reci-
pient cells for targeted therapy or to couple with exogen-
ous therapeutic proteins for efficient protein delivery.39 

For instance, macrophage-derived exosomes can overcome 
the blood–brain barrier to treat brain inflammation and 
also serve as nanocarriers to transfer brain-derived neuro-
trophic factor for efficient intrabrain delivery of therapeu-
tic proteins.284 Exosomes are suitable agents for the 
delivery of antioxidant agents, such as catalase, which 
accelerate the degradation of hydrogen peroxide by 

catalytic reactions and can be used for treatment of 
Parkinson’s disease.285 Another group has designed 
HEK293T-cell-derived exosomes for efficient intracellular 
optical-responsive protein delivery.286

Nanotechnology plays a critical role in immunother-
apy, including cancer therapeutic vaccines, for delivery to 
specific targets without undesired side effects and for 
production of immunomodulatory effects. In the context 
of cancer therapy, exosomes facilitate anticancer immuno-
surveillance and induce immunological rejection against 
tumors via the expansion of the cytotoxic T lymphocyte 
repertoire and revitalization of tumor-reactive quiescent 
T cells.38 Dendritic cell-derived exosomes have been 
shown to suppress the growth of established murine 
tumors and generate cancer-specific adaptive immune 
responses for efficient cancer immunotherapy.287 MSC- 
derived exosomes induce immunomodulatory effects by 
increasing cell proliferation and immunomodulation in 
cancers and help enable tissue regeneration. Nanosystems 
containing endogenous tumor antigens and immunostimu-
latory DNA are utilized to enhance cancer immunotherapy, 
and EVs are used as therapeutic agents in immunotherapy. 
For instance, EVs from antigen-presenting cells can acti-
vate CD4-and CD8-positive T cells through MHC-peptide 
complexes that enhance immunity to reduce tumor burden 
in immunocompetent mice.16 Acute kidney injury (AKI) is 
a result of the loss of kidney function, which causes 
morbidity and mortality. However, there are no definitive 
therapies for the treatment of AKI. Interleukin-10 (IL-10) 
is a powerful immune modulator with strong anti- 
inflammatory and tissue regeneration capabilities.288 

Tang et al289 reported the manufacture of EVs loaded 
with IL-10 by engineering macrophages for treating 
ischemic AKI. Exosome-mediated delivery of IL-10 
enhanced not only the stability of IL-10, but also targeting 
to the kidney due to the adhesive components on the EV 
surface.289 MSC/stromal cell-derived EVs are therapeuti-
cally potent against renal ischemia and myocardial reper-
fusion injury290,291 owing to several unique features 
including immunomodulatory and regenerative aspects. 
MSC-derived EVs are also protective against toxicant- 
induced injury.292–294 Macrophages stimulated with CpG 
oligodeoxynucleotides (ODNs) secreted EVs containing 
these ODNS that are then used to induce the release of 
TNF-α, which is mainly used for the treatment of auto-
immune diseases.295 EVs derived from human red blood 
cells have been utilized as delivery vehicles for EV-based 
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gene therapy to deliver antisense oligonucleotides or 
CAS9 mRNA and gRNAs to cancer cells.296

Exosome-based nanoplatforms are potentially used as 
biomarkers for various types of diseases, including cancer. 
In particular, tumor-derived exosomes can provide diag-
nostic information and aid in making therapeutic decisions 
for patients with cancer through a blood test. For example, 
molecular characteristics of gliomas such as mRNA 
mutants/variants, miRNAs, and cancer-specific EGFR 
vIII were detected in serum exosomes of patients with 
glioblastoma.297 Recently, the mRNA of exosomes from 
patients with glioblastoma was shown to be easily detect-
able by using advanced technology, such as microfluidic 
chip-based analytic approaches.298 Cancer cell-derived 
exosomes contain proteoglycan, glypican-1 (GPC1), and 
serve as a potential noninvasive diagnostic and screening 
tool for the early stage of pancreatic cancer detection.299 

Exosomes secreted from T lymphocytes have served as 
surrogate markers of inflammation.300 EV-associated 
molecular cargo such as miRNA repertoire provided useful 
diagnostic and/or prognostic information for the manage-
ment of T2DM.227 CD31+ extracellular vesicles from 
patients with type 2 diabetes of blood circulating 
miRNAs signature serving as tool to detect T2DM 
complications.227 Since the last decade, significant pro-
gress has been achieved in the field of exosome-based 
nanomedical applications; however, this field is still in its 
infancy.

Current Challenges and 
Perspectives of Extracellular 
Vesicles from a Clinical Point of 
View
EVs are used as drug delivery vehicle for the delivery of 
siRNAs, miRNAs, protein, small molecule drugs, nano-
particles, and CRISPR/Cas9 in the treatment of various 
diseases. EVs can easily penetrate into the tissues even 
into the brain and it can enhance the targetability. EVs- 
based drug delivery remains challenging, due to lack of 
standardized isolation and purification methods, limited 
drug loading efficiency, and insufficient clinical grade 
production.301 EVs-based therapeutics plays significant 
promise to enable targeted drug delivery with superior 
efficiency. EVs-based therapy is naturally lipid and surface 
protein composition, which enable them to evade phago-
cytosis, extend blood half-life, and reduce long-term safety 
issues compared with existing liposomes or polymeric 

nanoparticles. The small size of EVs facilitates their extra-
vasation, translocation through physical barriers, and pas-
sage through extracellular matrix. MSC-derived EVs were 
capable of increasing survival in a mouse model of pan-
creatic cancer. EVs have significant advantage as natural 
drug delivery,302,303 keep stability,304 and maintain suffi-
cient binding effects.305 For successful clinical application 
of EVs, cell-derived therapeutic EVs will need to be 
manufactured at sufficient levels with high purity as well 
as they should contain the appropriate cargo and surface 
molecules to make the exosome an effective medicine for 
the intended patient.306 The downstream processing of 
EVs should keep necessary quality control for therapeutic 
purposes.

Conclusion and Future Perspective
In this review, we presented recent advances in biogenesis, 
cargo sorting, membrane trafficking, and functions of EVs. 
Furthermore, we concentrated on the current state of the 
art in the field of EV-based applications in creating and 
tailoring theranostic nanomaterials and the importance of 
EVs as nanotherapeutic agents. Generally, EV biogenesis 
and secretion are complicated processes involving the 
involvement of several proteins; however, the exact 
mechanism of several proteins remains elusive. The rapid 
development of the field of EV research has led to an 
understanding of their specific roles in both normal and 
disease physiology. Further, these mechanistic studies pro-
vide a way to understand the mechanisms regulating cargo 
enrichment and EV release. Mounting evidence suggests 
that EVs are becoming regarded as an increasingly impor-
tant mechanism of intercellular communication and as 
vital components of both basic and clinical studies. 
Although numerous studies have contributed to the sorting 
of various proteins, RNAs, and lipids into EVs, a large gap 
still needs to be addressed on the importance of post- 
translational modifications in conferring specific properties 
to proteins and sorting them into EVs. For instance, the 
same protein can be modified in different ways by post- 
translational modifications because ubiquitination plays 
a significant role in packaging and secretion. EVs serve 
as natural carriers of biomolecules because they are nano- 
sized particles, have low immunogenicity, lack cytotoxi-
city, and have long-term safety.

The next important question that needs to be addressed 
is whether the MVBs present in ILVs can either fuse with 
the lysosomes or with the plasma membrane? Whether this 
is the result of the co-existence of two different 
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populations of MVBs inside the cells or the activation of 
specific signaling pathways is still a subject of investiga-
tion; in addition, the dependency of exosome biogenesis 
on the activity of the whole SNARE complex is unclear. 
Furthermore, the development of reproducible in vitro 
assay systems is necessary to study EV cargo loading 
that closely mimics the physiological context and would 
be helpful in answering many questions related to the 
targeting and packaging of EV cargo molecules. To under-
stand the fundamental properties of EV biogenesis, includ-
ing the role of varying molecular components and changes 
in membrane topology during EV formation, novel mole-
cular techniques are required that can distinguish EVs 
from one another once they have entered the extracellular 
space and also that can differentiate EVs derived from the 
endocytic pathway from those shed from the plasma mem-
brane. Furthermore, questions also remain concerning the 
energetic requirements for EV biogenesis, how various 
stimuli, including temperature, culture conditions, serum, 
and stress activators, as well as how the molecular inter-
actions between EVs and cells are influenced by various 
physical and chemical factors.307

Although EVs are utilized in various biomedical appli-
cations, currently available methods for isolation, purifica-
tion, characterization, and upscale processing are time- 
consuming, inefficient, and expensive, which hinders 
further commercialization and clinical translation of exo-
somes. Therefore, a special consortium is required to reg-
ularize the most important criteria, such as the 
development of new techniques for isolating and studying 
EVs and their exclusive purification and characterization 
for theranostic applications of EVs, as well as routes of 
EV administration and bio-distribution. Owing to the rapid 
development and usage of EVs, nanotechnology can pro-
vide a sound theoretical basis for the isolation, purifica-
tion, and characterization of EVs for an improved 
understanding of their specific physicochemical properties 
such as vesicular size, geometry, surface features, stiffness, 
chemical composition, and physiologic stability. Using 
currently available techniques, it is very difficult to distin-
guish between different EV subtypes. Hence, new techni-
ques are required to differentiate various subtypes of 
vesicles, such as endosome-derived and plasma mem-
brane-derived vesicles. To overcome this problem, the 
selection of cell lines, incubation time, serum concentra-
tion, pH, temperature, and other parameters must be fol-
lowed uniformly to avoid any variations. Exploiting 
advances in nanotechnology could enable EVs to provide 

multifunctional roles in various biomedical applications; 
for instance, surface functionalization of EVs with inor-
ganic nanomaterials, could enhance effectiveness and spe-
cific tumor targeting in cancer therapy, including the use of 
photothermal therapy. Therefore, a variety of exosome- 
based organic-inorganic hybridized nanosystems are 
required for nanomedical applications. Finally, the use of 
all omics systems and specific vesicles, EVs, or exosomes 
can be used as excellent nanoplatforms for precision 
medicine.
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